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We experimentally study consistency properties of a semiconductor laser in response to a coherent
optical drive originating from delayed feedback. The laser is connected to a short and a long optical fiber
loop, switched such that only one is providing input to the laser at a time. This way, repeating the exact
same optical drive twice, we find consistent or inconsistent responses depending on the pump parameter
and we relate the kind of response to strong and weak chaos. Moreover, we are able to experimentally
determine the sub-Lyapunov exponent, underlying the consistency properties.
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Consistency is a general concept describing the repro-
ducibility of responses of a dynamical system when
repeatedly driven by similar inputs, each time, however,
starting from different initial conditions [1]. Thus, it
characterizes the property of whether a similar drive results
in a similar response. Although the definition of similarity
lacks precision, consistency is a powerful concept with
implications in various fields. Consistency in the dynamics
of neurons is a necessary condition for the reliability in
cognitive tasks [2]. Moreover, it is a key ingredient to
hardware- and software-based neuroinspired information
processing techniques like reservoir computing [3–8].
Therefore, it is crucial to gain a thorough understanding
of this property and to achieve a high level of control over
it. A strong form of consistency, when the dynamical
system converges towards the same response to an input, is
closely related to generalized synchronization [9–12].
While consistency has been introduced in a context where
the same system is driven repeatedly [1], in the case of
generalized synchronization one considers two replicas of
the same system that are subject to the same drive [13]. The
underlying mechanism of both phenomena is the same and
relies on the conditional stability of the driven system [14].
Recent experimental and numerical advances comprise
generalized synchronization properties of laser systems
driven by a common light source with fluctuating phase
and/or amplitude [15–19].
In this Letter, we address two challenging aspects of

consistency. The first is the development of an experimental
scheme providing a high quality repeated drive for fast
experimental systems with nonscalar drive signals. The
second is the application, extension, and interpretation of
time series analysis methods in order to reveal insights into
the mechanisms underlying consistency. A remarkable
phenomenon in this context is that the same dynamical
system might show a consistent response to a certain
complex drive and an inconsistent response to another.
Such transitions can occur by variation of a single

parameter [17,20,21]. Here, we concentrate on consistency
of a semiconductor laser subject to a drive originating from
time-delayed optical feedback. The property that delayed
optical feedback induces high dimensional chaotic dynam-
ics in semiconductor lasers has been studied in detail over
the last decades [22]. Here, we use this mechanism as an
ideal generator for complex optical drive signals.
In the framework of semiconductor laser dynamics, the

consistency-related aspects of strong and weak chaos in
delay systems were recently introduced [23]. A fully
consistent response of the laser to its own chaotic delayed
signal is referred to as weak chaos, whereas an inconsistent
response corresponds to strong chaos. Only by changing
the feedback or pump parameters are there nontrivial
transitions between these different states, which were
identified in numerical simulations of a semiconductor
laser rate equation model [24]. Experimentally, there are
only indirect indications for these transitions like spectral
or intensity autocorrelation signatures of the laser dynamics
in the case of delayed feedback [25] or of delay-coupled
lasers [26]. A direct identification requires the knowledge
of the sub-Lyapunov exponent [24]. It characterizes the
stability of the response of a dynamical system to its
delayed feedback analog to the conditional Lyapunov
exponent of an externally driven system [14,20,21,27].
In particular, a negative sub-LE describes the convergence
of the response trajectories to a function of the feedback
drive, whereas a positive sub-LE describes their divergence.
Although the sub-LE is at the core of the consistency
property, so far it has not been possible to determine it
experimentally.
We adapted the idea of a repeated drive [1] to the case of

coherent and high bandwidth optical drive signals. We
particularly consider a semiconductor laser exhibiting
chaotic dynamics due to a delayed feedback drive. Our
scheme is based on two switchable feedback loops with
significantly different lengths. This allows us to store the
optical drive with all its features in the long fiber loop while
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the primary short loop is active and to replay it while the
short loop is blocked. The replay offers high accuracy
without practical limitations with respect to optical and
dynamical bandwidth. Even the optical phase dynamics is
maintained. Moreover, in comparison to an equivalent
synchronization scheme using a twin system, we minimize
mismatches by construction, because the identical laser is
driven by the repeated signals. This, in combination with
the high quality of the replay, even allows for access to a
measure proportional to the sub-LE, directly quantifying
the consistency properties.
Figure 1 shows the simplified experimental scheme.

The laser diode is an Eblana Discrete Mode Laser lasing
at 1.5 μm with a threshold current of the solitary laser of
Ith ¼ 11.8 mA. The laser light is split to simultaneously
enter two optical fiber loops, a short one with a round-
trip time of τ1 ¼ 111 ns and a much longer one with
τ2 ¼ 21 μs. At the end of each fiber loop the light passes
through a Mach-Zehnder modulator. These electro-optical
modulators are controlled by a pulse generator with a 50%
duty cycle, such that when one path is open, the other one is
blocked. The period of the modulation is set to 50 μs and
the switching time of the pulses is < 200 ps. During the
first 25 μs, the laser receives feedback from the short delay
loop, giving rise to the characteristic chaotic delay dynam-
ics. When the short path is closed and the long delay loop is
opened, the laser receives a replay of the optical field it
already received a time τ2 − τ1 before. We carefully
designed and adjusted the system to obtain an exact
repetition of the previous optical field. The levels of the
two drive signals are adjusted to a precision of �0.01 dB
and the suppression of the blocked loop is > 20 dB [12].
The laser output is detected with a photodiode of 12.5 GHz
bandwidth and a digital oscilloscope with 16 GHz analog
bandwidth. After removing the transient intervals originat-
ing from the switching process, we compare the dynamics
induced by the short feedback loop with the corresponding
dynamics induced by the replay from the long loop to test
consistency of the responses of the laser. An illustration of

the dynamical performance of the experiment is shown
in Fig. 2.
The laser intensity output for the short loop cycle and for

the long loop cycle are plotted in a spatiotemporal
representation [Figs. 2(a) and 2(b), respectively] [28]. In
such plots, the output power of the laser is color coded; the
horizontal axis represents the time up to the round-trip time
τ1 and the vertical axis displays the repetitions of τ1 within
each cycle. For better visualization, only a zoom is shown
[12]. The dynamics is characterized by chaotic intensity
fluctuations including irregular power dropouts. The
dynamics induced by the short and long feedback loop
exhibit the same patterns, illustrating the high accuracy of
the replay and the consistency properties for the given
conditions. The major differences, displayed as dark
horizontal lines in Fig. 2(b), correspond to additional
noise-induced dropouts occurring in the replay. Because
the drive is the same, these dropouts are not maintained
after one delay time τ1, meaning that the system in the long
loop cycle catches up to the original patterns and restores
consistency. Although Fig. 2 illustrates the good corre-
spondence between the two responses, this is not a general
feature. It is rather related to the particular dynamical
regime, which corresponds to a high level of consistency.
In contrast, Fig. 3 shows spatiotemporal plots of the laser

output for the short (a) and long (b) loop acquired for a
different pump current (I ¼ 1.27Ith), by which we vary the
dynamical properties. The laser dynamics are characterized
by different chaotic fluctuations. Similar structures can be
identified in the plots of both loops. However, there is not a
one-to-one correspondence between Figs. 3(a) and 3(b),
even though the laser received the same drive. This means
that the response of the laser to its feedback is inconsistent
here. Both results demonstrate that the laser can exhibit
different and independent responses to the same drive
depending on the dynamical regime, indicating different
levels of consistency.
Consistency of the laser response is directly quantified

by the cross-correlation coefficient between the power

FIG. 1 (color online). Experimental consistency setup.
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FIG. 2 (color online). Zoom of the space-time plots of the laser
output acquired at I ¼ Ith for the (a) short loop cycle and (b) long
loop cycle.
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output signals x1ðtÞ and x2ðtÞ from the short and the long
loop cycle, respectively. We denote it as the consistency
correlation Cc¼hx1ðtÞx2ðtÞi, where each segment is nor-
malized such that hxiðtÞi¼0 and hx2i ðtÞi¼1, i¼f1;2g, and
the time arguments have been deskewed by τ2 − τ1.
Additionally to this measure, we evaluate the autocorrela-
tion function for each of the cycles and determine the
maximum correlation of the first delay echo [25], which
was used as an indicator for strong and weak chaos. We
calculate Ci ¼ hxiðtÞxiðt − tiÞi, i ¼ f1; 2g, with the same
normalization as above and t1 ≈ t2 ≈ τ1 being the peak
positions close to the short delay for the short and long loop
cycle, respectively. Figure 4 shows these three correlation
measures as a function of the pump current.
We observe that all of the selected correlation coeffi-

cients follow the same trend, developing a single minimum

at moderately low pump currents and then rising and
saturating for higher pump currents. Consistency correla-
tions up to Cc ≈ 0.99 exemplify the high quality of the
replay setup. The minimum of all correlation coefficients
around I ¼ 13 mA indicates a possible region of strong
chaos interrupting weak chaos for high and low pump
currents. At high pump currents the values of C1 and C2

converge, because the signals in cycle 1 and 2 are practi-
cally identical. Around the minimum the discrepancy
between C1 and C2 is largest. It originates from consistency
properties rather than a mismatch of the drive signals.
Analyzing the entire autocorrelation functions, we find that
the difference is only affecting the delay echoes, whereas
the zero-peak structure is identical in both cycles [12]. The
correlation coefficientC1 measures the response of the laser
to its own τ1-delayed signal. In contrast, C2 measures a
different relationship, because due to the inconsistency the
signal x2ðt − τ1Þ is not the input underlying x2ðtÞ, but
x1ðt − τ1Þ, which is only structurally similar, like a surro-
gate. The lost information is reflected in the gap between
C1 and C2 and vanishes with increasing consistency.
In order to study the transition from weak to strong chaos

at low pump currents, we increased the feedback strength
by almost a factor 2, changing the coupler located at the
laser output for a 90∶10 one. A semiconductor optical
amplifier is placed in the detection path to overcome the
subsequent loss in the detected signal power. The resulting
correlation coefficients are shown in the inset of Fig. 4. The
correlation measures show a stronger increase with a
maximum around I ¼ 11.8 mA. The consistency correla-
tion at this point goes beyond Cc > 0.8, corroborating the
region of weak chaos. For increasing pump current, again
the correlation functions develop a minimum. They are
expected to recover to high values for even higher pump
currents [25].
Subtraction of signals from the short delay cycle x1ðtÞ

and the long delay cycle x2ðtÞ reveals the transverse signal
vðtÞ ¼ x1ðtÞ − x2ðtÞ. The term transverse refers to the
corresponding generalized synchronization setup, in which
vðtÞ is the synchronization error, i.e., a projection of the
phase space components transverse to the synchronization
manifold. With normalization as above, the variance of the
transverse signal is directly connected to the consistency
correlation by Cc ¼ 1 − hv2i=2. Additional information
can be obtained from the distribution function of vðtÞ.
For complete synchronization of coupled discrete maps it
was shown that the transverse component follows a power
law distribution pðvÞ ∝ jvjσ−1 [9]. The power law exponent
σ is directly related to the transverse Lyapunov exponent λt,
such that close to the synchronization threshold σ ∝ λt.
Although for continuous systems with vector-valued state
variables a complete theory is not yet developed, we show
how in analogy to the case of discrete maps it is possible to
extract a power law exponent σ that is proportional to the
sub-LE λ0. By definition, λ0 results from the exponential

FIG. 3 (color online). Zoom of the space-time plots of the laser
output acquired at I ¼ 1.27Ith for the (a) short loop cycle and
(b) long loop cycle.

FIG. 4 (color online). Correlation coefficients as a function of
the pump current. Blue and green curves show the autocorrelation
coefficients for the short and long loop cycle, respectively. The
red curve represents the consistency correlation. The inset shows
the correlation coefficients for higher feedback strength, recorded
with amplification of the detected signal. Peak positions t1 and t2
depend on the pump current and are located close to τ1 within a
margin of 50 ps.
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evolution of the transverse coordinate vðtÞ ¼ x1ðtÞ − x2ðtÞ,
where x1, x2 denote the B-dimensional vector state of
the system, from which we can only access a scalar
projection. Assuming that vðtÞ describes a small perturba-
tion governed by linearized equations of motion, the
logarithm of the perturbation size lvðtÞ ¼ ln ∥vðtÞ∥ leads
to λ0 ¼ hdlvðtÞ=dtit as its average growth rate. In agree-
ment with this definition, we can write a differential
equation dlvðtÞ=dt ¼ λ0 þ ηðtÞ with a term ηðtÞ incorpo-
rating the finite time fluctuations of the Lyapunov exponent
such that hηðtÞit ¼ 0. Assuming the same limiting and
reinjection mechanisms as in the corresponding theory for
the discrete maps, we expect an exponential distribution
ρðlvÞ ∝ expðσlvÞ with σ ¼ λ0=D. The scaling factor D is
related to the intensity of the fluctuations in ηðtÞ. If ηðtÞ
were white noise, its spectral power density would be 2D
accordingly. The exponential distribution holds only in the
regime governed by the linear equations of motion. For
small arguments lv the distribution is dominated by noise
and parameter mismatches, which in the double delay loop
experiment only stem from the minimized differences
between the two feedback loops. The resulting high quality
of the transverse signal allows for the analysis of the
distribution function ρðlvÞ. For large arguments lv, the
distribution is cut off by nonlinearities because the trans-
verse coordinate is bounded by the typical standard
deviation of the trajectories. To obtain the transverse
distribution function from the experimental time traces
x1ðtÞ and x2ðtÞ, a reconstruction of the vector states x1ðtÞ
and x2ðtÞ is necessary. We choose the canonical delay
embedding with an embedding dimension b and an embed-
ding delay h, such that each vector state is approximated
by xiðtÞ∼ yiðtÞ ¼ ½(xiðtÞ; xiðt− hÞ;…; xi(t− ðb− 1Þh)�⊤,
i ¼ f1; 2g. Although the embedding reconstruction is
not guaranteed formally by Taken’s theorem, because the
signals originate from externally driven systems, the
reconstruction error is expected to be reduced in the trans-
verse signal, because the explicit dependence on the external
drive vanishes here. Thus, we calculate the logarithmic
distance lvðtÞ ¼ ln ∥y1ðtÞ − y2ðtÞ∥ for different values of
the embedding dimension and embedding delay.
As a complement, we have numerically simulated the

corresponding scheme using the Lang-Kobayashi rate
equations and applied the same analysis in order to
corroborate the above assumptions. Remarkably, we found
consistent results for the decay rate σ of the distribution
functions throughout all embedding dimensions and
embedding delays. We further were able to confirm the
proportionality σ ∝ λ0 by comparison with the directly
calculated Lyapunov exponent from linearizations [12].
In the experimental distribution functions lv, we can

identify the expected three regimes. We determine the slope
σ in the useful intermediate region by using the plateau of
the slope d lnðρðlvÞÞ=dlv from the set of curves for different
embedding dimensions. The results of this analysis are

summarized in Fig. 5, depicting the dependence of σ on the
pump current. Starting with low values of σ for small
currents, the curve develops a maximum where the corre-
lations are minimum, and again decays for large currents.
We infer a large negative value of the sub-LE in the regimes
of high consistency correlation, which means that inter-
mittent bursts of the transverse variable are comparably
rare, are of low amplitude, and quickly recover towards
periods of full consistency. The power law distribution of v
with an exponent σ − 1 supports this picture, as for the
negative σ there is a pronounced peak at v ¼ 0 with a rapid
decay. For intermediate pump currents, at the studied
conditions we obtain only a slight zero crossing of σ
and thus of λ0. Simulations indicate that this is related to the
α parameter of the employed laser, being α ∼ 2 [12].
Interestingly, a marginal sub-LE already causes a very
low consistency correlation. This shows the role of the
finite-time fluctuations ηðtÞ of the sub-LE, which lead to
large and frequent excursions from the synchronized state.
Hence, the studies on the transverse distributions comple-
ment and extend those of the correlation functions.
Recalling the direct connection between the sub-LE and
σ, which was verified in simulations, we demonstrated the
direct determination of the sub-LE from experimental data.
In conclusion, we presented an optical consistency

experiment with nonscalar drives showing that semicon-
ductor lasers may respond in a consistent or inconsistent
way depending on feedback conditions. The different
consistency regimes are directly related to the sub-LE of
the system. While up to now no experimental access to the
sub-LE of the system existed, we developed an experi-
mental method to directly measure the consistency proper-
ties for high optical and dynamical bandwidth drives. By
means of the analysis of transverse distribution functions
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FIG. 5 (color online). Slope σ ¼ d lnðρðlvÞÞ=dlv in the inter-
mediate regime of the transverse distribution functions. For the
calculation of lv we set the embedding delay h to the first zero
crossing of the autocorrelation function from the time traces, and
the embedding dimensions range from b ¼ 2 to b ¼ 7. Error bars
denote the quality of convergence with increasing embedding
dimension thus not containing systematic errors. For a detailed
description of the method see Ref. [12].
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we could extract a direct signature of the sub-LE. With the
relevance and implications of consistency in various fields,
we expect this method to prove valuable for further
fundamental studies and applications.
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