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Abstract  

The fit between life histories and ecological niche is a paradigm of phenotypic evolution, also 

widely used to explain patterns of species co-occurrence. By analyzing the lifestyles of a 

sympatric avian assemblage we show that species’ solutions to environmental problems are 

not unbound. We identify a life-history continuum structured on the cost of reproduction 

along a temperature gradient, as well as habitat–driven parental behaviour. However, 

environmental fit and trait convergence are limited by niche filling and by within-species 

variability of niche traits, which is greater than variability of life histories. Phylogeny, 

allometry and trade-offs are other important constraints: lifetime reproductive investment is 

tightly bound to body size and the optimal allocation to reproduction for a given size is not 

established by niche characteristics but by trade-offs with survival. Life histories thus keep 

pace with habitat and climate but under the limitations imposed by metabolism, trade-offs 

among traits and species’ realized niche.  

Key-words: Life-history trade-offs, phylogenetic comparative method, realized niche, 

reproductive allocation
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1. Introduction 

The relationship among life histories, physiology, phylogeny and niche characteristics is 

central to understanding not only how phenotypes evolve with the environment and connect 

with energy fluxes and material cycles [1,2], but also patterns of species distribution and co-

occurrence [3]. Classically, this relationship has been analyzed in terms of the biotic and 

abiotic processes that fuel the diversity of life history strategies and the intrinsic structural 

rules that bind them. The main objective has been to identify either the former or the latter, 

and less frequently their interaction, an intricate task in natural communities cloaked in 

environmental and biological complexity. One of the most intuitive constraints is the basic 

allometric rule that places life history differentiation along the so-called mouse-to-elephant, 

or yeast-to-sequoia, axis. Larger species have longer life spans and generation times as it 

takes longer for large species to grow, but lower specific allocation in reproduction and 

slower relative growth rates [4]. For some traits, the relationship to body size has a 

predictable shape: growth or the rate of reproductive mass production have been shown scale 

approximately to 3/4 power of body size, as predicted for metabolic rates by the Metabolic 

Theory of Ecology [2,5]. The 3/4 power scaling is based on the idea that a fractal-like 

branching network supplies resources to cells [2], while rates proportional to surface area or 

structural body volume should result in an exponent ranging from 2⁄3 to 1, as predicted by the 

theory of Dynamic Energy Budgets [6].  

However, substantial deviations from equations are produced by characteristics of a 

species’ ecological niche, such as interspecific competition [7] and trophic specialization [8], 

but also by trade-offs in the allocation of limited resources among competing functions [9]. 

These trade-offs impinge upon a second dimension of life-history variation, the cost of 

reproduction, i.e. the reduction in future reproduction or survival resulting from current 
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investment in reproduction [10,11]. Hence, at a similar body size, organisms that develop 

slowly and die older tend to allocate less to reproduction than those with short maturation and 

lifespan. At the level of species, this dynamic linkage is also known as the slow-fast lifestyle 

continuum or pace-of-life syndrome, rooted in the classic concept of r/K-selection [12]. 

Within this general framework, the evolutionary history of lineages is a potential constraint 

dictating the options for differentiation, and traits of more closely related species often 

display similar patterns of variation [13,14] 

It is along these axes that natural selection operates. Components of the species’ 

ecological niche, such as habitat structure, food supply, predation, disease or physical stresses 

favor different lifestyles and combinations of life histories, and foster their variation. Two 

major extrinsic drivers have been suggested for explaining (or maintaining) the life history 

continuum: food predictability and mortality patterns. Unpredictable resources such as food 

and light, and high mortality attributable to external factors, tend to favor fast growth, high 

reproduction rates and risky lifestyles [15,16]. The investment in parental care and self-

maintenance reflects responses to perceived risks and environmental stresses: high juvenile 

mortality or reduced recruitment may yield greater allocation in offspring quality than 

quantity, while the opposite may hold for high adult extrinsic mortality [17,18].   

Several comparative studies on animals have analyzed, mostly separately, the above-

mentioned eco-evolutionary processes. However, the relative influences of trade-offs in 

allocation of limited resources, specific environmental variables such as climate and habitat, 

scaling relationships and competition for niche space have rarely been addressed and 

combined in empirical works on life history evolution. Trade-offs among traits, especially 

those between reproduction and survival, can cause deviations in allometric equations of 

reproductive biomass production rates if, for instance, resources are saved from reproduction 

and redirected to self-maintenance, and thus future reproduction, in large or long-lived 
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species. In these conditions, we expect that a measure of investment that accounts for energy 

allocated to self-maintenance should fit equations better than that of reproductive biomass 

production rate per year.  Moreover, when studying the ecological context of life history 

evolution, the limitation imposed by local competitors on species distribution is an important 

source of deviation from optimality, though most life history thinking is based on the 

assumption that species occupy their fundamental niche. Competition among species can 

distort our appreciation of phenotype-habitat matching in old environments, in which niche 

filling has taken place through immigration from the outside (e.g. continental areas) rather 

than having been generated in situ (e.g. volcanic islands) [19].  

In this study, we adopt the approach of considering all species in a sympatric 

assemblage for studying the degree of differentiation of life history traits. We examined 

whether the influence of the above listed pathways of life history differentiation can be 

distinguished in a pool of almost one hundred breeding birds broadly differing in size and 

pace of life, and in which congeners tend to segregate spatially. We deconstruct an elevation 

gradient into its climate and habitat clines of variation, as indicators of environmental 

harshness, disturbance and productivity [18,20], and address their influence on the rate of 

reproductive biomass production, egg number and weight, life expectancy and parental care 

attributes. We used phylogenetic comparative methods that model stabilizing selection 

around optima modelled on environmental variables that change over time, because these 

capture realistically the relationship between traits and environmental agents of selection 

[14,21,22]. Although we focus on interspecific patterns, we accounted for intraspecific 

variability, i.e. trait variance and covariance within species, since the differentiation of 

populations through local adaptation is an inherent aspect of niche and life history evolution 

[23].  This is especially true along elevation gradients, which fuel intraspecific adaptive 

differentiation [24-26]. We test the following: (i) Whether the allometric exponent 
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approximates 0.75 for the slope of the regression line between body mass and reproductive 

productivity [2].  (ii) Whether the annual investment in reproductive traits is higher where 

unreliable food resources are available, or higher risk of predation is perceived [27], and if 

low levels of habitat-dependent predation-risk can prolong parental care [16,18].  (iii) 

Whether trade-offs among traits and limiting similarities among co-existing species condition 

the degree of allometric and environmental fit, in terms of adjustment to allometric equations, 

rates of adaptation, and contribution of environmental variation. For the latter, we split the 

dataset and its phylogeny into two groups: one formed by species that do not coexist with a 

congener in this species pool (with a phylogeny with deeper branches) and another that 

groups congeneric species, with higher levels of biological similarity and presumably also 

interspecific competition. In comparative studies, the usual way to test the robustness of 

inferences is to statistically transform phylogeny branch lengths and simulate trait 

measurement errors [28,29]. We perform this exercise with natural variances and 

biologically-transformed phylogenies, to test assumptions and predictions that were 

formulated neglecting these aspects.  

2. Methods 

Ecological characteristics were obtained for 94 species of a terrestrial avian community 

breeding in NW Spain, which includes common birds of the western Palearctic that 

assembled by immigration from outside the region. Bird ecological niche was studied in the 

field along a wide environmental gradient, in an area of 16,000 km2 ranging from 120 to 

2,620 m in elevation. Here deciduous forests, shrubberies, grasslands, rocks and screes are 

the main habitat types (ESM, figure S1). A total of 2,347 survey plots of 3.14 ha each were 

established, in which we recorded the abundance of birds, elevation and habitat 

characteristics. For each species, we calculated the average covers of forest, grassland, shrub 

and rocks in occurrence plots, where we also estimated the average annual temperature and 
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its range, and the annual accumulated precipitation and its range (details in the ESM, table 

S1). The variance associated with these averages was also estimated. These continuous 

descriptors were used as indicators of variation in selective regimes to infer phenotypic 

adaptation.  

Ideally, we should estimate life history and phenotypic traits in situ as well, but this is 

notoriously difficult for even a single species. We mostly used published information on 

mean adult mass and life history traits of birds of the western Palearctic (see the ESM, table 

S2). We also accounted for the average migration distance and its variance, since migration 

strategy is an important driver of avian life histories [8].  Life histories were quantified in 

terms of eggs laid per year (clutch size × brood number), egg mass, the rate of reproductive 

biomass production per year (hereafter productivity, egg mass × clutch size × brood number; 

[8]), time (per year) spent incubating (time to hatching × brood number), time (per year) 

spent caring for nestlings (time from hatching to fledging × brood number), and reproductive 

life expectancy. The latter was estimated as [2-(1-adult survival)]/2 × (1-adult survival) [30] 

and was used as a measure of lifespan instead of maximum longevity, because it is less 

sensitive to sampling effort as it is based on capture-recapture survival models [albeit the two 

lifespan proxies are highly correlated (rS = 0.6, t74 = 6.19, p < 0.001)]. The lifetime production 

of reproductive biomass was obtained as the product of life expectancy and the annual rate of 

reproductive biomass production.  

We obtained mean trait values for all species (94) with the exception of life expectancy, 

known only for 77 species; variance values were obtained for all body mass and reproductive 

variables, and for 63% - 85% of the species for the rest of the variables (ESM, table S2). 

Missing variances were substituted with the average variance of the rest of the species [31]. 

Variances were either obtained from the literature on a single population (the case for 

survival estimates) or calculated using population trait values reported for each species (the 
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remaining phenotypic variables) (ESM, table S2).  The variance of variables that are the 

product of traits (e.g. egg number, annual and lifetime productivity, incubation and nestling 

times) was calculated by summing trait variances and covariances within species, with the 

following formula (an example for two traits): σ2 1ൈ2 ൌ   ൅   ൅ 2 ·   ·    ·     ; where 

σ1 and σ2 are the standard deviations and μ 1 and μ2 the means of variable 1 and 2, and ρ12 is 

their coefficient of correlation [32]. We obtained the correlation coefficient for 6 - 8 species 

per trait, and the average of species’ values was used for species in which the correlation was 

unknown. Notably, we found that ρ differed significantly from zero in the case of egg weight 

vs. clutch size, and clutch size vs. survival only (ESM, table S2).  All variables were log10-

transformed to attain a normal distribution, estimate allometric coefficient appropriately and 

obtain independent variances from the means [33]. This transformation implies that an 

originally lognormal distribution with variance σ2 and mean μ is transformed into a normal 

distribution, with mean = ) and variance =  

[31]. The above log10-transformed means and variances were used as trait mean value and 

measurement error, respectively, in comparative analyses.  

To model trait evolution on species phylogeny we downloaded 10,000 trees from  

www.bird.tree.org [34] for the species included in our dataset. We chose the backbone tree 

based on Ericson et al. [35] to obtain a 50% majority rule consensus tree  in which branch 

length is represented by the proportion of nucleotide substitutions (ESM, figure S2). Being a 

sympatric assemblage of species, the phylogenetic relationship among them should capture 

differentiation mechanisms limited by niche similarities [19]. We first quantified the 
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influence of phylogeny on variation in each trait by means of K statistics [28], to assess 

whether traits conserved a phylogenetic signal and whether predictors (body mass, migration 

strategy and ecological parameters) were not changing too fast with respect to the rate of 

adaptation of life histories, a condition in which adaptive variation cannot take place [22]. 

When K approaches 1, trait evolution follows a purely neutral, drift-mutation model (also 

known as Brownian motion (BM) model) in which the differentiation between lineages 

increases with the time since they diverged (the longer the time, the greater the change). 

When K < 1 closely related species are less similar than expected because rates of evolution 

are fast under strong directional or disruptive sexual selection [36], or stabilizing selection 

hampers deviations through time from optimal trait values (a case of the Ornstein-Uhlenbeck 

(OU) process) [37]. When K >1, close relatives are more similar than expected under a purely 

neutral model of evolution [28].  

Allometric scaling of annual and lifetime productivity was estimated by phylogenetic 

regressions weighting differences in variances due to within-species variation in both 

productivity and body mass. We followed the methods proposed by Ives et al. [31] and 

Hansen & Bartoszek [38], which differently account for predictor variance [39].We then 

analyzed the determinants of life history optima in the traits that were less constrained by 

phylogeny (egg number, life expectancy, incubation and nestling times, see Results). We 

modeled variation as a sum of the random noise and a deterministic pull toward particular 

states determined by niche characteristics, migration distance, and allometry with body mass, 

again accounting for trait variance [22,37]. The linear influence of predictors was not 

assessed on traits but on the ‘primary’ optima, the optimal states where all ancestral 

constraints were lost following an OU process [37]. The OU model mathematically expresses 

an evolutionary process in the presence of natural selection, in which different lineages, or 

successive branches within a lineage, are subject to the same selective regime (e.g. a common 
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environment) [21]. It expresses the change in trait X by time t as dX(t)= -α[X(t) -θ]dt + s 

dB(t), where α measures the rate of adaptation towards the optimum trait value θ,  X(t) is the 

current trait value, s is the standard deviation of random change and dB(t) is white (random) 

noise dB by time t [37]. When the current trait approaches the optimum, adaptation to a 

particular niche has taken place [22,37]. The adaptive potential of a trait can be predicted by 

its adaptation rate α, which measures the rate of adaption contingent on all past niche 

influences. It can be also appreciated by comparing the relationship of the trait with 

predictors under the influence of both adaptation and phylogenetic inertia (evolutionary 

regression) with the relationship free of phylogenetic constraints, in which the trait evolves 

fast enough to adjust to predictor changes (optimal regression) [22]. A possible explanation 

for why optimal regressions are steeper than evolutionary regressions is that the trait in 

question is undergoing strong directional selection but is highly constrained, for instance 

because it concurrently keeps pace with other traits [14]. Poor environmental fit can also 

occur in species occupying their realized niche, rather than the environment maximizing 

demographic rates in the absence of competition. To envisage these potential mismatches we 

modeled life history variation and allometric scaling in a dataset that included species that do 

not co-occur with congeners (44 species), and then in one grouping species of the same genus 

(50 species) (ESM, figure S2).  

To assess the fit of models including different combinations of the predictor variables, 

we used the Akaike information criterion corrected for sample size (AICc), considering as 

equally probable those models separated by less than two AICc points from the model with 

the lowest AICc (i.e. ΔAICc  < 2 [40]). In models, the contribution of each predictor was based 

on Type II SS, and the phylogeny was specified to be non-ultrametric.  Analyses were done 

in R 3.2.0 with the packages ape [41], phytools [42] and slouch [43].  

3.Results 
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Variables associated with mass were by far more conserved (K >>1) along the phylogeny 

than life history and niche traits (K < 1; figure 1). This suggests that the latter traits may have 

undergone a more remarkable divergence in the terminal branches or, alternatively, may be 

subject to higher environmental variation (or within species variation) than morphology. 

Phylogenetic signal was higher among non-congeners than among groups of congeners in 

mass-related traits, but niche and life histories changed roughly at similar rates in the two 

assemblages. This result again suggests that these traits may have evolved faster than 

morphology (interaction assemblage × variable type in a comparison of K indices: F 2,28 = 

3.61,  p = 0.04). However, niche traits, unlike life histories, where characterized by large 

within-species variance in both assemblages (comparisons among the three categories of 

traits: F 2,28 = 7.30, p = 0.0028) (figure 1).  

Annual productivity increased with body mass, but more slowly than expected: slopes 

were 0.57 as obtained by the regression method of Ives et al. [31], and 0.56 by the method of 

Hansen & Bartoszek [38], differing significantly from the expected value of 0.75 (t > 5.89, p 

< 0.001). Remarkably, the optimal regression slope (free of constraints) for annual 

productivity predicted by the latter method was extremely close to predictions (0.74 ± 0.05 

SE), but evolutionary equations also adjusted to this value when productivity was measured 

across birds’ lifespans. Slopes for lifetime productivity were 0.79 and 0.81 according to Ives 

et al. [31] and Hansen & Bartoszek [38] methods, respectively, and none differed from 0.75 (t 

< 1.57, p > 0.11) (figure 2).  The above results hold when splitting the assemblage, and no 

significant difference emerged between equations obtained with congeners’ and non-

congeners’ assemblages, either regarding annual productivity (t = 0.17, p = 0.9) or lifetime 

productivity (t = 1.66, p = 0.1) (table 1).  

Life histories with low but significant phylogenetic signal (0 < K < 1) were modeled on 

niche characteristics, migration distance and body mass. We excluded temperature range 
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from the predictors, a trait with no phylogenetic signal (figure 1) and thus supposedly too 

labile for traits to keep pace with [22].  We also excluded accumulated precipitation, which 

was correlated with the rest of the predictors (0.22 < rS < 0.59; p < 0.05). For egg number and 

life expectancy, adaptive models where optima were determined by body mass, temperature 

and /or migration distance performed best by AICc criteria (ESM, table S3). Thus, large 

species, breeding in cold climates and migrating long distances, survived longer but laid 

fewer eggs, while species inhabiting shrub vegetation laid more eggs (figure 3; table 2). The 

best models explaining the durations of incubation and nestling phases included the positive 

relationship to body mass and rocky habitats, and also shrub habitats for the former variable 

(figure 3; table 2; ESM, table S3).  Steeper slopes of egg numbers with predictors were 

expected by the optimal regressions with respect to the relationships constrained by 

phylogeny (evolutionary regressions), while for the rest of the variables equations largely 

overlapped (table 2). Adding life expectancy (which trades off with egg number) to the other 

predictors of egg number increased both adaptation rates (α = 5.33) and the match between 

evolutionary and optimal allometric slopes, as estimated by the dataset of species of known 

survival (optimal vs. evolutionary slopes of egg number on body mass in models including 

life expectancy: -0.17 ± 0.06 vs. 0.12 ± 0.04; t = 0.85, p = 0.39; excluding life expectancy: -

0.37 ± 0.07 vs. 0.19 ± 0.03; t = 2.04, p = 0.04).  

The environmental fit of life history traits, as measured in terms of relative variance 

explained by predictors, tended to be higher in the assemblage of species that does not coexist 

with a congener, especially in parental care variables, when centering on the common models 

that best explained variation in both assemblages (table 1; ESM, table S3). Among non-

congeners, egg number and incubation time showed faster adaptation to the environment than 

groups of congeners (table 1). The opposite occurred for life expectancy and nestling time, 



13 
 

although their adaptation rate was high in both assemblages as compared to that of egg 

number (table 1, 2).   

4. Discussion 

We found an echo of historical, physiological and environmental filters in the life histories of 

this pool of species. Results are in agreement with theoretical predictions for the 3/4 power 

scaling of reproductive biomass production rates with body mass [2], provided the investment 

in self-maintenance (measured through life expectancy) is accounted for as a source of 

expenditure. In spite of a substantial within-species variation in niche traits, our results 

highlight a certain degree of optimization of life histories, supported by significant 

relationships between life history optima and habitat or climate aspects of species niche.  The 

match between life history and the environment increases among species that do not share 

their niche space with a congener, suggesting that competition may limit our appreciation of 

the environmental fit of traits in natural populations.   

The comparison of phylogenetic signal among traits reveals a signal deeply rooted in 

the phylogeny in the case of mass-related variables, consistent with the hypothesis drawn 

with dated avian phylogenies of early and rapid body size differentiation followed by 

competition-driven stasis [19,43]. On the other hand, bird ecological characteristics do not 

exhibit a strong phylogenetic signal in either terminal (congeners) or in deeper branches (non 

congeners), although they maintain a significant historical footprint. Niche differences may 

have evolved later than morphology and may be highly adaptive, but can also depend more 

on the local ecological context and environmental (i.e. not genetic) variation. The latter 

hypothesis is substantiated by a variance more than ten-fold that of the rest of the traits, a 

circumstance that lowers K and agrees with results obtained in other animal groups [28]. The 

low variances and Ks of life histories suggest instead a pattern of reduced environmental 

variation but high levels of evolutionary malleability, especially in parental care variables, as 
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if adaptations to specific conditions involved some but not all members of a lineage. It is 

worth noting that our sampling protocol may have accentuated differences among variances, 

since these were derived from population means for body size and most life histories, and 

from individual values for niche traits. However, the abundant evidence of ecotypic 

differentiation through species Palearctic distribution [44] and the local extent of niche data, 

should have limited the magnitude of this bias.   

Since productivity traits were strongly influenced by phylogeny and body mass, they 

were not regressed on niche variables, because the latter are too evolutionarily labile for 

productivity to track their changes while keeping pace with phylogeny and body mass [14]. 

However, the difference between the allometric equations of annual and lifetime productivity 

is informative in that it highlights a link between the compensatory allocation to distinct vital 

functions, namely the cost of reproduction, and the scaling rules governing resource uptake 

and redistribution in individual organisms. Sibly & Brown [2] and Sibly et al. [7] identified 

such a link in the annual productivity of birds and mammals, but our results show that the 

largest birds do not invest in annual reproduction as expected from their size, so that the 

relationship does not fit expectations in any of the assemblages considered. It is instead the 

overall reproductive biomass production across bird adult life that that adjusts to predictions, 

revealing a simple mechanistic link that can be used for quantitative predictions based on life 

history trade-offs and allometry. As further evidence, adding trade-offs to life expectancy in 

models of egg number revealed the “optimal” adjustment of egg number to body mass (i.e. 

the optimal and evolutionary regressions of egg number and body mass coincide), while 

ecological predictors were unable to demonstrate this (table 2).  Future work should however 

assess the compliance of these relationships with the theoretical framework defined by the 

chief metabolic theories in ecology, the Metabolic Theory of Ecology and the theory of 
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Dynamic Energy Budgets, which have different models for maintenance and assimilation 

parameters [45]. 

Once accounting for phylogeny and body mass variation, we did find contrasting suites 

of correlated life histories favored along the environmental gradient. The result of decreasing 

egg number and increasing life expectancy in birds breeding in colder conditions is in line 

with results obtained along elevation gradients [27]. Cold climate augments the metabolic 

requirements of chicks [46] and may drive the evolution of a syndrome of smaller 

reproductive effort but higher investment per offspring, with implications for juvenile and 

subsequently adult survival. Life history theory also predicts that environmental uncertainty 

should foster the allocation in offspring number [11,47], thus explaining why shrubberies, a 

secondary habitat that undergoes high levels of natural disturbance, are inhabited by species 

laying large numbers of egg [48]. The balance between present and future reproduction tilts 

more strongly towards the future (survival) in species migrating longer distances, confirming 

the trade-off, described in several animal groups, between migration and reproductive 

investment and its long-term implications for the rest of the life histories [1]. Ultimately, 

habitat has a relevant influence on parental care traits and we interpret this result as being 

partly associated with predation risk, which typically differs among habitats and is one of the 

major determinants of avian parental strategies [18]. The prolongation of parental care is 

risky since it increases the probability that eggs and young will be preyed upon. Thus, we 

expect this to evolve when predation pressure on eggs or nestlings is low, or when selection 

on parents favors the reduction of attentiveness [16]. Most rupicolous species nest in virtually 

inaccessible cliffs, a behavior that reduces selection for rapid development and high parental 

nest attentiveness [13].  

All in all, these results suggest that the spatial and ecological co-occurrence of species 

fosters the evolutionary convergence of their life histories. The analysis of life history and 
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niche differences in the assemblages of congeners and non-congeners, however, suggests that 

trait values, especially those associated with parental care, are closer to their environmental 

optimum in the latter assemblage, which includes species of more ancient relationships and 

reduced similarity. This finding does not obviously imply that congeners display 

maladaptations, and we also exclude incomplete adaptation and ongoing niche filling, since 

congeners are not of recent origin, nor have they recently colonized this continental mountain 

chain. Other factors, we did not consider as implicit predictors, may separate traits from their 

habitat-driven optima. We point to competition among similar, closely related, species as a 

candidate factor capable of segregating species that share habitat associations and intrinsic 

traits. This is because congeners occupy different elevation bands in our study area [20], as in 

other mountain regions where competition is an important community structuring mechanism 

[19], but often share life histories [13]. Undoubtedly, we have made simplified assumptions 

on competition among congeners, and diluted similarities within genera with dissimilarities 

among them in the analyses. More realistic analyses should explicitly model variation in 

species that share the greatest similarities, and account for species relative abundances and 

competition asymmetry. Alternative explanations are indeed plausible, for instance the 

extreme variability of niche variables, which may per se explain the little contribution of 

environmental variables to life history diversification. To our knowledge, this is the first 

study on this subject accounting for within-species variation, and thus the first that calls for 

caution when over- or under-stressing the importance of measurement error in such 

comparative analyses. Importantly, not all variables have the same variance and significant 

trends are highlighted even with predictors with large errors (e.g. figure 3), but high levels of 

environmental variation may undeniably slow down or hamper evolutionary processes of 

adaptation [49].  
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 In conclusion, we evaluated competing models of life history evolution along species 

phylogeny and assessed the degree of environmental fit and the lag separating traits from 

their environment-driven optima. We show that lifetime reproductive biomass production is a 

good indicator of species’ structural limits on metabolic expenditure since it accounts 

indirectly for the physiological costs of self-maintenance in long-lived species. We also 

hypothesize that within-species variation and competition for niche space may separate life 

histories from their habitat and climate-driven optima. Beyond these major constraints and 

limiting factors, lifestyles appear to have coevolved with species’ ecological niche, as an 

outcome of evolutionary convergence, and this results in guilds of species sharing life 

histories, and not only similarities in morphology and foraging habits.   
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Figure and Table captions 

 

Fig. 1. Values of the K statistics measuring phylogenetic signal in the set of variables 

considered in this study. Significant phylogenetic effects are marked with asterisks (* p < 

0.05; ** p < 0.01; *** p < 0.001). The plots on the right indicate the average values of K 

(top) and variances (bottom) of mass-related variables (body mass, egg mass, lifetime and 

annual productivity), life history variables (egg number, adult life expectancy, incubation and 

nestling time), and ecological traits (climate, habitat and migration variables) in the 

assemblage of species that do not coexist with a congener and in groups of congeneric 

species. 

 

Fig. 2. Relationship between lifetime reproductive biomass production and body mass, as 

expressed on a logarithmic scale. Each dot represents the mean value of a species, and 

variances are also shown as error bars. Phylogeny does not constrain this relationship since 

the slope of the evolutionary regression, indicating the influence of body mass and 

phylogenetic inertia, and that of the optimal regression, free of phylogenetic constraints, 

coincide and equal 0.81 ± 0.04 (R2 = 0.88). 

 

Fig. 3. Plots depicting variation in egg number along the temperature gradient (left) and in 

nestling times driven by habitat (right). Dots represent species’ residuals partialling out the 

effect of other predictors influencing traits; the error bars of x- and y-variables represent that 

of raw log10-transformed variances. The significant evolutionary regressions, indicating the 

influence of predictors and phylogenetic inertia, are also shown.  
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Table 1. Relationships between productivity traits and body mass, and between life histories 

and body mass and niche characteristics, in the entire community of birds, in the assemblage 

formed by groups of congeners, and in the assemblage formed by non-congeners. Allometric 

slopes ± standard errors, trait adaptation rate α (indicating independence from ancestral 

values) and model coefficients of determination (R2) are also shown.  We report the models 

with the highest performance based on AICc criteria and that included the same set of 

variables in the three assemblages (see also the ESM, table S3). Since data were log10-

transformed prior to analyses, estimates should be interpreted in this scale.  

 

Table 2. Summary of the parameter estimates (± standard errors) of the best models 

explaining life history variation across the entire dataset. Life history optima were modeled 

on combinations of body mass, migration distance and niche variables. Optimal slopes 

indicate the expected adaptive variation of traits as these were free of phylogenetic 

constraints, while evolutionary slopes indicate the observed variation due to both adaptation 

and phylogeny. The value of α measures trait dependence on ancestral values (the higher the 

α, the higher the rate of change and the lower the inertia).  When more than one model best 

fitted the data, the model with the largest number of parameters is shown here; alternative 

models are listed in the ESM, table S3. Since data were log10-transformed prior to analyses, 

estimates should be interpreted in this scale. 
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Fig. 1. 1 
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Fig. 2 2 
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Fig.3 5 
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Table 1. Relationships between productivity traits and body mass, and between life histories and body mass and niche characteristics, in the 

entire community of birds, in the assemblage formed by groups of congeners, and in the assemblage formed by non-congeners. Allometric slopes 

± standard errors, trait adaptation rate α (indicating independence from ancestral values) and model coefficients of determination (R2) are also 

shown.  We report the models with the highest performance based on AICc criteria and that included the same set of variables in the three 

assemblages (see also the ESM, table S3). Since data were log10-transformed prior to analyses, estimates should be interpreted in this scale.  

  Entire community  Among groups of congeners Among non-congeners 
Model Allometric slope  Allometric slope Allometric slope 

Lifetime productivity ~ Body mass 0.81 ± 0.04  0.72 ± 0.05 0.85 ± 0.06 
Annual productivity ~ Body mass 0.56 ± 0.03   0.53 ± 0.04  0.54 ± 0.04 

Model α* R2  α* R2 α* R2 
Incubation time ~ Body mass + Rock cover 23.1 0.156  17.3 0.109 34.7 0.439 
Nestling time ~ Body mass + Rock cover 12.6 0.201  17.3 0.166 10.0 0.334 
Egg number ~ Body mass + Temperature 0.43 0.315  2.89 0.339 29.0 0.398 
Life expectancy ~ Body mass + Temperature  13.9 0.513  69.3 0.637 13.9 0.677 

 
* Since branch length in our phylogeny is represented by the proportion of nucleotide substitutions, thus total tree height = 1, α is expressed in this unit. A α = 0.69 (i.e. ln(2)) means that it takes 
the distance separating the root from the tip of our phylogeny to lose half of the ancestral influence, and a null α characterizes an evolutionary model without adaptive change (BM model).
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Table 2. Summary of the parameter estimates (± standard errors) of the best models explaining life history variation across the entire dataset. Life 

history optima were modeled on combinations of body mass, migration distance and niche variables. Optimal slopes indicate the expected 

adaptive variation of traits as these were free of phylogenetic constraints, while evolutionary slopes indicate the observed variation due to both 

adaptation and phylogeny. The value of α measures trait dependence on ancestral values (the higher the α, the higher the rate of change and the 

lower the inertia).  When more than one model best fitted the data, the model with the largest number of parameters is shown here; alternative 

models are listed in the ESM, table S3. Since data were log10-transformed prior to analyses, estimates should be interpreted in this scale.  

 
 Egg  

number 
Life  

expectancy 
Time spent 
incubating 

Time spent 
caring for nestlings    

α*   0.60  9.90  23.10  12.6     
Body mass (optimal)  -0.90 ± 0.16  0.29 ± 0.04 0.09 ± 0.02 0.14 ± 0.04    
Body mass (evolutionary)  -0.18 ± 0.03  0.23 ± 0.03 0.08 ± 0.01 0.12 ± 0.03    
Migration distance (optimal)  -0.26 ± 0.08  0.02 ± 0.02 - -    
Migration distance (evolutionary)  -0.06 ± 0.02  0.01 ± 0.01 - -    
Temperature (optimal)  2.06 ± 0.84  -0.80 ± 0.26 - -    
Temperature (evolutionary)  0.63 ± 0.17  -0.66 ± 0.21 - -    
Shrub cover (optimal)  0.34 ± 0.16  - - -    
Shrub cover (evolutionary)  0.08 ± 0.03  - - -    
Rock cover (optimal)  - - 0.05 ± 0.03 0.11 ± 0.05    
Rock cover (evolutionary)  - - 0.04 ± 0.03 0.10 ± 0.04    
R2   0.357  0.477 0.156 0.201    

         
* Since branch length in our phylogeny is represented by the proportion of nucleotide substitutions, thus total tree height = 1, α is expressed in this unit. A α = 0.69 (i.e. ln(2)) means that it takes 
the distance separating the root from the tip of our phylogeny to lose half of the ancestral influence, and a null α characterizes an evolutionary model without adaptive change (BM model). 


