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Abstract 
 
Proton Exchange Membrane Fuel Cells (PEMFC) are energy efficient and 
environmentally friendly alternatives to conventional energy conversion systems 
in many yet emerging applications. In order to enable prediction of their 
performance and durability, it is crucial to gain a deeper understanding of the 
relevant operation phenomena, e.g., electrochemistry, transport phenomena, 
thermodynamics as well as the mechanisms leading to the degradation of cell 
components. Achieving the goal of providing predictive tools to model PEMFC 
performance, durability and degradation is a challenging task requiring the 
development of detailed and realistic models reaching from the 
atomic/molecular scale over the meso scale of structures and materials up to 
components, stack and system level. In addition an appropriate way of coupling 
the different scales is required. 
This review provides a comprehensive overview of the state of the art in 
modeling of PEMFC, covering all relevant scales from atomistic up to system 
level as well as the coupling between these scales. Furthermore, it focuses on 
the modeling of PEMFC degradation mechanisms and on the coupling between 
performance and degradation models. 
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1. Introduction 
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) represent one of the most 
promising systems for both stationary and automotive applications (e.g. power 
generation and on-board application for hybrid vehicles). However, focusing on 
these latter ones, PEMFCs still present critical issues concerning system 
technology, design, fuel storage, system control and durability. To ensure the 
optimal operation, the fuel cell (FC) stack requires several auxiliary components 
(i.e. Balance of Plant – BoP), such as blowers, humidifiers, water pumps, etc. 
Although the correct design of the stack is a core issue, the whole system 
efficiency depends on the behavior of both the stack and the BoP, which also 
require an optimized design. To enhance the development and the control of a 
PEMFC system, mathematical models can be of help by contributing to the 



reduction of development time and costs by means of system prototyping and 
testing. Furthermore, models can also be exploited for diagnostic purposes, to 
identify the main unhealthy behaviors and their causes in order to define and 
improve suited control strategies. For this reason, a comprehensive PEMFC 
system model is required. In the literature, many models have been developed 
to describe PEMFCs physical behaviors [1], [2], [3], [4] and [5], but some of 
them focus only on specific phenomena without considering the complex 
interaction among the components. An example closely related to PEMFC 
system is the identification of the optimal water content to ensure the highest 
efficiency at different operating conditions. Indeed, membrane hydration must 
be maintained within specific limits to ensure correct functioning (i.e. high proton 
conductivity). An excess of water (i.e. flooding) leads to a decline in cell 
performance due to clogging in the porous layers and channels of the cell, while 
membrane dry-out results in it being degraded and, consequently, to system 
failure [6]. Furthermore, most of the available models are not genuinely 
predictive due to their lack of accurate description of specific phenomena, like 
liquid water formation and transport [7]. 
In addition to accurately describe all relevant physico-chemical mechanisms 
themselves, a main challenge in modeling of PEMFC is the interplay of these 
mechanisms occurring on a wide range of time and length scales (Fig. 1). 
Depending on the scale, specific modeling approaches and experimental 
validation methods are applicable. In order to obtain a really predictive model, 
all relevant scales have to be taken into account and the models on all scales 
have to be coupled appropriately. 
 
 

 
 
Fig. 1.  
Schematic of time scales of key processes taking place inside PEMFC including 
respective modeling approaches to describe these processes or provide 
information about them. Time scales for the processes are based on Ref. [359]. 
Note that the modeling methods do not necessarily cover the same time scales, 
e.g., DFT provides important insight on the reaction kinetics even though the 
time scale considered in such ab initio techniques is very small (ranging from 
femtoseconds to about one nanosecond). Also note that the physiochemical 



degradation processes occur on short time scales, while their effect on cell 
performance becomes noticeable only at much larger timescales. This gives 
rise to the development of mechanistic degradation models at short time scales 
and lifetime prediction models covering the large timescales. 
 
In this review we focus on this multiscale aspect, describing the different 
modeling approaches on all relevant scales as well as the coupling between 
these models. 
In the first part (Section 2) we present the state of the art in modeling of PEMFC 
performance at the different scales. After reviewing first-principle approaches at 
the atomic level (Sec. 2.1) and microscale simulations (Sec. 2.2), we turn to the 
modeling on cell level (Sec. 2.3). After an overview over single-cell models 
(Sec. 2.3.1), we discuss the models developed for the different cell 
components, i.e., for the membrane (Sec. 2.3.2), the electrodes (Sec. 2.3.3), 
the GDLs (gas diffusion layers) (Sec. 2.3.4) and the interface between GDL and 
gas flow channel (Sec. 2.3.5). Subsequent to the cell level we review the 
modeling done on stack and system level (Sec. 2.4). The first part is completed 
with a section on the coupling between the scales, i.e., multiscale model 
approaches (Sec. 2.5). 
The second part (Section 3) of this review is dedicated to the modeling of 
degradation mechanisms in the different components of a PEMFC. After 
discussing the thermal, mechanical and chemical degradation of the membrane 
(Sec. 3.1), we turn to the degradation mechanisms of the catalyst layer (Sec. 
3.2), the GDL (Sec. 3.3) and the bipolar plates (Sec. 3.4). We conclude this part 
with a section on the coupling between performance and degradation models 
(Sec. 3.5), which is of particular importance in order to obtain a model with 
lifetime predictive capabilities. 
 
2. Modeling of PEMFC performance 
2.1. First-principle approaches at the atomic level 
The Oxygen Reduction Reaction (ORR) is among the current fundamental 
challenges in the domains of energy and environment, as it is one of the main 
bottlenecks for the PEMFC design and application [8] and [9]. The large-scale 
commercialization of PEMFC for the demanding applications of the automotive 
industry is currently hindered by the kinetic limitations of the ORR [10], 
[11] and [12]. The restrictions imposed by the ORR are related to the 
substantial overpotential at practical current densities, to the required decrease 
of platinum loading needed to reduce the cost for automotive applications as 
well as the prevention of Pt dissolution [11]. The reaction occurs on carbon 
supported platinum particles [13] and [14]. Although a significant number of 
experimental and theoretical works have been proposed in the literature to 
understand this reaction on model surfaces of Pt and its alloys [15], 
[16] and [17], important questions related to the effects of support, solvent 
(water, pH), and particle size and morphology in the catalytic activity and 
stability remain far from being elucidated. 
Regarding the electrocatalytic tests in model conditions, various authors have 
proposed different syntheses such as reduction of platinum-based 
organometallic complexes [13], single-atom-to-cluster method [14], dendrimer 
or colloidal methods [18] and cathodic corrosion [19], among others, in order to 
control the size of Pt-based nanocatalysts and to measure the intrinsic catalytic 



activity towards ORR and Hydrogen Oxidation Reaction (HOR). According to 
recent experimental studies, there is a strong controversy regarding the optimal 
size of the particles for the electrocatalytic activity of both HOR and ORR. In the 
range of 2.5–28 nm, some authors claim that the catalytic activity for HOR or 
ORR activity increases with decreasing particle size [20] and [21], whereas 
others did not observe any change for ORR in the range of 5–10 nm [22]. More 
recently, a high ORR activity has been observed for certain sizes (1.8 and 
3.4 nm) [13]. Besides, it is striking that Pt sub-nanometer particles, e.g., Pt12 
clusters, can have electrocatalytic activities that are one order of magnitude 
larger than those of reference Pt/C catalysts [18]. 
Moreover, the most active site of the nanoparticle catalyst (apex, edge, larger 
(100) or (111) facets) has not been clearly identified yet. Recently, some 
authors have suggested surface steps to play a minor role in the overall ORR 
activity [14], whereas some others have indicated the high activity of terrace 
atoms near step edges in Pt single crystals [23]. 
The electrochemical environment in which the ORR takes place is rather 
complex and its theoretical modeling and simulation requires numerous 
assumptions and simplifications [24]. One of the most widespread models is 
based on the so-called computational hydrogen electrode which uses Density 
Functional Theory (DFT) calculations of gas-phase systems to describe 
electrochemical systems. The link between those two different environments is 
made through the thermodynamic equilibrium between ½H2(g) and (H+ + e−) 
[15] and [24]. This equilibrium allows for the inclusion of both pH and applied 
potential effects in the models, making it possible to predict onset potentials, 
overpotentials and surface Pourbaix diagrams [15], [24] and [25]. However, the 
model is limited to coupled proton-electron transfers and does not include 
explicit solvent molecules, so that solvation corrections must be added 
manually [24] and [26]. Recently, more general models have emerged that 
revisit pH effects and proton-electron transfer in more general ways [27], 
[28] and [29]. 
 
It is noteworthy that most of the studies in the literature are devoted to extended 
surfaces. There are only a few theoretical studies that tackle the problem of the 
interaction between platinum particles and the reaction intermediates involved 
in the ORR mechanism. Those models are based on Pt clusters (from a few 
atoms [30] and [31] up to hundreds [32], [33], [34], [35] and [36]) either in 
vacuum or using polarizable continuum model (PCM) calculations to implicitly 
account for solvent effects [37]. So far, various theoretical studies have shown 
the competition between two key elementary steps in the mechanism: the 
dissociation of O2 either through a direct route (producing two *O species)1 or 
through the formation of *OOH and the subsequent formation of *OH surface 
species [15], [24], [31], [38], [39] and [40]. However, the mechanism has not yet 
been explored directly on a nano-size particle model, neither in vacuum nor in a 
solvent, although recent studies have started to address particle-size effects on 
the ORR activity of Pt nanoparticles [41] and [42]. It is important to note that 
size effects have traditionally hindered the direct comparison between 
nanoparticles and extended surfaces. Recently, the adsorption energies of 
various ORR intermediates have been studied on Pt nanoparticles of various 
sizes and extended surfaces [34]. It was found that the corresponding trends 
are captured linearly by using “generalized coordination numbers”. By the use 



of this generalized descriptor, new activity–structure relations were proposed 
very recently to sort the catalytic properties of various Pt nanoparticles and 
extended surfaces [36]. By combining DFT calculations and electrochemical 
measurements, it was shown that new pure Pt catalytic surfaces presenting 
regular hexagonal cavities offer a significantly improved electrocatalytic 
performance regarding ORR, with respect to Pt(111) and other Pt-based alloys. 
To date, some attempts exist to provide explicit descriptions of the 
water/platinum extended liquid/metal interface [29] and [43], but there are no 
reports on explicitly solvated platinum nanoparticles. These highly challenging 
systems have not been considered so far, as their modeling requires large 
computational resources. 
Model experiments on single-crystal surfaces have also been proposed to 
investigate the elementary mechanism of the catalytic formation of water on 
Pt(111) under ultrahigh vacuum (UHV) by scanning tunneling microscopy 
(STM), high resolution electron energy loss spectroscopy (HREELS), low 
energy electron diffraction (LEED) and temperature programmed desorption 
(TPD) [44] and [45]. It has been shown that below the desorption temperature 
(180 K under ultra high vacuum conditions), water can react with adsorbed 
unreacted atomic oxygen to form hydroxyl surface species, hence leading to an 
autocatalytic process, whereas at higher temperatures the sequential addition 
of adsorbed atomic hydrogen and oxygen takes place with normal kinetics. In 
addition, no peroxide species has been detected. Nonetheless, other 
investigations with molecular beam relaxation spectroscopy in the temperature 
range of 300–1200 K or in-situ mass spectrometry and post-reaction TPD at 
85 K suggest alternatively the existence of a fast H2O2 surface species or an 
*OOH intermediate [46] and [47]. 
During the last decade, numerous theoretical works have been proposed to 
tackle these controversial interpretations regarding the elementary steps [9], 
[26], [48], [49], [50] and [51]. Firstly, several groups have elucidated simple 
elementary steps at the level of gas/Pt(111) models in periodic boundary 
conditions (PBC), starting from molecular oxygen dissociation [52], [53], 
[54] and [55], water formation through an *O + *H pathway [56] and then, 
disproportionation routes [38] and [57] and water formation through an *OOH 
pathway [58]. Secondly, more systematic studies have been proposed to 
combine these competitive elementary steps and to conclude about the 
preferential elementary mechanism [39], [48] and [59]. During the past few 
years, significant efforts have been devoted to probe the influence of the 
aqueous solution on the ORR mechanism [37], [60], [61], [62], [63], [64], [65], 
[66] and [67], either by considering continuum models [37] or by treating 
explicitly a small number of water molecules [60], [62], [65], [66] and [67] such 
as ice bilayers [61] and [63], or confined static water [64]. At the same time, the 
influence of the applied electric field has been evoked in the literature [15], [26], 
[48], [68], [69], [70], [71] and [72] either by thermodynamic approaches such as 
the computational hydrogen electrode [15], [24], [26], [48], [69], [70], [72], [73], 
[74] and [75], by first-principles based mean-field or multiscale models [50], [51], 
[76] and [77] or by self-consistently minimized DFT schemes [68] and [71]. 
Interestingly, the majority of the DFT studies in PBC at the classical gas/Pt(111) 
model describe the reaction mechanism of water formation and ORR at medium 
or high surface coverage (>1/4 ML, mono layers) [38], [48] and [59]. One of the 
key questions is related to the elementary mechanism of the O–O bond 



breaking from O2 and the subsequent formation of the *OH species. A close 
comparison of the two most likely scenarios, i.e., direct dissociation or OOH-
mediated path, indicates that the direct route is less favorable due to a series of 
high activation barriers for molecular dissociation (0.71 eV) and *OH formation 
via *O + *H (0.72 eV) [48]. In contrast, the OOH-mediated route offers a 
sequence of low activation energies for O2 + H association (0.29 eV) and 
*O + *OH dissociation (0.16 eV). Finally, for this coverage, the formation of 
hydrogen peroxide from *OOH species is predicted to be disfavored due to a 
slightly larger barrier (0.21 eV) compared to its quasi-spontaneous dissociation 
into *O + *OH (0.16 eV) [48]. Recently, the influence of *OH surface coverage 
on the competition between *O2 dissociation and *OOH formation has been 
investigated on Pt(111) [39]. For *OH coverage below 0.3 ML, the direct 
dissociation is preferential, whereas *OOH formation becomes favored for 
coverage above 0.3 ML. As soon as atomic oxygen is formed and water is 
present on the catalyst surface (either produced by the reaction or coming from 
the solution), the disproportionation reactions between 2H2O and 1O may occur 
at higher surface coverage (∼3/4 ML) and can open a less activated alternative 
mechanism for the formation of *OH surface species (0.12 eV) [38]. Increasing 
the potential at room temperature significantly changes this picture, generally by 
an increase of the activation barriers (loss of catalytic activity) and by poisoning 
the catalyst with more stable adsorbed *O and *OH species [48] and [70]. 
However, these remarkable observations are contradicted by other authors [69], 
who have observed little or no influence of applied electric fields on adsorption 
energies. 
Taking into account the aforementioned findings, we conclude that 
computational electrochemistry is a field still in development that has provided 
significant insight into the ORR mechanism on Pt, but that the answers to 
several important questions are still elusive. In spite of contradicting 
observations, the field is slowly reaching consensus about the reaction 
intermediates and their relative importance and correlations between adsorption 
energies [78] and [79], while the number of effects included in the calculations 
keeps increasing. As mentioned before, recent works have started to 
theoretically address the influence of the nanoparticle size and the geometric 
environment around the active sites on the adsorption energies and the ORR 
activity [34] and [41], but this kind of studies is not widespread yet, due to the 
large computational resources required. Solvation, sintering and degradation 
effects remain open issues and there are no studies that consider all these 
possible effects coupled to the electrocatalytic behavior within a single 
simulation [80]. Instead, the literature is composed of collections of deconvolved 
effects that lack a sense of generality. Thus, the major challenges in the 
computational modeling of the ORR are currently the inclusion of the largest 
possible number of effects and the improvement of their descriptive and 
predictive power, so that the theoretical representation of the electrode-support-
electrolyte interface is as realistic as possible [24]. This is what is summarized 
in Fig. 2, where the current theoretical approach for the design of ORR 
electrocatalysts is sketched. Essentially, a given surface property, namely an 
electronic [81], geometric [34] or thermodynamic parameter [78] and [81], often 
called descriptor, is used to describe the trends in adsorption energies and/or 
catalytic activities. The latter can either be theoretically estimated as the free 



energy of reaction of the potential-determining steps or experimentally 
measured current densities. 
 

 
Fig. 2.  
Schematics of Sabatier-type volcano plots. The blue and orange lines represent 
the usual approach based only on the adsorption strength of the adsorbates to 
the catalyst surface. The black-green-red lines represent the real situation in 
which several other effects (catalyst composition and morphology, environment) 
are taken into account in addition to binding in order to provide realistic 
predictions. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
 
Ideally, when a wide range of materials is covered, a volcano-type curve should 
appear in which the activity initially grows up to a maximum, after which it 
decays. Thus, optimal catalysts exhibit a compromise in the adsorption strength 
of reactants and products (blue and orange lines), in line with the Sabatier 
principle. More sophisticated and consequently more accurate volcano plots 
should include the effects of pH and electrolyte, applied electric field and 
catalysts' size, morphology and composition, in order to confirm the predictions 
of simplified approaches or make different, more accurate predictions. 
 
2.2. Microscale simulations 
In the frame of the multiscale modeling, the so-called electrochemical double 
layer (EDL) plays an important role in the redox kinetic processes [82], [83], 
[84] and [85]. Classical models which describe EDL in equilibrium conditions 
have been extended to treat non equilibrium conditions representative of 
PEMFC environments [83]. The extensions proposed assume the EDL to be 
formed by two regions, the Diffuse Layer and the Compact Layer. The Diffuse 
Layer model describes the proton transport, affected by the water and/or the 
morphology of the charged polymer (e.g. Nafion®) at the vicinity of the catalyst 
surface. The Compact Layer model describes the coverage evolution of the 
intermediate reaction species (involved in the REDOX reactions) as well as 
adsorbing/desorbing water molecules on the substrate surface. 
Significant efforts have been made in scaling up the EDL modeling from 
atomistic and molecular level properties to overall performance cell models [51], 
[77], [83], [86] and [87]. Proton transport in the EDL is usually modeled within 
the Poisson–Nernst–Planck framework, not considering electrostatic screening 



of water in the effective proton transport properties. Recently, a more complete 
multiscale model describing in detail the interplay between the EDL structure 
and DFT-based elementary kinetics has been developed [84] and [88] where 
the detailed influence of the Nafion® structure and the finite size and 
polarization effects of both water and solvated protons were considered to 
calculate the electrode potential as function of the imposed current density. 
The Kinetic Monte Carlo (kMC) method plays an important role in the 
description of surface dynamics, coverage evolution, adsorption, desorption and 
reaction rates involved in chemical surface, specially for those systems where 
the Mean Field theory cannot be applied, that is, when the catalyst surface is 
not homogeneous (e.g. presence of defects) and/or adspecies diffusion and 
lateral interaction between adspecies play an important role, also when metal 
surface degradation takes place. In principle kMC is an algorithm that computes 
random hops from one surface state to another. The complexity of the chemical 
events that takes place on the surface makes the study under first-principle 
electronic structure calculations unfeasible. Otherwise, first-principle theories, 
like DFT, are able to study isolated events and provide kinetic parameters to be 
implemented in kMC. This methodology is well described by Reuter [89]. In a 
few words, kMC treats the molecular events as a simple Markov walk, hence, 
the evolution in time of the probability density function Pi to find the system in 
state i is described by a master equation of Markovian form [90]. 

 
where kij is the average escape rate from basin i to basin j. This rate can be 
obtained, for example, from Transition State Theory (TST) taking the activation 
barriers from DFT calculations. kMC postulates that during thermal vibrational 
motion the system loses memory, which means that the system has the same 
probability of finding the escape path from i to j (Pij) during each short time 
increment Δt, leading to an exponential decay statistics [89]. This is expressed 
in the Poisson distribution: 
Pij (t)=kijexp(−kijΔt) 
 
This suggests an algorithm, called First-Reaction Method [91], that consists of 
creating a list of possible rates, generating a time occurrence for each reaction 
Δtij = −ln(ρi)/kij (where ρi is a random number between 0 and 1); executing the 
event with smallest Δtij; update time t + Δtij and recalculating all rates. 
One common expression for the kinetic rate is the Arrhenius form 
kij=fijexp(−Eij/kBT)kij=fijexp(−Eij/kBT)  
where fij is a pre-exponential factor depending on the vibrational frequency of 
the transition state, Eij is the activation barrier between the two states i and j 
while kB and T are the Boltzmann constant and the absolute temperature, 
respectively. 
 
Another common kMC algorithm used is the Variable Step Size Method (VSSM) 
[92]. This algorithm is really fruitful to study those systems where different time 
scales are involved [93] and [94]. However, the VSSM may demand a high 
computational cost, since the algorithm needs to compute all the possible 
events to execute the event for each kMC step. To reduce the computational 
cost or to lead to the computational parallelizable scheme, other methods like 
the First Reaction Method (FRM) and Random Selection Method (RSM) have 



been developed. FRM consists in an evaluation of those event that may be 
executed soonest and then execute it, although this method fails in the 
description of those systems when many different time scales are involved. 
RSM is based on the hypothesis that the system is homogenous and on a 
random selection of the reaction will take place. This algorithm is suitable for 
computational parallelization, however, the method does not allow to study 
inhomegenities such as surface clustering or located inactive sites. All these 
methods are well described and compared elsewhere [95]. 
In the context of PEMFCs, Zhdanov [96] utilized MC simulation to study the 
kinetics of oxygen electrochemical reduction on Pt and found that this reaction 
may be nearly first order in oxygen under a wide range of reaction conditions 
even if the O coverage is appreciable and the O mobility is low. Zhdanov 
proposed that the reactant coverage is not first order in the O2 reaction. 
Abramova et al. [97] studied the O2 adsorption on fcc(111) metals by kMC. By 
taken into account seven elementary steps, they report the total oxygen 
coverage profile in terms of σ (charge density) and sticking probability reporting 
a strong coverage dependency in the pre-exponential factor. 
In 2008, Rai et al. [98] reported the electrochemical discharge of water on 
Pt(111) by kMC VSSMb supported with first-principle Local Reaction Center 
(LRC) theory. One of the remarkable results is that OH is the dominant 
adsorbate between 0.5 and 0.8 V electrode potential, but above 0.8 V, OHads 
and Oads coexist. In that work, the OH adsorbed reported a √3 × √3 structure 
and partially ordered structure of O adsorbates results in lean Oads coverage of 
0.11 at around 0.9 V in agreement with experimental data [99]. 
Very recently, a KMC model has been reported which extends the VSSM to 
electrochemical conditions [100]. This constitutes the first VSSM extension 
reported so far which allows calculating the electrode potential as function of 
the imposed current density. The KMC model describes the electrochemical 
kinetics and it is coupled on the fly with continuum modeling modules describing 
reactants transport at the active material/electrolyte nanoscopic interface 
(electrochemical double layer region) and along the mesoscale electrode 
thickness. 
2.2.1. Self-organization phenomena in PEMFCs 
Despite recent progress in developing multiscale modeling approaches [101] 
enormous challenges remain in bridging atomistic simulations of realistic 
structures and continuum models that describe the operation of functional 
materials for PEMFC applications. While full multiscale methods will not be 
available in the near future, mesoscale molecular simulation techniques can 
close the gap between atomistic simulations and macroscopic properties of the 
system. Such simulations provide vital insight into aspects that have to be 
considered in fabrication and operation of advanced materials for PEMFC. 
 
To improve structure–performance relationships of PEMFC components, 
particularly those of catalyst layers (CLs), preparation methods exploit 
variations in terms of applicable solvent, particle sizes of primary solid powders, 
wetting properties of support materials, and composition of the catalyst layer ink 
[102], [103] and [104]. These factors determine the complex interactions 
between Pt/carbon particles, ionomer molecules and solvent molecules and, 
therefore, control the catalyst layer formation process. Mixing the ionomer with 
dispersed Pt/C catalysts in the ink suspension prior to deposition will increase 



interfacial surface area between the ionomers and Pt/C nanoparticles. The kind 
of dispersion medium determines whether ionomer is to be found in solubilized, 
colloidal or precipitated form. This influences the microstructure and pore size 
distribution of the CL [105] and [106]. In general, catalytic activity depends on 
the electrode composition and structure with well-attuned pore size distributions 
and wetting properties of the pore network. 
Molecular-based simulations at mesoscale level provide insights into 
segregation, structural correlations and dynamical behavior of different phases 
in complex CLs. They contribute to furnishing reliable relations between 
structure, transport properties, and reactivity [107] and [108]. Despite an 
enormous number of phenomenological models, less effort was put into 
exploring effects of the microstructure of the CL on transport and reactivity. 
Advanced experimental and theoretical tools can address the correlation of 
transport-reaction processes with structural details at meso-to-micro- and down 
to atomistic scale. Coarse-grained (CG) molecular simulation techniques can 
describe the system at the micro-to-meso level, while still being able to capture 
the morphology at long time and length scales [109]. The application of CG 
models, however, requires special care. One should note that due to the 
reduced number of degrees of freedom, CG simulations may not be able to 
accurately predict physical properties that directly rely upon time correlation 
functions (e.g., diffusion). 
A significant number of mesoscale computational approaches has been 
employed to understand the phase-segregated morphology and transport 
properties of water-swollen Nafion® membranes [88], [109], [110] and [111]. 
Because of computational limitations, full atomistic models are not able to probe 
the random morphology of these systems. However, as demonstrated by these 
simulations and applications to other random composite media, mesoscale 
models are computationally feasible to capture their morphology. Several 
approaches have been used, such as termed cellular automata and coarse-
grained meso-dynamics based on self-consistent mean field theory. For 
Nafion®, most of these simulations support the idea that narrow water-filled 
channels and irregularly shaped, nanometer-size clusters of ionic head groups 
and water form the proton-conducting network that is embedded into the 
hydrophobic matrix. Structural complexity is even more pronounced in CLs, 
since they consist of a mixture of Nafion® ionomer, Pt clusters supported on 
carbon particles, solvent and water. Independent computational strategies are 
generally needed in order to simulate the microstructure formation in CLs. For 
instance, the structure of the ionomer-phase in CLs cannot be trivially inferred 
from that in membrane simulations, as there are distinct correlations between 
Nafion®, water and carbon particles in CLs. The computational approach based 
on coarse-grained molecular dynamics (CGMD) simulations is developed in two 
major steps [109], [112] and [113]. In the first step, Nafion® chains, water and 
hydronium molecules, other solvent molecules and carbon/Pt particles are 
replaced by corresponding spherical beads with pre-defined sub-nanoscopic 
length scale. In the second step, parameters of renormalized interaction 
energies between the distinct beads are specified. CGMD data can be used to 
parameterize microstructurally resolved models [85], [113] and [114] of 
transport processes in PEMFC electrodes. However, the remaining challenges 
of this technique are their high computational cost and as well as the 
development of appropriate experimental analysis tools able to give different 



validation frames of the predicted microstructures. 
 
2.3. Cell level 
The high computational effort of simulations at micro- or meso-scale restricts 
the size of the model domain and time span simulated. This motivates the use 
of mathematically reduced macro-models allowing simulations on cell level. 
Consideration of transport on the macro scale offers the opportunity to optimize 
durability and performance of PEMFC, as harmful operating conditions for 
different components of a fuel cell can be identified. Fig. 3 shows the most 
relevant processes, which have to been taken into account for each component 
on the cell level. Typically, models of different complexity exist to describe each 
of these processes. In the following, we give an overview of models describing 
the whole single cell including all components. Afterwards models developed for 
each cell component will be reviewed in detail. 
 

 
Fig. 3.  
Processes on the cell level which are relevant for PEMFC performance. 
 
2.3.1. Single cell models 
Springer et al. [115] developed a one-dimensional steady-state model of a 
single PEM fuel cell. The novelty of this model lies in the experimental 
relationship which correlates the membrane water content, at a certain 
temperature, to the water vapor activity. However, the main limitations are 
related to: (i) the assumption of isothermal volumes, (ii) the water flow 
description, which does not take into account specific physical phenomena, 
such as surface tension and capillary flow, and (iii) the validity of the study 
limited to a 117 Nafion® membrane. The model has been developed 
considering water in vapor state, with the possibility to account for liquid water, 
but only finely dispersed. 
Maggio et al. [116] presented a simple but innovative PEMFC model in which 
an original calculation of diffusion losses was proposed, based on the following 
assumptions: (i) one-dimensional, (ii) isothermal and (iii) steady-state. 
Particularly, they stated that the assumption of a constant gas porosity in the 
electrode diffusional layer hinders the identification of the real limiting current 
density Ilim involved in the calculation of diffusion losses. This assumption is 
mainly motivated by the effect that partial flooding at cathode reduces oxygen 
transport. For this reason an innovative expression has been exploited to 
evaluate the limiting current density with respect to the models available in the 
literature: indeed, they proposed an empirical function of cell operating 
temperature, oxygen molar fraction at cathode side and effective electrode 
porosity related to electrode water content. From their simulation results, they 
proved the cell performance being strictly related to electrodes water content 
and membrane technology. 



A similar approach has been chosen by Costamagna [117] who studied how to 
ensure proper membrane hydration and avoid local temperature peaks 
developing a three-dimensional PEM fuel cell model. A set of three-dimensional 
transport and balance equations has been defined to simulate the distribution of 
physico-chemical parameters, such as cathode and anode relative humidity, 
temperature and membrane water content. However, the main drawback of the 
approach applied in these two studies is that they neglect the presence of liquid 
water inside the porous media and at the interface between gas diffusion layer 
(GDL) and gas flow channel (GFC). This resulted in a less accurate 
representation of the real performance of the system. To overcome this 
limitation, Mazumder et al. [7] proposed a Computational Fluid Dynamics (CFD) 
model able to simulate liquid water transport inside a 3D PEMFC, observing 
that the assumption of no liquid water formation leads to an overestimation of 
the cell voltage, especially at high current densities. Instead, introducing liquid 
water transport mechanisms makes the model more accurate in predicting the 
cell polarization behavior. 
Um et al. [118] and [119] developed a 3D computational fuel cell dynamics 
(CFCD) model of a PEMFC with a Nafion® 117 membrane. This model allows 
comparing the effects of straight and inter-digitated flow fields on oxygen and 
vapor concentration at the cathode side and also on the current density 
distribution. The model embeds also a detailed Membrane Electrode Assembly 
(MEA) sub-model where the membrane water content and catalyst layer 
reaction rate and ionic resistance are computed. Several assumptions have 
been made, e.g., constant cell temperature and that liquid water exists in the 
form of finely dispersed droplets (i.e. single phase hypothesis). The introduction 
of this latter assumption forced the authors to present the results as qualitative, 
due to the absence of a proper liquid water transport model. As a result, the 
authors stated that the interdigitated flow fields at the cathode side improved 
the cell performance at high current densities due to the enhanced mass 
transfer of the oxygen. Indeed, it has been observed that forced convection is 
the predominant transport mechanism rather than diffusion, improving liquid 
water removal (i.e. reduced flooding). Although the average current density is 
higher for interdigitated flow fields compared to straight flow fields, its 
distribution is much more non-uniform. 
The model developed by Um et al. has been extended by Wang et al. 
[120] and [121] in order to simulate the transient processes occurring in a 
PEMFC due to a step change in the steady-state operating condition (i.e. 
current density or the level of reactant humidification). The authors developed a 
single-channel PEMFC model considering Gore® 18 µm and Nafion® 112 
membranes to highlight the correlations between transient responses in terms 
of cell voltage and water content variation at low reactant humidity. From this 
study, the two main observations are: on the one hand, the ohmic resistance 
has been identified as predominant on the cell performance; on the other hand, 
membrane water content has been recognized as the chief part of the water 
management during transient maneuvers. Furthermore, it has been observed 
that at low reactant humidity the voltage transients exhibit an “undershoot” 
which increases with increasing current step change. Lastly, the authors stated 
that the exploitation of simplified models or lumped parameters could hinder the 
representation of such features. 
 



2.3.2. Membrane 
Recently, a large number of materials are tested for use as electrolyte in a fuel 
cell. These are, among many others, sulfonated hydrocarbon polymers (e.g. 
PEEK), phosphoric acid doped polybenzimidazole (PBI), polymer–inorganic 
composite membranes or solid acid membranes [122]. However, the most 
important and popular materials studied are perfluorinated polymers. Therefore, 
in this section we will start with a discussion of models describing the water 
sorption of perfluorosulfonic acid (PFSA) membranes, followed by a review on 
transport models for this type of material. 
 
2.3.2.1. Sorption models 
The aim of sorption models is to determine the water concentration inside the 
membrane. This concentration is conveniently expressed as the unitless 
quantity λ which is defined as the number of water molecules per sulfonic acid 
site in the polymer and depends on the water activity in a vapor phase next to 
the membrane. Additionally, a complete model needs to explain the water 
sorption from an adjacent liquid phase as liquid water is formed in the cathode 
during fuel cell operation. 
Theoretically, the sorption from a fully saturated vapor phase and a liquid phase 
should be the same as the activity of water in both phases is equal to 1. 
However, there is experimental evidence, that the water concentration in the 
membrane is considerably higher for equilibrium with a liquid phase [123]. This 
discrepancy is called Schroeder's paradox [124]. Whether the persistent 
Schroeder's paradox really exists, is under discussion since more recent 
experiments support its absence [125] and [126]. Schroeder's paradox may be 
observed even though it might not exist if a non-equilibrium state has been 
measured for the contact with water vapor at 100% relative humidity. In this 
case, the equilibration may take hours or even days [127] and [128] and 
stopping the experiment too early results in observation of lower water content. 
On the other hand, assuming the existence of the paradox, its absence may be 
observed, if the relative humidity close to 100% is not exactly controlled and 
liquid water condensates on the membrane surface [127]. As a result, 
equilibrium with a liquid phase would be measured and the paradox would not 
appear. 
A proposed thermodynamic explanation for Schroeder's paradox is the 
existence of a so called van der Waals loop, i.e., a double root solution for the 
Gibbs stability criteria [123]. In this case two distinct equilibrium states satisfying 
the Gibbs stability criteria exist, resulting in bifurcation of the sorption isotherm 
curve above a certain activity. However, as pointed out by Freger [129], this 
would lead to swelling hysteresis, which was not observed experimentally. 
If thermodynamic equilibrium between membrane and adjacent fluid phase can 
be assumed, an equilibrium sorption model is applicable. In this case, the water 
content of the membrane is related to water chemical potential outside the 
membrane. In the following, we review several equilibrium sorption models, 
which have been developed to explain Schroeder's paradox. 
The first model presented here was developed by Choi and Datta [130] and 
further improved by Choi et al. [131]. It is based on Flory–Huggins theory for the 
water/polymer interactions, includes the internal swelling pressure due to water 
uptake and the formation of the primary hydration sheath on the sulfonic acid 
groups. Schroeder's paradox is explained by a Laplace pressure forming at the 



open mouths of the hydrophobic membrane pores when the membrane is in 
contact with water vapor. Upon contact with liquid water, the pressure is 
released, lowering the chemical potential of water in the membrane thus leading 
to further water uptake. 
In contrast to the work presented above, Eikerling and Berg [132] argue that the 
existence of hydrophobic pores in the membrane is not reasonable. They 
assume perfect wetting of the membrane pores leading to reduced vapor 
pressure over the curved interfaces between pore water and vapor. This causes 
capillary condensation and it is argued that this process is governing water 
uptake for high water content while hydration of the sulfonic acid groups 
governs sorption for low values of λ. In their model, the water content is 
determined from thermal and chemical equilibrium and mechanic equilibrium 
between gas or liquid pressure outside the membrane pores and liquid, osmotic 
and elastic pressure inside the pores. An analytic expression for the wall charge 
density as function of swelling of a single pore is derived. Again, Schroeder's 
paradox is attributed to the lack of capillary pressure for liquid equilibrium, this 
time raising the internal pressure as the pores are hydrophilic, and described as 
a first-order phase transition inside the membrane. The model predicts 
insensitivity of water sorption on the gas pressure in accordance with 
experiments but small variations of the relative humidity cause large variations 
of internal pressure in the range of 102 bars. Therefore, it is concluded that 
hydraulic flux is the prevalent mechanism of water transport in PEM. 
In his model [127] Kreuer uses a Langmuir type expression for the chemical 
potential of water in the hydration shells around the sulfonic acid groups inside 
the membrane with a second expression for the chemical potential of the bulk 
water in the membrane. Both depend on the internal swelling pressure of the 
polymer which is determined from the storage modulus and is a function of the 
water content. Assuming equilibrium between these potentials and the chemical 
potential of an adjacent vapor phase, λ as a function of relative humidity and 
temperature is obtained. Up to a relative humidity of 65%, water sorption is 
found to be exothermal. At higher humidification, sorption proceeds 
endothermic. From the model, the heats of hydration for water molecules 
forming the hydration shell around the sulfonic acid groups are obtained and the 
internal pressure is estimated to be as high as 10 MPa. It is stated that this high 
internal pressure cannot be caused by the surface tension of the polymer since 
it is about three orders of magnitude too low. Therefore, the existence of an 
“extended” surface layer with higher elasticity than the bulk membrane is 
proposed. The surface layer can maintain a large internal pressure until contact 
with liquid water causes its rapid restructuring. This leads to a drop of the 
internal pressure, causing Schroeder's paradox. 
Both, the model of Choi et al. [133] and the model of Eikerling and Berg [132] 
assume an open pore configuration on the membrane surface. However, such a 
system would tend to reduce the interfacial area between the liquid water and 
vapor by reorganization of the polymer, resulting in an energetically more 
favorable state [129]. The model of Kreuer does not rely on this assumption but 
further experiments are required to establish a physical and mathematical 
model accounting for the reorganization of the proposed surface layer. 
The assumption of thermodynamic equilibrium between membrane and 
adjacent fluid fails if the gas relative humidity or liquid water content in the cell is 
changing fast, for example, under automotive conditions. In that case, the 



operating conditions may change within a few seconds while it could takes 
minutes or hours for the membrane to equilibrate. Therefore, a description of 
the water sorption and desorption kinetics is needed. This can be done by 
describing the flux of water into and out of the membrane using mass transfer 
coefficients which may depend on temperature, humidity and mechanical 
properties of the membrane [128], [134], [135], [136], [137], [138], [139], [140], 
[141] and [142]. These mass transfer coefficients are then multiplied with the 
deviation in water activity from the equilibrium state at the interfaces. In order to 
do so, the equilibrium water activity inside the membrane due to the conditions 
outside the membrane needs to be determined from an equilibrium sorption 
model. 
In the studies mentioned above, it is shown that the processes of sorption and 
desorption have a strong impact on the water profiles inside the membrane. 
This indicates the need for physical models of the structure and the relevant 
transport- and reorganization processes at the membrane surface. For now 
mostly simple empirical functions for the mass transfer coefficients have been 
used. 
 
2.3.2.2. Transport models 
The macro-scale transport models for PFSA membranes presented in the 
literature can roughly be divided into three different approaches, being the 
chemical potential-, diffusion-and hydraulic models. They can be distinguished 
by the driving forces considered. The most general driving force for transport is 
the chemical potential. Dependent on its definition, the driving forces for 
diffusion (gradients of species concentration) and convection (pressure 
gradients) may be included. 
Two early models for the transport of protons and water in the membrane were 
developed by Springer et al. [115] and Bernardi and Verbrugge [143] and [144]. 
Both are 1D, isothermal, stationary models based on dilute solution theory. 
Springer et al. [115] employed a diffusion coefficient for water transport, 
incorporated electro-osmotic drag, and accounted for non-uniform water content 
in the membrane. The model is suited for conditions when the membrane is 
equilibrated with water vapor but does not treat the liquid equilibrated case 
thoroughly. They concluded that water diffusion and electro osmosis may 
balance each other to a great extent and that water is flowing from the anode to 
the cathode. 
Bernardi and Verbrugge [143] and [144] used the Nernst–Planck equation in 
combination with Schögl's equation [145] to model water transport in a 
uniformly, fully hydrated membrane in contact with liquid water. This hydraulic 
model incorporates pressure differences between anode and cathode. For low 
current density, the model predicts water transport from cathode to anode, while 
for high current density it is vice versa. 
Another hydraulic model by Eikerling et al. [146] considers electro-osmotic drag 
for the transport of water in the membrane counterbalanced by Darcy flow. In 
addition to the Bernardi–Verbrugge-model, it considers the local dehydration of 
the membrane and the membrane permeability as a function of the water 
content is calculated using the Hagen–Poiseuille–Kozeny equation. For the 
conductivity a percolation-type dependence on the water content is considered. 
The model predicts a critical current at which the membrane gets dehydrated at 
the anode side and the conductivity drops dramatically. Optimal membrane 



hydration is predicted for anode humidification with high water removal rates at 
the cathode side or for higher cathode pressures and anode water removal. In 
this work, diffusive and convective transport models are compared to 
experimental results. It is concluded that diffusive models fail to reproduce the 
experimental data because membrane dehydration is overestimated. 
The model by Fuller and Newman [147] uses Stefan–Maxwell equations 
derived from concentrated solution theory in combination with material balances 
for each species. It predicts higher membrane conductivity with increasing 
current, but is not capable to reproduce transport losses at high current density 
due to its single phase nature. In the simulated concurrent flow channel, there is 
a high net flux of water from anode to cathode near the inlet and a comparably 
small flux from cathode to anode near the end of the channel. This is due to 
variation of the local current density and the water concentration. In this model, 
the chemical potential acts as a general driving force for the transport. This 
concept has been adapted several times, for example in the model of Janssen 
[148]. Unlike in the diffusion- or hydraulic models, the chemical potential is not 
separated in this approach. Therefore, no specific transport mechanism is 
assumed and the formulation is kept general. This results in the flaw that 
pressure- and activity variations inside the membrane cannot be resolved. 
Again based on [147], Weber and Newman developed a model [149] which 
represents a combination of the diffusive Springer [115]- and the convective 
Bernardi/Verbrugge [143] and [144]-model. For the vapor equilibrated 
membrane diffusive single-phase-transport through collapsed channels is 
assumed while for a liquid-equilibrated membrane pressure driven convective 
flow through expanded channels is considered [149]. Both transport modes may 
occur in parallel, due to a coexistence of both kinds of channels. The fraction of 
expanded channels is determined from a measured pore size distribution, a 
contact angle estimation and use of the Young Laplace equation. With this 
quantity, it is possible to continuously interpolate between the two transport 
modes, enabling the model to give a physical description of Schroeder's 
paradox [124]. For validation, the model is incorporated into a simple cell model 
[150]. 
 
The model of Fuller and Newman [147] was also adapted by Thampan et al. 
[151]. To incorporate the interactions between hydronium ions and polymer 
matrix they used the “dusty-fluid model” [152]. The interactions between the 
stationary polymer-“dust” and the liquid species result in frictional forces and 
consequently reduced diffusional velocity. In this model, in order to calculate the 
convective velocity, Schlögl's equation [145] was applied. 
As shown by Fimrite et al. [153] this approach was erroneous as extra viscous 
forces are introduced and therefore the binary friction model, developed in Ref. 
[154], is the favorable approach. Consequently Fimrite et al. presented a new 
model [155] for transport and conductivity based on the binary friction model. 
Transport is modeled solving generalized Stefan–Maxwell equations with 
membrane hydration and potential as driving forces. In their work, a comparison 
of the order of magnitude of different driving forces elucidated that pressure 
gradients across the membrane may be neglected. The corresponding 
conductivity model is a reduction of the transport model, neglecting 
concentration gradients of water across the membrane and therefore the 
influence of water transport on the conductivity. However, the parameters for 



the transport- and conductivity model are the same. This allows direct 
determination of the transport parameters from conductivity measurements. 
Baschuk and Li [156] also used generalized Stefan–Maxwell equations with 
potential and partial density of water in the electrolyte as driving forces 
combined with non-equilibrium thermodynamics. This approach enabled them 
to easily couple the transport through the membrane and the electrodes by 
employing a single domain approach. 
Apart from the approaches used above, Choi, Jalani and Datta [131] presented 
a conductivity model, accounting for transport of protons via en masse diffusion, 
surface diffusion and Grotthuss mechanism. To describe the different transport 
mechanisms, the Nernst–Einstein– and Einstein–Smoluchowski equation were 
employed. The conductivity model is based on their thermodynamic sorption 
model [133] for Nafion® involving Flory–Huggins theory [157]. It forms a 
theoretical basis for proton conductivity in polymer electrolytes and the authors 
conclude that a high fraction of pore bulk water is essential for fast proton 
transport via the Grotthuss mechanism. 
From the review presented in this section, it becomes clear, that modeling of 
water sorption and transport, being of utmost importance for the correct 
description of water management in fuel cells, is a task of high complexity. The 
kinetic sorption models critically depend on a good equilibrium model and both, 
transport and sorption are strongly interrelated. A consistent description of 
these phenomena has, to the authors' knowledge, not been achieved in any 
model published today. 
 
2.3.3. Catalyst layers 
There are two main aspects which have to be taken into account when 
modeling the catalyst layers of PEMFC. 
i.) The transport of the reactants and products trough the porous electrode 
ii.) The electrochemical reactions occurring within the catalyst layers, i.e., the 
oxygen reduction reaction at the cathode and the hydrogen oxidation reaction at 
the anode 
 
In the following we discuss the modeling approaches for both of these aspects. 
 
2.3.3.1. Transport models 
The simplest way of describing the catalyst layers is to consider a thin interface 
between the membrane and the GDL [158]. This approach considers the 
Cathode Catalyst Layer (CCL) as an interface that consumes electrons and 
produces water, but does not consider transport phenomena within the CCL. 
Therefore, these models are not suitable for describing transport in the 
electrodes. 
Macrohomogeneous models assume that all phases are homogeneously 
mixed. A generalized Darcy law is used to describe transport phenomena [159]. 
Currently, properties of the CL like contact angle, porosity, relative 
conductivities and permeability cannot be measured locally and might be 
different from the average properties that are used in the macrohomogeneous 
models. Therefore, macrohomogeneous models may lack accuracy. Moreover, 
in the majority of cases the dynamics of the electrochemical double layer is not 
taken into account. Consequently, this approach is not appropriate for the 
modeling of local phenomena inside the CL and should be limited to modeling 



the performance at cell level [160]. 
Although distinct agglomerates might not exist due to agglomeration of Pt/C 
during the fabrication process, the agglomerate approach for modeling is still 
interesting. Indeed, by introducing a way to modulate the current transfer 
density, it allows for better prediction [1]. Various models can be found in the 
literature [161], [162] and [163]. 
Agglomerate models consider phenomena that happen within the agglomerate 
length scale. They are made of either spherical or cylindrical assemblies of 
C/Pt, surrounded by a thin film of Nafion®. Reactants are dissolved in the 
electrolyte surrounding the agglomerate, and inside the agglomerate. Thus, 
gradients of concentration and potential can occur within the agglomerates 
[164]. Electrochemistry modeling can be based on the Butler–Volmer equation 
(cf. Section 2.3.3.2), were the efficiency factor enables to account for the 
geometry while the Thiele modulus accounts for the ratio between reaction 
kinetics and reagents diffusion [165]. The models show that the thickness of 
Nafion® around the agglomerate is a key parameter and should be no more 
than a few nm to promote reagents diffusion towards the Pt [163]. 
Harvey et al. [165] compared the agglomerate model and the thin-film model 
and concluded that the agglomerate model is able to predict with accuracy all 
the domains of the polarization curves. They suggest that loss of performance 
at high current density should be attributed to the structure of the CCL, in 
addition to flooding in the cell. 
Going further, ordered electrodes can be made of straight aligned carbon 
nanotubes (CNT) [166] and [167]. This approach is particularly interesting since 
it enhances gas diffusion properties and optimizes the catalyst utilization, which 
then improves overall cell performance. Moreover, these uniformly distributed 
and aligned carbon nanotubes electrodes are more resistant to electrochemical 
oxidation. Aligned carbon nanotubes have most recently been modeled by 
Hussain et al. [167]. Once corrected by the membrane overpotential and the 
mixed-electrode potential, their 3D model is in good agreement with polarization 
curves from the literature. According to the model, a 10 nm thick Nafion® film 
around the C/Pt nanotubes yields the best performances in term of polarization 
curve. Also, the simulation showed that the optimum distance between the 
CNTs is 50 nm, while optimum length of the CNTs is 5 µm. 
Cetinbas et al. [168], proposed an original geometrical model of discrete Pt 
particles on carbon support. The results reveal that the discretely-distributed 
particle approach can capture diffusion losses due to particle interactions and 
that particle-level diffusion plays an important role in the global diffusion. 
Moreover, contrary to uniform-coverage models that are unable to capture the 
effect of Pt loading on the polarization curve, this particle model is also able to 
demonstrate the strong impact of Pt loading on the overall performance. 
Moreover, the authors demonstrate that performance at high current densities is 
increased when Pt particles are located at the periphery of the agglomerates, 
thanks to reduced diffusion limitations. 
More recently, Direct Numerical Simulations (DNS) have been developed to 
investigate the influence of the structure of the CCL on transport properties 
[169] and [170]. This approach is focused on transport through the secondary 
pores. However, this approach requires knowing precisely the structure of the 
CCL, whereas only statistical parameters (like porosity) are usually accessible 
from experimental data. So reconstruction of the structure from these 



parameters is first needed and this step, in addition to not being trivial, may 
introduce additional errors. Also these models are monophasic and thus unable 
to consider flooding of CCL. Pore Network Modeling (PNM) is well adapted to 
two phase transport in porous media and was first used to model such transport 
in the GDL (cf. Section 2.3.4). El Hannach developed a porous network model 
(PNM) to calculate gas and liquid transport properties in the CCL, allowing to 
analyze the effect of local properties of the CCL on the two-phase transport 
mechanism [171]. It shows that Bruggeman correlations that are often used to 
correct the diffusion coefficients in the CCL over-estimate the diffusion 
coefficient. Also, with the parameters used for this work, the protonic transport 
through the CCL is limiting. Therefore, the CCL located at the membrane side is 
more active. 
A microstructurally-resolved model of the PEMFC cathode has been recently 
developed by Strahl, Husar and Franco allowing to study the impact of the 
carbon morphology (pore size distribution) and operating temperature dynamics 
on the electrode hydratation dynamics and cell potential variation [172]. This 
model allows simulating the pore water filling dynamics, an aspect not treated 
by PNM approaches. This is relevant to tackle the pre-conditioning phase of 
PEMFCs, usually neglected in the models reported in the literature. 
 
2.3.3.2. Electrochemistry models 
As discussed in Sec. 2.1 the ORR is a complex multi-step mechanism, which is 
still subject of numerous investigations on the atomistic scale. On the cell level 
simplified descriptions of the electrochemical reactions are needed. Models of 
different complexity have been developed to describe the reaction kinetics. 
These models either rely on like Nernst and Butler–Volmer equations or on 
mechanistic approaches. 
The Nernst and Butler Volmer approach is the most common and has been 
discussed for both the HOR and the ORR in a recent review from Weber et al. 
[1]. 
The Nernst law enables the calculation of the reverse potential (Eeq) depending 
on the activities of the reactant and products. Then the Butler–Volmer equation 
is used to calculate the faradic current as a function of the difference between 
the applied electrode potential and the reverse potential. This potential 
difference is called the overpotential, also noted η. 
The Butler–Volmer equation was first demonstrated for a single step reaction 
involving the exchange of a single electron. Neither the HOR nor the ORR 
fulfills these conditions. However, it is possible to generalize the Butler–Volmer 
law so that it can describe the HOR and the ORR. 
 
More precisely, the Butler Volmer equation consists of two exponential terms 
(4), each one dominating either in case of high oxidative or reductive current. In 
these current areas, the Butler–Volmer equation can be simplified and leads to 
the Tafel law. The two exponential terms have only to be considered at low 
current. 

 
Mann et al. [173] gave recommendations regarding the applicability of this 
equation for each case studied. The main advantage is that only a single 
reversible potential is considered, that can be obtained from experimental data. 



However, the elementary reaction steps are not modeled separately in this 
approach, which means that the coverages of the intermediate species on the 
catalyst surface are not calculated. This simplification becomes problematic as 
soon as the effect of the surface coverages is relevant, e.g., when studying the 
effect of catalyst contamination. A review on the effects of fuel cell 
contamination has been presented by Cheng et al. [174]. 
In contrast to the simple Butler–Volmer approach, mechanistic approaches 
describe the electrochemical reactions by multiple steps, e.g., adsorption of the 
reactants followed by oxidation/reduction steps and finally desorption of the 
product species. Thus, these models incorporate the evolution of intermediate 
species on the catalyst surface. These models are able to describe the complex 
behavior of the ORR more accurately, e.g., the change of Tafel slope on 
Pt(111) due to altering reaction pathways [175]. This approach also allows to 
include the effect of impurities, contamination and degradation mechanisms 
into the cell model [176] and [177]. However, in order to derive a realistic 
mechanistic model, the activation energies for all the elementary steps are 
required. These activation energies have to be obtained from heavy DFT 
calculations or from fitting to experimental data. 
One example for such a mechanistic model is the double trap model proposed 
by Wang et al. [178]. This model describes the ORR by four reaction steps 
forming two reaction pathways and including the two intermediate species *O 
and *OH. The model allows describing the experimentally observed change of 
the ORR Tafel slope, which is not possible with a simple Butler–Volmer 
approach. 
 
2.3.4. Gas diffusion layer (GDL) 
Diffusion layers are called GDL (Gas Diffusion layer) and MPL (Micro Porous 
Layer). The GDL aims at distributing gas from the channels of the bipolar plates 
to the catalyst layer, removing the generated water and conducting the 
electrons to the bipolar plate ribs. The GDL is made of carbon fibers covered 
with polytetrafluoroethylene (PTFE) to increase its hydrophobicity, thus 
promoting removal of liquid water from the GDL. The MPL aims at improving 
water management [179], [180] and [181]. 
For proper performance of the cell, the membrane has to be well hydrated. 
Depending on the cell temperature and on the current delivered, liquid water is 
present in the GDL. Consequently, two phase transport occurs in the GDL. 
Within the GDL, it is now well established [182] that there is a strong coupling 
between thermal and water management, especially at high humidification of 
the feed gases, both being paramount for the performance of the fuel cell. 
Djilali et al. [183] first demonstrated by modeling that the temperature and 
pressure gradients between the plates and the electrode are important and 
strongly affect the transport of water. 
Weber et al. [182] then explained by a non-isothermal 1D model that the water 
is evaporated near the catalyst layer and condensates near the plate where the 
temperature can be several degrees lower. This transport of water decreases 
the flux of reactant gas from the channel to the catalyst layer. 
Thomas et al. [184] presented an accurate experimental work to show the 
strong influence of the temperature profile on the water transport. They showed 
that water fluxes are linked to the thermal gradients that depend on the 
temperature difference between the catalyst layer and the plates. Concerning 



the MPL, Andisheh-Tadbir et al. [185] recently developed an analytical model 
for the thermal conductivity of the MPL depending on the pore size distribution, 
porosity, and compression pressure. After validation with experimental data, the 
model was used to find the optimal MPL structure with respect to mass and 
heat transfer. 
In the following, we discuss three methods which have been established to 
study two phase transport in the GDL: Continuum Models (CM), Lattice 
Boltzmann models (LBM) and Pore Network models (PNM). 
Continuum models consider a continuum media with (volume) averaged 
properties. They rely on generalized Darcy's law and phenomenological 
relationships [186]. However, due to the lack of length scale separation 
between the pore sizes (about 50 µm) and the thickness of the GDL (about 
300 µm), CM can lead to inaccurate conclusions and are not appropriate to 
study of the GDL in detail [187]. 
Chun et al. [188] developed a 1D continuum model of the cathode GDL, based 
on the mass and momentum balance equations for conservation of water and 
oxygen, to optimize parameters of the GDL. Water removal and gas transport 
are strongly affected by the contact angle between liquid water and carbon GDL 
material, which depends on the PTFE content of the GDL. The authors showed 
that at low current density, the overall performance of the cell is not significantly 
affected by liquid saturation. Indeed, both reactant fluxes and water production 
are low. However, at high current density the higher the contact angle, the 
higher the water removal due to the increasing capillary forces. Consequently 
the gas transport increases, and so the overall cell performance is improved. 
Finally, the authors demonstrated that cell performance decreases with 
increasing GDL thickness, mostly due to decreased gas transport. Their 
conclusions are in good agreement with experimental observations. 
Diffusion coefficients in the GDL are often corrected by a Bruggeman 
correlation for the porosity. Also, other corrections can be found in the literature 
and are reviewed in a recent paper from Zamel et al. [189]. The corrected 
diffusion coefficients are shown to be usually overestimated compared to 
experimental values. This review also provides state-of-the art values and 
analytical relations to be considered for modeling the transport properties in the 
PEMFC. 
Pore Network Modeling is a powerful approach that enables to compute 
transport parameters in the GDL, to be then used in macroscopic models. PNM 
relies on capillary forces to describe liquid water invasion. Then both transport 
properties and electrochemical processes are computed after each step of 
invasion [171]. The network is made of a distribution of pores connected 
through throats. Effective transport properties are computed from both structural 
information (porosity, pore size distribution) and from physico-chemical 
properties (wettability). Length scale separation (i.e. the existence of a 
representative elementary volume) is not met in the GDL and this is the reason 
why continuous models often fail in describing transport in the GDL with 
accuracy [187]. In this paper, the authors also underline that the injection 
conditions play a major role in the transport through the GDL, and more 
representative injection boundary conditions should be investigated. PNM 
enables a two phase modeling where evaporation and condensation (GDL are 
usually cooler than CL) are also taken into account. A thorny problem with PNM 
remains the injection condition [187]. Clearly, the injection condition plays a 



major role in the liquid water transport in the GDL. However this condition is 
closely linked to both water production and transport in the CL and transport 
through the MPL. This makes the injection condition difficult to determine. PNM 
is powerful in calculating transport properties in a region of mixed wettability. It 
was also shown that the through-plane diffusion coefficient of water decreases 
when the GDL's hydrophilicity increases which is due to that pores are more 
and more the filled with liquid water [190]. 
The MPL is added to the GDL to promote water management. Meantime, 
oxygen diffusion remains efficient through the MPL. Zhang et al. as well as Ma 
et al. coupled pore network modeling and tomography to investigate the 
transport through the MPL [191] and [192]. They showed that the highly 
hydrophobic MPL with pores of a few tens of nm must have developed cracks, 
otherwise it would be impossible for the water to permeate. These cracks are 
the dominant pathways for the liquid water to go from the CL to the GDL. These 
results suggest that a multi-scale model of the MPL including both the pore 
scale and the cracks is worth developing. 
 
In recent years, another methodology to simulate the properties in porous 
structures has been developed, the Lattice Boltzmann method (LBM). 
Originally, LBM simulated the motion of fluids by particles moving and colliding 
on a regular lattice, an artificial grid structure with lattice points having well-
defined properties. Contrary to the Molecular Dynamics method which aims at 
tracking the movement of individual molecules, LBM simulations consider a 
collection of particles, each one may consist of multiple molecules. 
Consequently the computational load is reduced when modeling macroscopic 
flow in porous media. Moreover, LBM are highly versatile and numerically 
stable and the employed algorithm is inherently parallel in computation. LBM is 
well adapted when simulating flow to take into account complex geometries of 
the porous media structure, enabling, e.g., to consider the real morphology of 
the porous layers of the GDL. Doormaal and Pharoah have used a single-phase 
LBM to determine the permeability in a random GDL which had been generated 
using a Monte Carlo method. They found that the fiber structure of the GDL 
results in an anisotropic permeability. LBM has been found to be particularly 
relevant for multiphase flows in porous media where interfacial dynamics play a 
major role [193]. Many different aspects of two-phase transport in the GDL have 
been considered using the LBM: Niu et al. [194] presented a multiphase 
multiple-relaxation-time LBM to simulate the water–gas transport in the GDL. 
Based on these simulations they calculated the absolute and relative 
permeabilities in the GDL. Tabe et al. [195] used a 2D two-phase LBM to 
simulate the transport through GDL and channel, showing that the wettability of 
the channel strongly affects the two-phase flow. Koido et al. [196] have used a 
3D two-phase LBM to derive empirical equations for the permeabilities of the 
liquid and gas phase in a carbon-fiber paper GDL. These empirical equations 
were then included into a macroscopic multi-phase mixture model to investigate 
the two-phase multi-component transport in this GDL. Han and Meng [197] and 
Kim et al. [198] presented 2D multi-phase LBMs to investigate the liquid water 
transport through MPL and GDL. The simulations demonstrate the importance 
of the MPL on the water management in PEMFCs. Han end Meng also pointed 
out that large perforated pores are beneficial for fast liquid water removal. The 
impact of PTFE distribution in the GDL was studied by Molaeimanesh and 



Akbari [199]. A 2D multiphase multicomponent LBM was used in order to 
investigate the droplet removal from GDLs with different PTFE distributions. 
They observed that already small regions of uncoated carbon fibers can 
significantly hinder the droplet removal. In a following publication [200] the 
same authors presented a 3D LBM of the PEMFC cathode which takes into 
account the microstructure of the GDL and electrochemical reactions in the 
catalyst layer. The model includes multi-component transport but only for a 
single phase. Simulations comparing different GDL structures revealed that the 
orientation of the carbon fibers affects the current density distribution. An 
orientation of the fibers normal to the CL was observed to lead to higher current 
density variations and overall lower current densities. 
Recently, García-Salaberri et al. [201] presented a methodology using a D3Q7 
single relaxation time LBM in order to derive the effective gas diffusivity of a 
GDL depending on its local saturation and local porosity. The obtained effective 
diffusivity shows an anisotropic dependence on local porosity while the 
dependence on the local saturation was shown to be almost isotropic. In 
addition, 1D global averaging rules where introduced in order to obtain the 
global effective diffusivity from the local correlations. 
 
2.3.5. Interface between gas diffusion layer and gas flow channel 
The two-phase flow over the interface between porous GDL and channel is an 
important and challenging aspect for PEMFC modeling. Several authors 
focused on the liquid water impact on the PEMFC behavior, investigating the 
effect of the operating conditions and the cell components characteristics on the 
liquid water removal, particularly at the cathode. Some authors coupled 
experimental activity and model analysis [202], [203], [204], [205], 
[206] and [207], whereas others exploit only experimental data available in 
literature to validate the developed mathematical models [208], [209] and [210]. 
Kumbur et al. [205] modeled the detachment of single droplet, sitting on the 
Gas Diffusion Layer (GDL)/Gas Flow Channel (GFC) interface of a PEMFC, 
through a lumped static force balance. They also built a non-reactive cell 
experimental apparatus to support and validate their model. Through the 
proposed model and the experimental results, the authors developed an 
empirical relation between surface tension and PTFE content of the diffusion 
media. Furthermore, they also investigated the effects of channel height, PTFE 
content and gas flow velocity on water droplet contact angle hysteresis, 
observing that the water removal is eased by higher PTFE content and air 
speed and lower channel height. However, their focus was only on the 
understanding of the interaction between single water droplet and air flow, 
without analyzing water droplets dynamics (i.e. oscillation) and the whole 
system behavior (i.e. effects of water breakthrough and operating condition 
changes). 
Following the same approach, Chen et al. [202] and Theodorakakos et al. [206] 
also analyzed in details this behavior. On the one hand, Chen studied the 
instability and detachment of a single droplet, due to air flow in the viscous 
regime, modeling a static force balance between the droplet and the shear flow. 
The investigation entailed two different droplet shapes, with spherical and 
cylindrical symmetry respectively, deriving a relationship for the drag and 
surface tension forces. They concluded that the water removal can be 
enhanced by increasing the GDL/GFC interface hydrophobicity, the GFC length 



or the air flow speed, or by decreasing the contact angle hysteresis or the GFC 
height. The results have been validated by means of experimental data and 
higher order models simulation results. On the other hand, Theodorakakos 
et al. [206] built an in-house non-reactive GFC to study the detachment of a 
water droplet from a porous media due to air drag, pointing out that the droplet 
formation and detachment are the main processes characterizing the water 
removal from the GDL/GFC interface. The modeling activity resulted in a CFD 
model of the droplet deformation, based on the Volume of Fluid (VOF) 
approach, whereas, a dedicated experimental activity has been performed in 
parallel, during which, oscillation phenomena have also been observed. 
On the same line Chen et al. [202] and Cho et al. [203] and [204] developed an 
analytical model of a water droplet deformation and detachment from GDL 
surface accounting for both a 3D (sphere shape) and a 2D case (cylindrical 
shape). The simulation results are validated against experimental and 
numerical data (i.e. higher order models). An ad hoc non-reactive channel has 
been built to visualize droplets deformation and detachment through a Charge 
Coupled Device (CCD) camera. The main outcomes highlighted that water 
droplets removal is improved by decreasing channels height or increasing 
surface hydrophobicity (e.g. PTFE content), channel length and gas speed. 
Among others, He et al. [209] investigated the influence of several parameters, 
such as critical droplet size, contact angle, surface tension and GDL mean pore 
size, on the water removal in the cell. They developed a Two-Fluid (TF) model 
for the representation of the PEMFC two-phase flow, with particular attention of 
the phenomena occurring at the GDL/GFC interface. The obtained results, 
validated through a comparison with the experimental data of Wang et al. [211], 
pointed out that a high contact angle and a low surface tension ease water 
removal. 
Interesting observations were made by Mortazavi et al. [212], who investigated 
the effect of different polytetrafluoroethylene (PTFE) content in the GDL on 
water droplet emerging and detachment. They build an ex-situ direct 
visualization apparatus directly fed with air or hydrogen, in order to understand 
the influence of the gas species on the two aforementioned mechanisms. They 
observed that the droplets breakthrough location is usually constant and their 
detachment is enhanced by increasing the gas flow and/or increasing the PTFE 
content. Moreover, they also observed that aged GDL show uniform contact 
angles, without having any impact on droplet detachment. 
Some publications exploit the Volume of Fluid (VOF) method for the 
mathematical model development, as done by Chen [208], who developed a 3D 
model of a droplet deformation and detachment from the GDL/GFC interface 
exposed to an air flow. The model is mainly based on a static balance between 
air drag force and droplet surface tension, which highlights the dependence of 
droplet detachment size, air velocity, contact angle and channel height. The 
validation procedure is performed exploiting experimental data available in the 
literature [206] and [207], in parallel with a parametric study to show the 
influence of the design parameters on droplet detachment. Throughout the 
simulation results of the proposed model, Chen showed that the air velocity at 
detachment has an inverse relation to the 2/3 power of the droplet size. 
Moreover, as observed by other authors [202], [203], [204] and [213], water 
droplets removal is enhanced by more hydrophobic surfaces, higher air velocity 
and lower channel height. 



Another approach, based on the Mean Value Model (MVM), has been followed 
by Esposito et al. [214] and [215] to investigate the liquid water transport 
mechanisms at the cathode. The authors developed a low order model to 
simulate the capillary driven liquid water transport through the GDL. 
Furthermore, they also implemented a sub-model for the simulation of droplets 
formation at the GDL/GFC interface. This model allows the evaluation of the 
water accumulated at the cathode with the estimation of the effective GDL 
saturation and the water droplet occupation at the GDL/GFC interface. An in-
depth experimental investigation of the effects of droplet oscillation behavior on 
its detachment characteristics has also been performed [216] by building a non-
reactive channel to capture pictures of a single droplet emerging at a specific 
location during its growth and at the detachment using a CCD camera. The 
novelty of their work resides in the image post-processing procedure, which 
allows the observation of droplet oscillation behavior induced by air shear flow 
and the definition of an explicit correlation between critical droplet size and air 
velocity. They also highlighted the importance of the oscillation mechanism on 
droplet detachment. 
Based on the observation by Esposito et al., the mathematical model of 
Polverino et al. [210] describes the main influence of the oscillation mechanism 
on the droplet detachment by means of a dynamic lumped force balance among 
drag, surface tension and inertia. The model has been validated through the 
exploitation of experimental data available in the literature [206], showing good 
agreement with the experimental results. Moreover, a parametric study has 
been performed in order to underline the influence on air flow, channel height 
and static contact angle on droplet detachment diameter. 
 
2.4. Stack and system level 
In order to obtain the required amount of voltage, in real applications fuel cells 
are piled up into stacks. In the literature it is usual to find the stacks modeled 
multiplying the effect of one cell by the number of cells [217]. However, there 
exist differences between the cells of a stack. Mainly, temperature and 
distribution of reactant gases may vary fom one cell to another depending on 
the position of the cell in the stack. As a consequence, the formation of liquid 
water depends on the cell position, too. These characteristics affect not only the 
performance but also the degradation of the cells. Indeed, some works present 
CFD stack models showing pressure and temperature changes from one cell to 
another. In Ref. [218] the temperature profile from cell to cell is analyzed and its 
influence on the output voltage of individual cells shown to be significant. In Ref. 
[219] a CFD model of a 72-cells stack is used to analyze the best configurations 
and channel dimensions for a uniform distribution. 
Moreover, in order to be able to produce energy, it is necessary to integrate the 
fuel cell stack with other components to form a fuel cell-based power generation 
system. A generic scheme showing the interrelation between the main 
components of the power generation system is presented in Fig. 4. 
 



 
Fig. 4.  
Schematic of a fuel cell system. 
 
Fuel cell system modeling has played a decisive role in system design and 
developing, as well as in the optimization and testing of fuel cell control 
strategies. Since the control strategy for a real system has to take into account 
important actuator and peripheral system dynamics, the cell level model has to 
be upgraded to make it suitable for the controller design. However, modeling 
and controlling PEM fuel cell based systems is a particularly challenging task 
due to the interactions between physical phenomena of different nature and 
scale and the presence of nonlinear structures. 
Although most physical phenomena occurring in a PEM fuel cell system can be 
incorporated in the macroscopic CFD models at cell level, it leads to time-
consuming simulations with high computational costs. To improve performance 
and durability of fuel cell systems, the design of controllers that optimize these 
aspects under all the expected operating conditions is required, and the design 
of good controllers is highly dependent on the available dynamic models. 
Therefore, the task of obtaining control-oriented models at system level has 
become important. Control-oriented PEM fuel cell stack and system modeling 
has been studied by several authors using different approaches. 
A dynamic PEMFC model specifically developed for control engineering was 
presented by Pukrushpan et al. [217] to study two main control problems: (i) the 
amount of oxygen supplied at the cathode side to the fuel cell system and (ii) 
the hydrogen flow supplied at the anode side and provided by a fuel processor 
system. The model describes the transient behavior of the air compressor, the 
manifold filling–emptying dynamics, the reactant partial pressures and the 
membrane humidity level. However, the model neglects the electrochemical 
reaction kinetics and stack temperature is treated as a constant parameter due 
to its slow time constant. Concerning the air flow control at stack inlet, the 
authors found that the use of stack voltage as feedback signal increases the 
observability of the system; moreover, they observed a tradeoff between fast air 
flow regulation and electric power delivery, which can be eased by using an 
auxiliary battery or super-capacitor. The results obtained addressing the 



hydrogen flow control showed that the hydrogen molar fraction regulation 
strongly depends on the valve commands during load transients. The model is 
shown to be suitable for the evaluation of features and properties of different 
control configurations such as dynamic feedforward, observer feedback, and 
proportional plus integral controllers. The work points out that regardless of the 
selected controller, there is a dynamic limitation due to the fact that the 
compressor uses part of the stack power to accelerate. This results in a 
necessary trade off between fast regulation of the oxygen excess ratio and fast 
delivery of the desired net power during transient operations. 
A similar approach can be found in the works of Miotti et al. [220] and Arsie 
et al. [221] and [222], who exploited a lumped modeling methodology to 
develop a PEMFC system model oriented towards automotive applications. 
More in detail, Miotti et al. [220] proposed a lumped isothermal model of a 
pressurized PEMFC system aimed at automotive applications, without 
considering the presence of water in liquid state. The model is based on a 
filling–emptying approach and takes into account several components, such as 
stack, air compressor, supply and return manifolds and heat exchangers. The 
authors exploited a 1D and a 1 + 1D model to develop multidimensional look-up 
tables in order to simulate the net water flux across the membrane and the 
profile of water content along the electrolyte. From the simulation results, they 
stated that, even though more realistic results have been obtained exploiting 
the 1 + 1D maps rather than the 1D maps, the membrane water content and, in 
turn, the voltage performance do not vary substantially. The study performed by 
Arsie et al. [221] and [222] deals with understanding the optimal control strategy 
to be adopted for a hybrid vehicle based on PEMFC, aiming at enhancing the 
system efficiency. The authors focus on the energy flows among the powertrain 
components (i.e. fuel cell, battery pack, electric motor, etc.), exploiting a lumped 
model in which gray-box parameters and black-box models are embedded. 
Analysis based on this model quantifies the system efficiency increase gained 
by the introduction of a rate limiter on the stack power. Moreover, a multilevel 
control strategy has been proposed, through which the energy flows and the 
control logics are managed. The obtained results proposed control strategies 
useful to investigate the system behavior in different scenarios and also in 
severe transient conditions. Moreover, through the proposed approach a good 
tradeoff among fuel consumption, system performance and safe operation can 
be found, with respect to an optimized strategy for fuel-cell hybrid vehicles. 
Within all the different dynamic stack and system modeling, a very important 
task is to develop models that can be integrated into the controller in order to 
compute the control action. These models are normally linearized, low order 
models which permit to keep the computation time within the control period. In 
the last decade, several control strategies based on internal models have been 
reported for the control of hydrogen consumption or oxygen stoichiometry of 
PEM fuel cell systems [223], [224] and [225]. As an example, Talj et al. [223] 
proposed a model of a PEMFC air subsystem for control strategies design, to 
which an order reduction approach was applied, downgrading from a fourth-
order to a third-order model, with a relative error of maximum 5%. On the same 
line, Zhang et al. [225] proposed an adaptive control strategy to act on the air 
flow at a PEM cathode side to keep at a certain level the excess of air. This 
approach aims at reducing the air starvation during fuel cell operation. The 
authors underlined the needs for a suitable and precise definition of system 



nonlinearities and timevarying features, which can compromise the optimal 
system operation. While the advanced control strategies perform properly in a 
large range of operating conditions, their control objectives remain in the 
reactants feeding domain. After suitable solutions were found for these control 
objectives, an important effort has been done to improve heat and water 
distribution inside the fuel cell. Thus, models and controllers that take system 
humidification, air flow supply, water distribution and membrane water dynamics 
into account have been proposed and can be considered for the development 
of suitable control strategies [222], [223], [224], [225] and [226]. All these 
controller internal models are lumped parameter models and thus, they assume 
homogeneous conditions (not profiles) of the internal variables along the 
different stack directions. In the case of water distribution, this is an important 
limitation as CFD models show significant differences from one point to another 
[7]. These differences may cause stronger degradation in cells close to the 
endplates compared to internal cells and also increased degradation in the 
outlet zones compared to the inlet zones [227]. Kunusch et al. [228] developed 
a dynamic multi-input multi-output (MIMO) model by linear identification of the 
system time constants on an experimental laboratory fuel cell system under a 
specific operating condition. The two inputs are fuel cell stack current and 
cathode mass flow rate and the outputs are fuel cell stack voltage and cathode 
pressure. The resulting model can be used either for model-based control 
design or for on-line analysis and error detection. Based on this initial model, 
Kunusch et al. [229] developed a control-oriented, non-linear model that 
simulates the most typical features of a laboratory PEM fuel cell system through 
ordinary differential equations (ODE), primarily focused on the reactant gas 
dynamics. The methodology used to develop the model is based on a modular 
procedure, combining theoretical modeling techniques and empirical analysis. 
The obtained model is fully experimentally validated and can be easily adapted 
to other systems because its parameters maintain their physical meaning. 
Since energy conversion, storage and transportation become more and more 
important, especially for stationary fuel cell systems, fuel cell models have been 
upgraded to account for the added system dynamics. The incorporation of 
energy storage elements into the fuel cell system and the analysis of electrical 
topologies and power management have been addressed [230] and [231]. 
Other works consider complementary energy sources such as photovoltaic 
panels or wind turbines [232]. 
However, the results of these studies are limited because either they use an 
electrochemical model that is not experimentally validated or experimental 
models that do not take into account the electrochemistry. Moreover, these 
models do not consider the performance losses due to liquid water or 
degradation effects. More research is needed to combine these effects not only 
in CFD modeling but also control-oriented modeling, considering mitigation 
strategies for degradation mechanisms and water management related 
performance improvement. 
 
2.5. Coupling between the scales 
Two approaches are possible to develop multiscale models of electrochemical 
power generators: the direct one and the indirect one [233], [234] and [235]. 
 
Direct multiparadigm multiscale models consist in coupling “on-the-fly” models 



developed in the frame of different paradigms. For example, continuum 
equations describing transport phenomena of multiple reactants in a porous 
electrode can be coupled with Mean Field (MF) theory or kinetic Monte Carlo 
(kMC) simulations describing electrochemical reactions among these reactants. 
However, as has been established [236] and [237] kMC is the only approach 
able to describe the adspecies surface transport and lateral interaction and 
reaction. Several numerical techniques are well established to develop such a 
type of models applied in the simulation of physicochemical processes, e.g., 
catalytic and electro-deposition processes [94], [100] and [238]. In the field of 
catalysis, KMC simulations have been used to calculate instantaneous kinetic 
reaction rates on a catalyst calculated iteratively from concentrations in turn 
calculated from CFD-like continuum transport models [89]. Computationally 
speaking, these direct multiparadigm methods are very expensive; therefore, 
the indirect multiparadigm method represents a feasible alternative. This 
method consists in extracting data from a lower-scale and using it as input for 
the upper-scale via their parameters. For example, activation barriers for 
elementary reaction steps can be extracted from DFT by Nudged Elastic Band 
(NEB) calculations [239], and then injected into Eyring's expressions to estimate 
the kinetic parameters 

 
where f refers to the frequency pre-factor, kB and R the Boltzmann and 
universal gas constants, T the absolute temperature and h the Planck constant. 
These expressions are used for the calculation of the individual reaction rates vi 
at the continuum level [51]. 

  
where ay and ay

′ay′mathContainerLoading Mathjax refer to the activity of 
respectively the reactant y and product y′ and their stoichiometry coefficients, v 
and v′ while ki is rate constants for the forward reaction and k-i is that of the 
corresponding backward reaction. Eq. (6) is in turn used for the calculation of 
the evolution of the surface or volume concentrations of the reaction 
intermediates, reactants and products, following 

 
with Kn being the number of reaction sites per mol of reactant. 
 
The NEB method yields the minimal energy paths (MEP) between given initial 
and final states. The method consists in linearly interpolating a set of images 
between the known initial and final states, and then minimizing the energy of 
this string of images. Each “image” corresponds to a specific geometry of the 
atoms on their way from the initial to the final state, a snapshot along the 
reaction path. Thus, once the energy of this string of images has been 
minimized, the pathway corresponding to the minimum in energy is found. A 
more accurate value of the MEP can be obtained with the Adaptive Nudged 
Elastic Band method [240], where a zoom in the transition state (TS) is made by 
changing the initial and the final state by two NEB states closer to the TS. 
Another example of multi-paradigm model is the use of Coarse Grained 



Molecular Dynamics (CGMD) for the calculation of the materials structural 
properties (e.g. tortuosity τ and porosity ε) as function of the materials 
chemistry, which are used in turn for the estimation of the effective diffusion 
coefficient used in continuum reactants transport models [241]. 

 
with D0, the molecular (binary) diffusion coefficient of the diffusing species, e.g., 
hydrogen–vapor water mixture at the anode or air–water vapor mixture at the 
cathode. Thanks to this approach Deff can be estimated on-the-fly in terms of 
the chemical composition and may be updated during the multiscale simulation 
[242]. 
 
In this way one could then imagine building up an electrochemical power 
generator model with macroscopic equations based on material parameters 
extracted from atomistic and molecular level calculations. Within this sense, in 
2002, Franco has invented the multiscale simulation package of PEMFC called 
“MEMEPhys” [112] and [243]. The model is an indirect multi-paradigm, 
multiscale approach: a continuum model describing electrochemical and 
transport mechanisms with parameters extracted from ab initio databases (for 
the reactions kinetic parameters as function of catalyst chemistry and 
morphology) and CGMD calculations (for the materials structural properties as 
function of their chemistry). More recently the simulation package MS LIBER-T 
(Multiscale Simulator of Lithium Ion Batteries and Electrochemical Reactor 
Technologies) has emerged [85], [244] and [245]. It is programmed in C and 
Python and designed to support direct multiparadigm calculations, for instance, 
simulations coupling on the fly the numerical resolution of continuum models 
(e.g. describing charge transport in the electrode volume) with discrete models 
(e.g. Monte Carlo module describing the elementary reaction kinetics [88]). 
Another novelty introduced by MS LIBER-T is its capability of integrating phase 
field models describing phase formation, separation and evolution, mechanisms 
highly relevant for material microstructure simulations [233]. 
Another multiscale modeling framework written in C/C++ is DENIS (Detailed 
Electrochemistry and Numerical Impedance Simulation) [246] and [247], which 
allows for modeling of SOFC (solid oxide fuel cell), PEMFC and DMFC (direct 
methanol fuel cell) as well as several types of batteries. DENIS provides 
complex electrochemical models on the scale of the catalyst surface as well as 
two-phase, multi-component transport on the cell level. 
Within the presented multiscale frameworks elementary kinetic models for the 
oxygen reduction reaction based on DFT calculations have been developed 
[51] and [175], giving insight into the relevant reaction pathways and surface 
coverages over the full range of cathode potentials. 
Considering the coupling to higher scales, stack and system modeling, as well 
as single cell modeling, are in the macroscopic CFD domain. However, if they 
have to include all the cells and system elements, CFD models become very 
large, and thus, slow. In the case of model-based controllers, simulation time 
needs to be faster than real time. As a consequence, models of reduced order 
that maintain the relevant input–output dynamic relationships are required. The 
application of model order reduction techniques to fuel cells has been analyzed 
in the literature [248]. 
 



3. Modeling degradation mechanism in PEMFC 
 
3.1. Membrane 
Deterioration of PFSA membrane properties such as gas separation, proton 
conductivity and electrical insulation is governed by thermal, mechanical and 
(electro-) chemical degradation [249]. This section gives a short overview of the 
different effects on the membrane and their impact on fuel cell performance and 
lifetime followed by state-of-the-art modeling approaches to describe these 
degradation processes. 
 
3.1.1. Thermal degradation 
Under standard fuel cell conditions (∼80 °C), the effect of thermally induced 
degradation of the electrolyte is assumed insignificant [250]. However, after 
heating Nafion® films to 95 °C cross-linking of sulfonic end-groups was 
observed [251] causing reduced conductivity. The maximum operating 
temperature for Nafion®-based membranes is about 100 °C which is below the 
glass transition temperature of the material of 110 °C. Above this temperature 
dissociation of ionic clusters [252] and increasing crystallinity [253] of the 
membrane were found. 
Contrary to elevated temperatures, fuel cells in automotive applications are also 
required to resist repeated exposure to temperatures as low as −40 °C which 
can cause the formation and melting of ice. In freeze/thaw cycle tests reduced 
fuel cell performance and lifetime was observed when studying the influence on 
the membrane properties [254]. Dry Nafion® 112 membranes were exposed to 
385 cycles between −40 °C and 80 °C. While no visible sign of deterioration, 
delamination or tearing was found, a dramatic decrease in elongation at failure, 
lower ultimate strength and density has been observed. Also, a reduction of the 
anisotropy of material properties in machine and cross direction, like 
dimensional changes due to swelling and tensile strength was stated. Repeated 
freezing and thawing caused reduced oxygen permeability. Based on these 
observations, it was suggested that rearrangement of the sulfonic groups was 
responsible for the changes in the material properties. 
It can be stated, that thermal degradation is negligible when close to standard 
operating conditions. To the authors' best knowledge, no cell-scale modeling 
work focusing on thermal degradation of the membrane in PEMFC has been 
done so far. Further, the effects of subzero conditions on the membrane have 
been investigated but are not understood in depth and detail, which motivates 
the development of models on lower length scales. 
 
3.1.2. Mechanical degradation 
Ex-situ analysis of aged membranes reveals several features of degradation 
like crazes, cracks, pin-holes, thinning and elongation of the membrane [255]. 
The formation of these defects is partly caused by cyclic stress resulting from 
repeated swelling and shrinking of the membrane due to water sorption and 
desorption [256], [257] and [258]. As a consequence, the electric contact 
between MEA and electrodes may be reduced and the cross-over of gases 
increases. This leads to lower OCV (open circuit voltage) [259], higher ohmic 
losses and therefore to reduced performance of the fuel cell. With increasing 
cross-over of reactants, local hot-spots may develop which in turn accelerate 
the degradation. Finally, this causes catastrophic failure of the membrane. 



On the modeling front Weber and Newman were the first to investigate the 
influence of a constrained membrane [260]. The model predicts reduced water 
content in a constraint membrane. It is shown that compression improves the 
flux of water from cathode to anode under all humidity conditions due to 
increased liquid pressure at the cathode and reduction of the membrane 
thickness. Hence, it was concluded that the effect of constraint should not be 
ignored. 
 
Accordingly, constitutive models describing the mechanical behavior of the 
membrane were developed. These models are able to describe the stress–
strain behavior of the polymer under varying strain rates, temperatures and 
humidity conditions [261], [262], [263], [264] and [265]. The same has been 
done for an ePTFE reinforced membrane [266]. It was concluded that the 
residual in-plane stresses can be reduced significantly by introduction of a 
reinforcement layer. Humidity cycles led to cyclic mechanical loads which in turn 
led to hysteresis in the stress–strain behavior of the membrane. A constitutive 
model capturing this behavior was presented [264]. For a membrane in contact 
with liquid water the stress–strain behavior changes considerably just like the 
water uptake of the membrane changes when exposed to water vapor or liquid 
water (Schroeder's paradox). A membrane in contact with liquid water will 
exhibit the rubbery behavior of an elastomer, which has been modeled in 
another study [265]. 
Based on these constitutive relationships, finite element models have been 
developed to calculate the distribution of stresses inside the membrane [257], 
[266], [267], [268] and [269]. For this purpose, most often the commercial 
software package ABAQUS [270] is used. From the resulting stress distribution, 
regions prone to mechanical degradation can be identified. However, the 
challenging task to create a model capable of predicting the failure of the 
membrane due to crack or pin-hole formation, and therefore the lifetime of the 
membrane, remains. 
A more practical approach has been adopted in Ref. [271] where stress vs. 
cycles-to-failure curves were fitted to data of dynamic mechanical analysis 
experiments. Relating the stress to the change of the relative humidity during 
one cycle allows prediction of the cycles-to-failure depending on the operating 
conditions. However, stress vs. cycles-to-failure curves give no insight on the 
degradation processes and lack physical meaning. 
A model able to predict the mechanical degradation of a membrane has 
recently been presented by Burlatsky et al. [272]. In this model, in order to 
account for the non-linear viscoelasticity of the material, the molecular theory 
proposed by Eyring [273], which was initially developed to describe the 
mechanical properties of textiles, is extended allowing prediction of stress 
relaxation in a constrained polymer. Additionally to this constitutive model, three 
model components to predict the lifetime of a GORE-SELECT membrane were 
used. The first model component is used to calculate the transient behavior of 
the relative humidity (RH) distribution in the gas channels as a function of the 
operation conditions, cf. Ref. [274]. Secondly, a stress model is used to 
calculate the stress distribution in the membrane for a given RH profile. Finally, 
based on the calculated stress, the membrane lifetime is predicted using the 
damage accrual model which is based on fitting model parameters to data from 
dynamic mechanical analysis (DMA) experiments, resembling the procedure 



given in Ref. [271]. 
Kusoglu and Weber [275] presented a model for the mechanical degradation of 
the fuel cell membrane, describing the growth of pinholes during load cycling. 
The model describes the plastic deformation and stresses caused by the 
swelling during humidity cycling. Based on the model, tensile stresses and the 
plastic strain increment have been identified as relevant factors for the pinhole 
growth and the effect of operating conditions and model parameters have been 
studied. Furthermore, the model was combined with a simple empirical model 
for the chemical degradation. The predicted hydrogen crossover was shown to 
be in rather good agreement with experimental data. However, as discussed by 
the authors, mechanical and chemical degradation can accelerate each other 
and therefore their contribution on the membrane aging cannot be separated 
easily. Thus, model improvements are still necessary to take into account these 
synergetic effects more accurately. 
Today, state-of-the-art constitutive models are able to describe the transient 
behavior of the mechanical membrane properties depending on parameters like 
temperature, humidity and strain rate. With the help of stress distribution 
models, high stress regions in the membrane can be identified and operating 
conditions to decrease these stresses can be derived. However, the formation 
of crazes, cracks and pin-holes in the membrane strongly depends on the 
presence of defects in it. The mechanisms which locally initiate an individual 
crack or pin-hole have not been clearly identified and may not be resolved on 
the macro-scale either. Therefore, no modeling of pinhole formation and crack 
evolution has been performed on the cell level so far. The mechanical 
degradation of the membrane plays an important role in the overall degradation 
of the cell, although it is proposed that chemical degradation is more severe for 
the membrane [276], [277] and [278]. Further developments on experimental 
setups to investigate the interplay of mechanical and chemical degradation are 
indeed required. 
 
3.1.3. Chemical degradation 
Chemical degradation covers the effects of membrane decomposition due to 
(electro-) chemical reactions and membrane contamination. Contaminants like 
fuel impurities, air pollutants and cationic ions can poison catalysts, increase 
protonic membrane and catalyst layer resistance or degrade the catalyst layer 
structure and hydrophobicity. These effects are reviewed elsewhere 
[174] and [279]. 
It is common agreement that, during fuel cell operation, the production of 
hydrogen peroxide H2O2 and subsequent decomposition to radical species is 
the main cause for chemical membrane degradation [280], [281], 
[282] and [283]. However, reports on the location of membrane degradation are 
contradictory: Degradation was observed at the anode [284] and [285] or at the 
cathode [286] and [287]. Also the role of a platinum band, which may form 
during operation due to catalyst degradation, is still under discussion. In Refs. 
[288] and [289] higher degradation is attributed to the presence of a Pt band 
while in Ref. [290] the contrary is reported. Subsequent investigations found 
that membrane degradation decreases with increasing Pt particle density in the 
membrane [291], [292] and [293]. 
It is proposed that H2O2 is formed at the electrolyte electrode interfaces by 
reaction of cross-over gases on the Pt-particles [285], [294] and [295]. 



According to Ref. [280], H2O2 has a diffusion length in the millimeter range. 
Therefore, the location of H2O2-formation and membrane degradation are not 
necessarily coupled. H2O2 may form at the anode with O2 crossing the 
membrane or as a side product of the ORR on the cathode side. Both ways of 
H2O2 formation are discussed in Ref. [283] but it is stated that the predominant 
mechanisms remain unclear. 
When H2O2 is decomposed, HO and HOO radicals are formed which in turn 
attack the electrolyte material. Inside the membrane, this decomposition is 
catalyzed by metallic impurities [296] or Pt-particles from the catalyst layers 
[255]. 
For the attack on the polymer structure, several sites have been proposed. 
Some of the polymer backbones terminate in H-containing end groups which 
have been identified to be a weak spot and a mechanism for the attack on 
these sites has been proposed [297]. This mechanism causes an advanced 
unzipping of the backbone accompanied by the release of HF and CO2. When 
such unzipping reaches a junction of the backbone and a side chain including 
sulfonic acid sites, the whole side chain is “cut off” and forms the so-called 
“molecule A” which can be found as a degradation product in the effluent water 
of the cell [298]. This loss of sulfonic acid sites leads to a reduction in 
membrane conductivity. Fluorination of the weak end groups resulted in greatly 
reduced fluoride emission rates (FER), and therefore enhanced chemical 
stability [297]. 
Also, the scission of polymer side-chains has been proposed as a degradation 
pathway [299]. This cutting of the side chain causes further degradation via 
unzipping until a junction of side chain and backbone is reached. Then, two 
weak end groups on the backbone are produced leading to an irreversible 
increase in weak sites and therefore accelerated chemical degradation. In Ref. 
[300], it was proposed that at high humidity degradation is governed by the 
unzipping mechanism and under low humidity conditions scission of the side 
chains dominates. The exact location for radical attack on the side chain is 
under debate. Sulfonic acid sites as well as ether linkages have been proposed 
[300], [301], [302] and [303]. 
For the modeling of chemical membrane degradation, two types of models have 
been developed. To gain insight in the basic mechanisms of degradation and to 
interpret experimental results, kinetic 0D (zero dimensional) models are applied 
[280], [281], [299] and [300]. Further, 1D models for chemical degradation of the 
membrane were embedded in a simulated fuel cell environment [282] and [283]. 
A kinetic model to determine the contribution of backbone unzipping and side 
chain cleavage to the overall chemical degradation process in various 
degradation environments was developed by Xie and Hayden [299]. A 
relationship for the fluorine fractional loss, the concentration of carboxylic acid 
in the membrane and the ratio of rate constants for side chain cleavage and 
unzipping were derived. Correlation of infrared spectroscopy measurements to 
this kinetic model gives the basis to determine the rate constants ratio under 
different experimental conditions. This model allows for the prediction of the 
influence of the polymer structure on the degradation mechanisms, therefore 
giving guidance for improved chemical durability through meaningful molecular 
design. 
 
Chen and Fuller conducted durability tests at different temperatures and 



degradation was studied at anode, cathode and in the center of the membrane 
using X-ray photoelectron spectroscopy (XPS) and HF/TFA ratio analysis [281]. 
Degradation was accelerated at higher temperatures and was found to be more 
severe on the anode side. Decomposition of the polymer backbone and side 
chains was also reported. Degradation in the bulk of the membrane was 
observed to be slow and mainly due to backbone decomposition. This was 
attributed to attack of molecular oxygen on carbon centered radical end group 
on the main polymer chain at low temperatures. To investigate the influence of 
the different mechanisms and explain the experimental results, a kinetic model 
was developed. In this model, four steps of membrane degradation are 
proposed: (1) radical formation via Fenton's reaction, (2) reaction of O2 with 
carbon centered radicals located on the backbones and backbone unzipping 
due to HO attack, (3) termination of unzipping by reaction of two carbon 
centered radicals which again form a stable backbone structure and (4) side 
group degradation. Assuming steady state, an expression for HF formation is 
formulated allowing for a qualitative explanation of the experimental results. 
Based on this expression, a rate expression for fluorine loss is derived taking 
into account the contributions of Fenton's- and side group degradation reaction. 
They concluded that degradation accelerates with higher temperature, and that 
it is more severe at the anode due to higher H2O2 and radical concentrations. In 
the bulk membrane, they observed that backbone decomposition outweighs 
degradation via the side chains and they found that O2 attack on long chain 
radicals contributes to the membrane degradation. 
The kinetic models of Gubler et al. [280] to the one of Ghelichi et al. [304] both 
aim at determining the chemical degradation resulting from H2O2 decomposition 
via Fenton's chemistry and subsequent radical attack on the polymer. Both start 
from a similar set of chemical reactions. While Gubler et al. use rate constants 
valid for room temperature only, Ghelichi et al. also give the activation energies 
enabling their model to determine degradation at fuel cell operating conditions. 
After comparison of the different reaction rates, Ghelichi et al. discard the 
reaction of Fe2+ with OH because the OH concentration is low and the direct 
formation of OH from H2O2 because the reaction is negligibly slow. Gubler et al. 
consider reactions involving H2 and O2 which occur in the membrane due to gas 
cross over. Comparison of the reaction rates shows that these reactions are 
kinetically relevant and cannot be neglected as was done in Ref. [304]. 
Therefore, the results of Ghelichi et al. are only valid for ex situ Fenton's tests 
and not for in situ fuel cell operation. Assuming constant Fe and H2O2 
concentrations, Ghelichi et al. derive an analytic solution for the calculation of 
the OH radical concentration enabling direct calculation of the FER without the 
need to consider the HOO radicals in the system explicitly. One flaw of this 
analytic solution is that the attack of the radicals on the polymer does not 
influence the steady state concentration of OH. In Ref. [280] Gubler et al. show 
that radical attack on the polymer reduces the OH steady state concentration up 
to two orders of magnitude, depending on the iron content, which suggests that 
the model of Ghelichi et al. overestimates the OH concentration. The model of 
Gubler et al. neglects radical attack on the side chains while the Ghelichi model 
incorporates the mechanism with the coarse-grained consideration of the 
polymer structure. Thus, even though both models give valuable insights into 
the mechanisms of chemical degradation, due to the assumptions and 
simplifications mentioned above, the models cannot be applied to predict 



membrane degradation under fuel cell operating conditions. 
Concerning the 1D models, Kundu et al. investigated degradation of a Gore™ 
PRIMERA® series 5510 catalyst coated membrane [286]. To increase 
mechanical stability, the membrane contains a layer which is reinforced with 
ePTFE (expanded polytetrafluoroethylene). The MEA was tested under OCV 
conditions. Scanning electron microscopy (SEM) revealed membrane 
degradation at the cathode and a platinum band in the membrane was 
observed. A semi-mechanistic 1D transient model was developed and 
compared to the experimental investigation of fluoride emission rate (FER), 
crossover current and OCV. In this model, degradation is assumed to start at 
the cathode and to advance in a wavelike manner to the anode causing thinning 
of the membrane. Crossover current, H2O2-formation, subsequent radical 
formation and membrane degradation is proposed to depend on the flux of H2 
from anode to cathode. The H2O2 formation from oxygen cross over is 
neglected in this model. The loss of electrochemical active surface area is 
incorporated and equations are solved using the ‘method of lines’. Cumulative 
fluoride release of anode and cathode, crossover current and the evolution of 
OCV are simulated. It is concluded that all fluoride emissions result from 
ionomer degradation next to the cathode. Further, degradation is assumed to 
advance to the reinforcement layer. When the degradation front reaches the 
ePTFE layer, the fluoride generation slows down as the reinforcement is 
assumed inert. The lower anode FER is attributed to the larger diffusion 
resistance when fluoride is generated at the cathode and needs to cross the 
membrane. 
A 1D fuel cell model incorporating chemical degradation of the membrane was 
presented by Shah, Ralph and Walsh [283]. It is based on the solution of 
conservation equations for mass, charge and energy including a detailed 
description of the transport phenomena in different layers of the fuel cell. A sub-
model describes H2O2 formation, evolution of radicals from Fenton's reaction 
and direct formation at the anode. Chemical degradation is assumed to proceed 
via unzipping of the backbone, side chain cleavage and decomposition of 
“molecule A”. Model results are concentration profiles of the considered species 
and their evolution with time. These results suggest that degradation 
propagates from the anode to the cathode. Therefore, it is concluded that FER 
measurements alone are not sufficient to determine the main location for 
degradation as the process is time-dependent, localized and diffusion 
effectively distributes HF in the membrane. The influence of oxygen 
concentration at OCV, membrane thickness, load operation, temperature, water 
activity and reaction rate constants was investigated. 
A second 1D continuum model was developed by Gumalla et al. [282] where 
the model domain consists of the membrane and the electrodes. Diffusive 
transport and reaction of crossover gases, radical formation and attack on the 
membrane with subsequent HF release under OCV conditions is incorporated 
into the model. The resulting reaction diffusion equations are solved using a 
central finite difference scheme and a nonlinear solver implemented in software 
package gPROMS [305]. Radicals can be formed and quenched at Pt-particles 
which are assumed to be uniformly distributed inside the membrane. This 
assumption is due to an earlier study [306] where, in contrast to other 
experiments, no platinum band was observed, but a homogeneous distribution 
of Pt particles was found in the membrane. A general reaction of hydroxyl 



radicals with Nafion® is incorporated but no specific degradation mechanism is 
assumed. The model results are fitted to the measured FERs data from the 
OCV-tests conducted in Ref. [306]. OH radicals are assumed to be produced 
directly by partial oxygen reduction on the Pt particles in the membrane. 
Influence of the Pt-particle size and the spacing between them, concentration of 
oxygen at the cathode, relative humidity and membrane thickness on the 
degradation rate was simulated. It is found that the FER strongly depends on 
the particle size as the quenching of produced radicals is more likely on bigger 
particles. The spacing between particles determines whether radical formation 
is controlled by diffusion or the reaction kinetics. For small distances between 
particles, radical generation takes place in a narrow region where H2 and O2 are 
almost completely consumed while for larger spacing, H2 and O2 concentrations 
are higher throughout the membrane and radical production takes place in the 
whole membrane. Variations of the relative humidity influence degradation is 
three ways: (1) decreasing RH increases the oxygen molar fraction in the 
supply gases, (2) decreasing RH decreases the gas permeability and (3) higher 
membrane hydration influences the hydration shell of the Pt particles, reducing 
the available surface area for radical generation. This leads to an increase in 
degradation up to a RH of approximately 0.2–0.4, for higher RH, the FER 
decreases again. 
The first model to incorporate the effect of chemical degradation on the 
macroscopic properties of the membrane was developed by Coulon et al. 
[307] and [308]. In Ref. [307], an elementary kinetic model is presented 
simulating H2O2 formation at the anode, OH formation via Fenton's reaction and 
radical attack which leads to side chain cleavage and loss of sulfonic acid sites. 
It couples a new model for the membrane to the multiscale electrode models 
[77] and [83] of MEMEPhys®[80] and [309]. For the membrane, the conductivity 
model presented in Ref. [131] is extended resulting in an equation for the 
conductivity depending on chemical degradation. For the first time, a feedback 
between chemical degradation and the transport properties of the membrane is 
established. They concluded that membrane degradation has a pronounced 
effect on the fuel cell performance above 1000 h of operation. Cell current and 
membrane thickness have only minor influence on the increase in specific 
membrane resistance. 
Recently, Wong and Kjeang developed a model for simulation of in-situ 
chemical degradation [310] They consider H2O2 formation via two-electron-
transfer at the anode and radical formation from a single Fenton's reaction of 
H2O2 with Fe2+. The radical attack on the polymer structure starts at the side 
chains with attack on the ether bond of the αOCF2 group. Unzipping along the 
side chain leads to an intermediate oxygen centered radical and further 
degradation results in main chain scission with the formation of two carboxylic 
acid groups on the polymer backbone. From there, the degradation proceeds 
via unzipping along the backbone. This degradation model is incorporated into 
a 1D, single phase transport model in the GDLs, MPLs and CLs of the cell with 
electron transport through the solid phase. In the catalyst layers and the 
membrane, an equation is solved for the electrolyte potential and transport of 
water, H2O2, H2 and O2 is simulated and additional transport of degradation 
products and hydroxyl radicals is modeled in the membrane. Evolution of the 
polymer structure, dry membrane thickness, evolution of the membrane ionic 
resistance and cell open circuit voltage are simulated and the model is validated 



against experimental results [311]. In a following work [312] the model is 
expanded to incorporate the transport of Fe2+ and Fe3+ in the catalyst layers 
and the membrane and the redox cycle of these ions. Radical formation 
strongly depends on the presence of H2O2 and Fe2+. The total iron ion 
concentration in this model is kept constant and the electrochemical reduction 
of Fe3+ to Fe2+ is incorporated in the catalyst layers. This reaction, as well as 
H2O2 formation is strongly dependent on the electrode potentials. Therefore, 
cell operation at three different voltages is simulated: OCV, 0.9 V and 0.7 V. At 
OCV, the concentrations of H2O2 and Fe2+ are high at the anode side causing 
severe degradation. At 0.9 V, the H2O2 concentration remains almost the same, 
while the degradation rate is found to be reduced by 57%. This reduction is 
caused by the lower Fe2+ concentration at 0.9 V which demonstrates the high 
impact of the state of iron on the degradation rates. At 0.7 V, the ionomer 
potential gradient increases resulting in an almost zero net flux of Fe3+ to the 
anode which reduces the Fe2+ formation there. Iron ions accumulate at the 
cathode resulting in degradation at the cathode side under higher load 
conditions. Overall, the degradation at 0.7 V is reduced to one tenth. 
 
3.2. Catalyst layer 
Degradation of the catalyst layers fall into two categories. One category is 
where cell aging impacts on cell durability such as platinum dissolution and 
particle coarsening as well as carbon support corrosion described below. The 
other category, not described here, is related to ice formation in the different 
layers of the MEA, for example, during cold start or under prolonged cell 
exposure to sub-zero temperatures which has an immediate often catastrophic 
impact on cell performance. In this section, the modeling approaches to 
describe the degradation mechanisms within the catalyst layer are reviewed. 
3.2.1. Platinum dissolution 
The stability of the platinum catalyst is crucial for fuel cell durability. However, 
typical PEMFC conditions, i.e., low pH, high temperature and potential cycling, 
are known to promote platinum dissolution [313] and [314]. Several models 
have been developed to describe this degradation mechanism. 
Darling and Meyers [315] proposed a model for platinum dissolution and 
movement in the MEA that claims to fit reasonably well with experimental data 
from literature. The model takes into account three electrochemical reactions 
involved in platinum dissolution. Kinetic parameters are provided for the 
different steps. Later, the authors [316] also proposed a model for the 
movement of the dissolved platinum in the ionomer in the catalyst layer and in 
the membrane. Bi and Fuller [317] proposed a similar model that includes also 
the formation of a Pt band in the membrane, but it appears that the model does 
not predict Pt degradation rate very well, which leads to the conclusion that 
additional mechanisms are involved, such as nanoparticle coarsening. 
More recently, Ahluwalia et al. investigated the role of oxide coverage and 
particle size on the stability of carbon supported Platinum nanoparticles [318]. 
Rotating Ring Disk Experiments were carried out and models were developed 
to explain the results. As only Pt dissolution occurs in such a configuration (Pt2+ 
ions are removed in the electrolyte and do not contribute to the growth of other 
particles by Ostwald Ripening), only Pt dissolution is modeled. A solid solution 
theory was formulated to model the variation of the Pt dissolution rate with the 
potential, the oxide coverage and the size of the particle. They were thus 



capable of explaining the peak in the dissolved Pt2+ concentration at about 
1.1 V that is observed in Rotating Ring Disk Electrodes. Indeed, high potentials 
promote Pt dissolution but also the formation of platinum oxides. The oxide 
coverage increases, reaching unity at 1.1 V, and protects the Pt from 
dissolution. Their kinetic model shows that this competitive balance governs the 
Pt degradation at high voltage. The simulations were found to be consistent 
with experimental results for the Pt dissolution rate. Most of the existing 
dissolution models include the effect of oxide coverage by taking into account 
that the formation of a protective oxide layer reduces the platinum dissolution as 
discussed before. According to these models, under cycling conditions 
dissolution mainly occurs during the anodic potential sweep of potential cycling, 
since the protective oxide layer has been reduced at low potential [318]. 
However, recent experiments [319] and [320] suggest that the effect of platinum 
oxides on the dissolution is more complex. According to these experiments the 
dissolution is mainly caused by the place-exchange of PtO during the reduction 
of the oxides, i.e., dissolution occurs mainly during the cathodic potential sweep 
in contrast to the predictions of the previously mentioned models. Thus, model 
improvements are necessary in order to correctly describe platinum dissolution 
under transient operating conditions. 
In order to achieve this goal not only the correlation between the formation and 
reduction of platinum oxides and the platinum dissolution has to be taken into 
account, but also the oxide formation kinetics has to be modeled properly. Even 
though platinum oxides have already been studied for more than 40 years, both 
experimentally [321] and theoretically [322], an accurate mathematical model to 
describe the formation and reduction of the oxides under transient operating 
conditions remains a challenge. Recently, Redmond et al. [323] presented an 
innovative model which describes the oxide coverage by means of oxide 
distributions on the edge and on the planar sites of the platinum particles. By 
performing CV simulations, the model was shown to be able to correctly 
reproduce the shape of the CVs for varying scan rates and varying upper 
potential limits. However, as pointed out by the authors the potentiostatic oxide 
coverage growth rate predicted by the model was much lower than 
experimentally observed. Thus, model improvements are still necessary. 
The models discussed above consider pure platinum catalysts only. However, 
understanding the degradation mechanisms of Pt-based bimetallic catalysts is 
also important as these materials generally provide higher activity than pure Pt 
towards the ORR and are devoted to be one of the favorite cathode catalysts. A 
multiscale mechanistic model (including transport at the MEA level and local 
insight in the electrochemical double layer, EDL) has been developed by 
Franco et al., [76] for Pt–Co catalyst performance and degradation rate 
estimation. The model allows ranking the degradation rate among Pt–Co, 
Pt3Co, Pt and PtCo3 catalysts depending on the cell operating conditions. The 
model shows that the catalyst durability depends on the catalyst stoichiometry 
with the lowest stability being obtained for PtCo3. The model also predicts that 
Pt3Co offers the best activity, even compared to Pt in good agreement with 
experimental data, and pointing out that the nanostructural properties of the 
catalyst and overall PEMFC operation conditions are of paramount importance 
towards the optimization of bimetallic catalyst nanoparticles activity and 
durability. 
 



3.2.2. Coarsening and coalescence 
Experimentally, it is well known that during aging, the catalyst surface area first 
exhibits a fast decrease but then tends to stabilize. This stabilization is related 
to a growth of the average platinum particle size and cannot be described by 
simple dissolution models described before. Under fuel cell working conditions, 
nanoparticles tend to sinter or agglomerate on the support [324]. The 
understanding of the underlying mechanisms of sintering and Pt degradation, 
including dissolution in acidic media [319] and [325], is paramount to improve 
the durability of a fuel cell. At the atomic level, two different mechanisms might 
occur: 
i) Ostwald ripening, a process in which a large nanoparticle grows by atoms that 
are dissolved from smaller nanoparticles; 
ii) the coalescence of small nanoparticles into a larger one [326]. 
 
The stability of a nanoparticle on a support is influenced by a large number of 
parameters: temperature, pressure, electrochemical environment, the strength 
of the interaction between the metal and the support, and the strength of the 
metal–metal bond in the presence of the adsorbates [35] and [324]. DFT 
calculations show that the formation of Pd clusters on a support surface 
depends on a delicate interplay between the metal–metal bond strength and the 
metal-support interaction [327]. On an atomistic level, reactant-assisted Ostwald 
ripening will occur in the presence of strong interactions between the metal 
surface and the reactants [328]. 
 
Previously, the Ostwald ripening mechanism was described in details in Ref. 
[329]. The driving force is the difference in the electrochemical potential 
between particles of various sizes. Indeed, the chemical potential depends 
particularly on the size of the particles: the bigger the particles, the smaller the 
chemical potential according to Gibbs–Thomson energy that links the radius of 
the particles and the chemical potential of the Pt inside. Electrochemical 
Ostwald ripening that occurs in PEMFC both involves transport of Pt2+ in the 
electrolyte and transport of electrons in the carbon support: led by the 
difference in the chemical potential of two close Pt particles, Pt2+ ions dissolve 
from the smaller particle and precipitate on the larger one. Simultaneously, 
electrons are transported via the carbon support from the smaller particle to the 
larger one. Consequently, a voltage appears between Pt nano particles and 
bulk particles. It was experimentally validated that this voltage decreases with 
time, demonstrating that the average radius of the nano particles increases. 
Parthasarathy and Vikar reported on Ostwald ripening of Pt nanoparticles 
deposited on large carbon surfaces that leads to nanoparticles coarsening 
[330]. 
On the other hand, the coalescence mechanism is based on the movement of 
the platinum particles on the support surface. If two particles collide they can 
coalesce, thus forming a larger one. This mechanism is expected to be 
promoted by the presence of liquid water in the catalyst layers and proposed to 
be responsible for loss of active catalyst surface at low potentials, where 
Ostwald ripening is negligible [331]. However, even though the coalescence 
mechanism has been discussed already for a long time [332], its relevance for 
the overall catalyst degradation in PEMFC still remains unclear, since 
experimental measurements of the ECSA loss do not allow to distinguish 



between Ostwald ripening and coalescence as underlying mechanism. A 
possible distinction between both mechanisms is by ex situ analysis of the 
particle shapes and the particle size distribution (PSD), since the evolution of 
the PSD is very different for both mechanisms. Numerically, modeling the 
coalescence mechanism is much more challenging compared to the Ostwald 
ripening process, since the coalescence mechanism requires solving integro-
differential equations for the PSD [333]. Most of the catalyst degradation 
models in the literature consider Ostwald ripening as the only mechanism. 
However, recently, Ahluwalia et al. [334] presented a model which includes both 
mechanisms, Ostwald ripening and coalescence. They pointed out that in 
principle the experimentally observed particle growth could also be reproduced 
using a model without coalescence. However, as stated by the authors this 
would require an increase of the dissolution kinetics by two orders of 
magnitude, which was argued to be inconsistent with previously reported 
dissolution kinetics. 
Pt dissolution or growth due to Ostwald ripening has been modeled by Holby 
et al. [335]. The authors used a Butler–Volmer like equation where an additional 
term accounting for the size-dependant stability is introduced, thanks to the 
Gibbs–Thomson energy. The Ostwald ripening mechanism was coupled to the 
formation of a Pt band in the membrane following H2 crossover. The simulated 
evolution of the particle size distribution was shown to be in good qualitative 
agreement with experimental data. 
Recently, Li et al. [336] presented a 1D model for the platinum catalyst 
degradation taking into account Ostwald ripening and Pt dissolution–re-
precipitation through the ionomer phase. They observed a non-uniform catalyst 
degradation caused by the crossover of H2 and the consequent formation of a 
platinum band within the membrane. Based on the model they concluded that a 
thinning of the catalyst layer leads to an accelerated catalyst degradation, which 
might pose a problem when going to low platinum loading. 
Urchaga et al. [337] presented a catalyst degradation model, which takes into 
account the particle growth due to Ostwald ripening, coalescence and 
detachment mechanisms. The platinum oxide formation is not modeled 
explicitly. The model was validated by fitting the ECSA losses obtained from 
various accelerated stress tests. Based on this analysis, the authors concluded 
that detachment only plays a role at high potentials where carbon corrosion 
occurs. However, as pointed out by the authors, the analysis did not allow for a 
clear distinction between the Ostwald ripening and coalescence mechanism. 
Therefore, further analysis is required to clarify the role of coalescence on the 
particle growth. 
A model describing the coupling between electrochemical double layer effects, 
Pt dissolution and coarsening due to Ostwald ripening and associated particle 
size change kinetics was for the first time proposed in Ref. [338]. The 
incorporation of the EDL effects permitted the simulation of the feedback 
between the electrode potential and the Pt degradation kinetics, i.e., describing 
how the electrode performance impacts the Pt degradation kinetics and 
conversely how the Pt degradation kinetics impacts the performance decay. 
 
3.2.3. Carbon corrosion 
Carbon corrosion is of major concern for long-term durability of PEMFC. Carbon 
corrosion leads to reduced carbon support and Pt particles can detach from 



their support, agglomerate or become isolated. In addition, carbon corrosion 
can lead to a significant collapse and compaction of the CLs, thus blocking 
transport pathway for the reactant gas through the CLs. Moreover, carbon 
corrosion entails increase of hydrophilic properties of the support, thus 
promoting flooding of the electrodes [274]. Thus, carbon corrosion contributes 
to CL degradation through multiple mechanisms. Carbon corrosion mainly 
occurs at the cathode side during start-up and shutdown, when the cell can be 
subjected to local fuel starvation that induces in-plane currents [339]. 
Meyers and Darling [340] developed a mathematical model for the carbon 
corrosion in PEMFC. The model consists of a 1D representation of a single cell, 
describing the H2 and O2 concentrations along the channels as well as the 
electrolyte potential and the integrated current densities, i.e., the model does 
not resolve the distributions through the MEA. Butler–Volmer equations where 
used to describe the hydrogen and oxygen reactions while a Tafel expression 
with a Langmuir adsorption term was applied for the carbon corrosion reaction. 
The model shows how a maldistribution of hydrogen can lead to a reverse 
current in the fuelstarved region causing accelerated carbon corrosion. 
Furthermore, the effect of start/stop cycles on carbon corrosion was 
investigated. Based on the model, start procedures to mitigate carbon corrosion 
have been proposed. 
Takeuchi et al. [341] developed a model for carbon corrosion that studies the 
influence of the operating conditions on the corrosion rate. Carbon corrosion is 
induced by oxygen and hydrogen coexistence at the anode due to oxygen 
crossover, especially during start-up and shutdown. During these phases, if 
there is no nitrogen purge, oxygen presence in the anode side induces reverse-
current phenomena, even if there is no current drawn. It has been 
demonstrated that the corrosion current depends on the oxygen partial pressure 
at the anode. A similar model is proposed by Hu et al. [342]. It leads to the 
conclusion that the rate of carbon corrosion at the cathode side in the case of 
fuel starvation is strongly dependent on oxygen diffusion through the 
membrane. Experimentally, carbon corrosion has been observed in conjunction 
with disrupted membranes [343]. This is in good agreement with the 
assumption that the O2 crossover is the root cause of carbon corrosion. 
A multiscale model also including carbon corrosion has been developed by 
Franco et al. [85], [112], [243] and [245]. The model includes the description of 
the electrochemical double layer and takes into account multiple reaction steps. 
It is shown that carbon corrosion can favor platinum coarsening [80]. The 
simulations also suggest that an optimal operation conditions exist in order to 
mitigate degradation. 
By combining Coarse Grain Molecular Dynamics generated databases and 
MEMEPhys model, Malek and Franco demonstrated that the structural 
properties of Nafion® can affect the carbon corrosion kinetics in the cathode 
catalyst layer [241]. Nafion® adsorbed on the carbon support was shown to 
reduce the carbon corrosion due to the hydrophobicity of the Nafion® backbone. 
 
3.3. Gas diffusion layer 
Among the various degradation mechanisms that lead to decreasing cell 
performance, degradation of the GDL plays a major role [344]. GDL are made 
of carbon fibers covered by a hydrophobic agent, usually PTFE. Consequently, 
degradation mechanisms can target the carbon and/or the PTFE. It could also 



modify the pore size itself by compaction of the structure. However, 
observations on a variation of the pore size are not consistent and will not be 
discussed here. Carbon oxidation requires the presence of a catalyst. However, 
as very little Pt is present in the GDL (some Pt can be accumulated at the 
GDL/MPL during aging due to platinum dissolution in the catalyst layer), this 
degradation mechanism is unlikely to occur. 
Degradation is mainly caused by the loss of hydrophobicity due to PTFE 
degradation [255]. It is commonly stated that loss of hydrophobicity entails 
flooding of the GDL, leading to a decrease of cell performance. Several authors 
have investigated the effects of this loss of GDL hydrophobicity. 
Pauchet et al. [345] have recently studied GDL degradation by achieving a one-
way coupling between Pore Network Models (PNM) and Performance Model 
(PM). In their models, gas diffusion is calculated by PNM for various amounts of 
liquid water and then serves as input for the PM. Liquid water is supposed to 
increase the loss of hydrophobicity. Consequently, presence of liquid water 
plays a major role in cell performance degradation. Pauchet et al. showed that 
gas diffusion decreases when the fraction of hydrophilic pores increases. Also 
they demonstrate that the decrease of the gas diffusion is not linear and that a 
percolation threshold exists. Finally, loss of hydrophobicity of the gas diffusion 
layer can lead to cell performance losses comparable to the one observed 
experimentally. This suggests that degradation of the PTFE plays an important 
role in the overall degradation of the GDL. 
Seidenberger et al. [346] developed 3D Monte Carlo model in order to 
investigate the effect of the PTFE degradation on the water distribution within 
the GDL. With decreasing the PTFE coverage from 85% to 65% a growth of the 
water clusters and an overall increase of water content within the GDL was 
observed. When further reducing the PTFE coverage to 55%, the simulation 
predicts a strong increase of water content and a consequent formation of a 
large cluster extending over the whole GDL. As pointed out by the authors, at 
this point a significant obstruction of the gas transport through the GDL has to 
be expected. 
From a different point of view, an interesting analysis of the impact of water 
flooding on the diffusivity at cathode side is presented by Casalegno et al. [347]. 
They developed a simple 1D + 1D model of the steady state water transport 
through the GDL able to reproduce both water concentration and effective 
diffusivity for a GDL structure with and without an MPL. This model is based on 
isothermal domain and differential-algebraic systems describing water and air 
fluxes. The main outcome of this model consists in the definition of the GDL 
effective diffusivity as a function of a local flooding coefficient (representative of 
the flooding magnitude), temperature and water concentration. The results 
obtained with the model, in agreement with the data gathered during a 
dedicated experimental activity, highlight that the pore obstruction caused by 
flooding does strongly affect the GDL only without an MPL, whereas not much if 
the MPL is included, with consequent less fluctuation of water transport. 
 
3.4. Bipolar plates 
The bipolar plate (BPP) is an integral component of the fuel cell (FC) stack, 
which is used to interconnect single FC layers [348]. BPPs have several 
important functions for FC operation, such as, uniform fuel and oxidant 
distribution over the active areas, water and heat removal, current transport 



from cell to cell, and leak proofing of reactants and coolants. Physically, they 
constitute around 80% of the stack weight and 45% of the stack cost [348]. 
During FC operation, the BPPs are exposed to both oxidizing (at the cathode) 
and reducing (at the anode) conditions, which can result in oxide layer 
formation and corrosion of the constituent materials. Such conditions lead to a 
degradation of the BPP performance and eventually the stack performance 
[349]. Particularly, the interface between the BPP and the gas-diffusion layer 
(GDL) shows an interfacial contact resistance (ICR) that increases over time, 
the effects of which are increase in voltage drops, decrease in efficiency, and 
hence, decrease in output power. 
In order to enhance the durability and life cycle of a BPP, detailed degradation 
analyses is required in order to identify and quantify the degradation 
mechanisms for constituent materials and interfacial interactions. There is a 
large body of experimental literature on BPP degradation via corrosion and 
contact resistance analysis [350]. There are various factors inherent to PEMFC 
operations that support BPP corrosion, including high humidity (presence of 
moisture), low pH due to acidic membrane, and elevated temperatures (as 
compared to “standard” environmental corrosion). Most importantly, as 
corrosion is an electrochemical process, it shows a strong interaction with 
electrochemical FC operation. At open cell voltage or low current densities, the 
cathode potential can reach >1 V, which for stainless steel (SS) is within the so-
called “trans-passive” region, leading to significant corrosive stress on the 
metallic BPPs. Under load, the anode potential, which shows a potential close 
to 0 V vs. reversible hydrogen electrode (RHE), approaches 100 mV, which lies 
in the so-called “active” region, leading again to high corrosive current. Also, 
during dynamic operation at startup and shutdown, the BPP can be forced to 
trans-passive or active regions [348]. 
Despite broad experimental evidence, a detailed theoretical approach towards 
understanding the various involved phenomena in BPP degradation is still 
missing. However, models would largely help towards a predictive analysis of 
the involved phenomena while economizing and optimizing relevant 
experimental setups. The pathway towards a BPP degradation model should be 
carried out in two steps, that is, (i) describe the physical origin of the interfacial 
contact resistance (without degradation) and (ii) include corrosion through 
protective oxide growth and metal dissolution. 
Only few studies on numerical modeling of contact resistance between BPP 
and GDL exist. Zhou et al. [351] developed a micro-scale numerical model by 
considering the BPP surface topology, GDL structure, and clamping pressure 
and numerically determined the resistance for each contact spot. The total 
resistance was obtained by considering all contact spots as resistances in 
parallel and summing the results. Wu et al. [352] improved the mentioned 
contact resistance model by accounting for deformation of the carbon fibers 
present in the GDL and a rigid BPP asperity. They observed that the 
deformation of carbon fibers in GDL under clamping pressure leads to an 
increase in contact area between BPP and GDL and hence reduces the contact 
resistance. They also developed a regression model for the estimation of the 
contact force and contact area based on a normally distributed carbon fiber 
length and compression depth, and uniformly distributed contact spots between 
BPP and GDL. The proposed regression model was in good accordance with 
the experimental data. However, the accuracy of their models was reduced due 



to the simplifying assumption of frictionless contact between the carbon fibers in 
the GDL and BPP asperities. Mishra et al. [353] used a fractal-based model to 
predict the contact resistance between GDL and BPP and measured the 
contact resistance experimentally. The GDL surface roughness parameters, 
which were important inputs for the fractal model, could change during 
compression and hence are difficult to characterize. Zhang et al. [354] 
developed simple computational methods for estimating contact resistance 
between BPP and GDL based on experimentally obtained constitutive 
resistance–pressure relations. With the help of a semi-empirical model, they 
discussed the effect of assembly clamping pressure on the contact resistance 
between BPP and GDL. It was observed that the contact resistance is mostly 
influenced by the average value of the clamping pressure rather than its 
distribution. However, the effect of surface roughness was neglected in their 
model, which might influence the actual contact area between the BPP and the 
GDL. Also, their test pressure distribution was not representative of an actual 
flowfield distribution in the BPP, and hence did not account for the effects of a 
transient pressure variation in the flow field due to load cycling. We are not 
aware of models that include increase of interfacial contact resistance due to 
electrochemical degradation phenomena such as oxide formation on the 
metallic contact surfaces. 
 
Corrosion itself is a well-understood process, and a large body of literature 
exists covers corrosion theory [355] and modeling [356]. However, the corrosion 
of the BPP itself has, to the best of our knowledge, not yet been modeled. Note 
this is a highly complex process owing to non-uniform FC operating conditions 
and non-linear dependence of the corrosion current on electrode polarization. 
However, corrosion models have been developed for other PEM fuel cell 
components, such as carbon corrosion [357] (see Sections 3.2 and 3.3). The 
knowledge and methodology gained from those studies could be extended to 
BPP corrosion, while considering the specific chemical environments of the 
BPP (oxidizing at the cathode side, reducing at the anode side). 
 
3.5. Coupling of performance and degradation models 
In his recent review [81], Franco underlines that in current PEMFC models, the 
instantaneous feedback between performance and aging is not described. They 
describe which operating conditions enhance a given degradation process (e.g. 
carbon corrosion) but do not describe the impact of this degradation process on 
the instantaneous performance (a prediction of the transient behavior of the 
PEMFC MEA electrochemical observables, such as the cell potential 
degradation or durability, is not provided). According to Franco, the main 
drawbacks of current PEMFC degradation models are: 
• Aging mechanisms addressed in a separated (uncoupled) way: Most of the 
available kinetic models describing degradation phenomena in PEMFCs focus 
on Pt-based MEA, where Pt and carbon materials are treated as a single phase 
(no distinction between Pt and carbon phases). 
• As in ex-situ experiments, each material aging phenomenon has been the 
subject of separate modeling studies. However, in real PEMFC environments, 
aging mechanisms of the different individual materials are expected to compete 
and to interact. 
• Potentiostatic–potentiodynamic simulations: In most of the available kinetic 



degradation models, the Butler–Volmer electrode potential is the input variable, 
the output being a material corrosion rate and the cell current. Implicitly, it is 
assumed that the potential of the nanomaterials is equal to the 
external/macroscopic applied potential. Again, the cell potential evolution and 
the associated MEA durability cannot be predicted in this way. In fact, the 
majority of the single-cell tests available in the literature are made with current 
being the input variable. 
• Use of the classical Butler–Volmer theory: This empirical theory, largely used 
in the PEMFC modeling community, describes electrochemical (electron 
transfer) reactions on ideal planar electrodes. The use of such a macroscopic 
Butler–Volmer theory cannot be really justified for describing electron transfer 
reactions on nanomaterials with an evolving structure (in fact, standard 
transition-state theory assumes that the ‘catalyst’ properties, following the 
definition of catalyst, are time-invariant or recover its morphology after reaction). 
 
Franco et al. proposed several multiscale models to overcome some of these 
issues, including descriptions of coupled electrochemical aging processes (e.g. 
Pt and PtxCoy oxidation/dissolution/ripening, carbon catalyst support corrosion, 
PEM degradation) [81], [86], [90], [212], [273], [275], [293], [294], [295], [296], 
[285], [297] and [298]. The approach describes the feedback between the 
instantaneous performance and the intrinsic material aging processes, thus 
durability of individual components and of the entire cell can be predicted. 
Within this context, the model has provided interesting information on the 
competition of aging phenomena, by demonstrating that anode contamination 
by CO can be used, under some particular current-cycle conditions, to mitigate 
cathode carbon corrosion and PEM degradation [295] and [299]. 
Robin et al. [358] presented an indirect coupling approach of a performance 
model and catalyst degradation. A local platinum dissolution model was used to 
calculate the degradation rates for various local conditions. These values for the 
degradation rate were then stored in a four-dimensional look-up table. 
Afterwards this look-up table was used in a higher scale model that is able to 
simulate the local conditions depending on the operating conditions. Given 
these simulated local conditions, the degradation rate is provided by the look-up 
table. The advantage of such an indirect coupling is that the simulation time can 
be reduced significantly since the degradation look-up table only has to be 
created once. However, especially for complex degradation mechanisms, the 
dimension of such a look-up table might become very large, due to the large 
number of parameters entering the degradation rates. Thus, the indirect 
coupling methodology is feasible especially for simplified degradation models. 
 
4. Summary and perspectives 
PEMFC are a promising alternative to conventional energy conversion systems. 
However, there is still a need of improvement in durability and cost reduction. 
The development of validated PEMFC models is crucial for solving these 
issues, by providing profound insights into the relevant processes. In general, a 
main challenge for modeling these processes is the wide range of scales which 
has to be covered, ranging from the atomistic level up to the system level. 
Depending on the scale very different model approaches have to be applied. 
Furthermore, a consistent way of coupling these models has to be established 
in order to derive a predictive multiscale PEMFC model. 



During the last two decades, significant efforts in various European laboratories 
have been devoted to the theoretical description of idealistic elementary 
mechanism of oxygen reduction reaction on the basis of density functional 
theory calculations at the atomic scale. Although the catalyst and active site 
models are usually simplified (extended metallic surfaces in contact with a gas), 
this approach has helped to advance in the knowledge of the catalyst 
performance. Up to date, an explicit theoretical description of the catalytic 
environment at the atomic scale is missing (solvent, support, electric field, 
interface with the polymer membrane etc…). In addition, the study of the 
complex morphology of the metallic nanoparticles and its influence on the 
catalytic properties are open questions. For the ab initio approaches, the 
challenges at short term are thus related to the extension of the state-of-the-art 
models (gas/metal models) to the complex interfaces between the catalyst 
nanoparticles, the solvent environment, the graphitic support and the polymer 
membrane. The difficulty is not only the elaboration of those interfaces (large 
chemical systems involving thousands of atoms and ten thousands of electrons) 
and the required calculation time but also the development of an adapted 
methodology for treating correctly the electronic interactions at stake, especially 
dispersion and more generally polarization. Another promising way to improve 
the atomistic models and to check their validity is the implementation of kinetic 
rate constants in mesoscale stochastic simulations able to explore the catalytic 
activity at a larger scale by combining all the elementary acts of the reaction 
mechanism. Preliminary efforts have been conceded in this way and the 
challenges at midterm are thus the coupling between those approaches. At long 
term, the ab initio methodology will have to be extended to describe properly 
thermodynamics and kinetics of ORR with the presence of an external electric 
field. Current phenomenological models have been proposed in the literature to 
take into account such an environment effect without clearly solving the ongoing 
questions. The feedback of mesoscale simulations at this level will certainly be 
crucial to progress on this difficult task. 
The high computational demand of micro- and mesoscale simulations 
necessitates the introduction of different modeling approaches when 
considering the whole cell. Such cell models, which consider the transport on 
the macro scale, are needed to optimize durability and performance of PEMFC. 
Different cell models have been proposed in recent years, usually focusing on a 
certain topic like the effect of liquid water (flooding) or the effect of the flow-field 
design. Depending on this focus other effects often have been neglected in 
order to simplify the model. Furthermore, empirical relations are necessary in 
these models, since the coupling to lower scale models is usually missing. 
These simplifications and empirical relations, however, limit the predictability of 
these models. 
More detailed macroscale models have been developed for certain cell 
components. The models presented for the membrane transport mainly differ 
from each other by the transport mechanisms proposed for water and protons. 
For water concentration gradients, pressure gradients or more general 
gradients in chemical potential are considered as driving force. In addition the 
electro-osmotic drag is taken into account. For protons different transport 
mechanisms have been discussed (e.g. en masse diffusion, surface diffusion 
and Grotthuss mechanism). Concerning the water sorption of the membrane, 
different models have been proposed to describe the so-called Schroeder's 



paradox, i.e., the apparent difference of water sorption in contact with liquid 
water compared to saturated vapor. However, the true nature of this 
phenomenon and even its existence are still under debate. 
Depending on the required accuracy, macroscale models of very different 
complexity have been developed for the catalyst layer. The easiest possibility is 
to consider the electrode as a thin interface between the membrane and the 
GDL, neglecting all transport phenomena within the catalyst layer. 
Macrohomogeneous models consider transport within the CL according to 
Darcy's law. However, assuming a homogeneous mixture of all phases neglects 
effects of the agglomerate structure of the electrode. These effects are taken 
into account by agglomerate models, where the agglomerates are considered to 
be spherical or cylindrical. It turns out that these models are able to accurately 
describe all domains of the polarization curve. Especially at high current 
density, transport limitations within the agglomerates become relevant. Using 
Pore Network Models or Direct Numerical Simulations allows studying the effect 
of the real electrode structure in detail, but requires much higher computational 
effort. 
For the gas diffusion layer, different modeling approaches are considered to 
describe the two phase transport. The Continuum Models are again based on 
Darcy's law. However, since the pore size is not significantly smaller than the 
width of the GDL, this porous media approach might be not very accurate. On 
the other hand Direct Numerical Simulations of the GDL are computationally 
demanding. Powerful alternatives are provided by Pore Network models and 
the Lattice Boltzmann method. Both of them can also be used to derive 
effective transport parameters for macro models, i.e., contribute to the 
development of multiscale models. 
The interface between the porous GDL and the gas flow channel has been 
subject of many investigations due to its importance for the water 
managements. Here, models focus in particular on the droplet formation and 
droplet detachment which occurs on this boundary. These models allow 
investigating the effect of GDL and channel properties as well as of operating 
conditions on the droplet behavior. Due to the complexity of these models, they 
typically only include the GDL and channel domains but not the whole cell. 
Turning to higher scales, i.e., to the stack and system level, models are required 
which can be integrated into a controller for optimization of performance and 
durability under given operating conditions. These models have to be simplified 
in order to keep the computation time within the control period. The challenge is 
to achieve this without losing the effect of relevant mechanisms. Multiscale 
models are necessary to reach this goal. 
In principle two different approaches are possible to develop multiscale models. 
One possibility is the direct coupling of two models on different scales, e.g., a 
continuum model describing the transport on the macro scale can be coupled 
with kinetic Monte Carlo model describing the electrochemical reactions. 
However, such a direct coupling is computationally demanding. Alternatively, 
lower scale models can be used for the parameterization of the higher scale 
models. Such an indirect coupling significantly reduces the computational costs, 
since once the parameters have been determined, only effective macroscale 
simulations have to be performed. 
Predictive modeling of PEMFC degradation mechanisms is of major importance 
for further improvements of this technology, but also poses a particular 



challenge. Not only the degradation mechanisms themselves have to be 
modeled accurately, they also have to be coupled to a detailed cell model in 
order obtain the correct local conditions driving the degradation. Furthermore, 
the degradation mechanisms often cannot be considered to be independent but 
interacting. 
 
For the membrane, in principle three different degradation mechanisms can be 
considered: Thermal degradation, mechanical degradation and chemical 
degradation. Thermal degradation is believed to be negligible under standard 
operating conditions and has not been addressed so far in modeling works. 
Mechanical degradation can be caused by stresses resulting from repeated 
swelling and shrinking of the membrane due to water sorption and desorption. 
Consequently, models have been developed which are able to describe the 
mechanical membrane properties depending on parameters like temperature, 
humidity and strain rate. These models allow investigating the stresses within 
the membrane. However, predictive models describing, e.g., the formation of 
cracks and pinholes, are still to be developed. The chemical degradation of the 
membrane, i.e., the decomposition due to (electro-) chemical reactions, is 
believed to be the most severe degradation mechanism for the membrane. 
Consequently, several 0D and 1D models describing the chemical degradation 
have been developed. However, little has been done so far in the challenging 
task to couple this degradation to the transport properties of the membrane. 
Furthermore, advanced models taking into account the coupling between 
mechanical and chemical degradation have to be developed. 
An important issue for the catalyst layer is the loss of electrochemical active 
surface area during operation. Several models have been developed to 
describe the responsible mechanisms. One approach accounts the loss of 
ECSA to the dissolution of the platinum particles. However, experimentally a 
growth of the average particle size and consequent stabilization of the catalyst 
is observed. This can be explained by the so called Ostwald-ripening 
mechanism, where dissolved Pt2+ ions precipitate on the larger particles leading 
to an effective growth of the average particles and a reduction of the surface. 
While there is agreement about the importance of platinum oxide 
formation/reduction on the platinum dissolution kinetics, recent experiments 
suggest that the models describing the effect of the oxides might be 
oversimplified. Both, the oxide models themselves and their coupling with the 
platinum dissolution, have to be improved in order to be able to predict the 
catalyst degradation under transient conditions. Furthermore, the relevance of 
the coalescence mechanism for the particle growth is still under debate. While 
dissolution and Ostwald-ripening are usually considered in the literature, 
coalescence is typically not included in the models so far. Another mechanism 
which plays an important role in the degradation of the CL is carbon corrosion. 
On the one hand, it can cause a detachment of platinum particles, leading to a 
reduction of the ECSA. On the other hand, it can reduce the oxygen transport 
and promote flooding due to structural changes in the CL. Several models have 
been developed to study the effect of start-up and shutdown and fuel starvation 
on the carbon corrosion rates. Similar to the membrane degradation models, 
most of the proposed degradation models for the CL are decoupled from the 
performance of the cell, therefore cannot be used for lifetime prediction. Only 
recently, some models have been developed which explicitly take into account 



the coupling between performance and degradation as well as the coupling 
between several aging mechanisms. 
In the GDL the loss of hydrophobicity due to PTFE degradation is of particular 
importance, since it promotes the flooding of the cathode. Some models have 
been presented which discuss the effect of the hydrophobicity loss on the liquid 
water transport and on the cell performance, while the mechanisms behind the 
hydrophobicity loss during aging has not yet been modeled so far. 
Degradation of the bipolar plate by means of oxide layer formation or corrosion 
of the constituent materials leads to a loss of stack performance due to an 
increase of the interfacial contact resistance between GDL and BPP. Only a few 
models for this contact resistance have been developed so far, however, none 
of them includes degradation. 
Summarizing, it can be said that a lot of work has been done so far in the 
modeling of PEMFC components performance and degradation on all relevant 
scales. The complexity of the available models on all scales increases 
consistently by taking into account more and more relevant mechanisms. In 
addition progress is made in coupling on the one hand the models at different 
scales and on the other hand the performance and degradation models. In 
order to pave the way to real predictive PEMFC models, still a lot of work has to 
be done in identifying and quantifying the relevance of certain mechanisms, 
e.g., for platinum oxides or the coalescence mechanism. Furthermore, 
mechanisms which have been considered only separately until now, have to be 
combined within multiscale models to capture the complex interplay between all 
relevant processes. Anyhow, models have in various cases already shown 
great capability in providing very good predictions in how fuel cell designs will 
perform in real life. This can reduce the number of designs that need to be built 
and tested. In the end, an effectively used and calibrated model leads to cost 
savings from cutting down on experimental trial and error time, materials, and 
manpower. Furthermore, the development of controllers based on multiscale 
models is expected to yield improved performance and durability of PEMFC. 
However, despite advances in modeling, there is evidence that during the race 
to market with commercially viable designs, industrial organizations still tend to 
favor empirical experimentation over meticulous modeling and simulation. The 
key reason for this might be the lack of understanding or access to modern 
modeling frameworks being proposed by scientists in universities or research 
institutions. Depending on the size of a company and access to recent PhD 
graduates, a lack of access to up to date modeling expertise and expense of 
gaining access to peer reviewed academic content is a barrier to some 
industrial establishments using modeling. This slowly changes with the 
researcher mobility between academia and industry, who respectively bring 
their simulation and application knowledge with them. One way that the 
academic and industrial worlds interface is co-funded collaborative research 
programs. This is usually a win–win partnership as the industrial partner 
benefits from subsidized access to the latest understanding and modeling tools, 
while the researchers and students gain experience applying them in real 
applications. 
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