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Heat asymmetries in nanoscale conductors: The role of decoherence and inelasticity
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We investigate the heat flow between different terminals in an interacting coherent conductor when inelastic
scattering is present. We illustrate our theory with a two-terminal quantum dot setup. Two types of heat
asymmetries are investigated: electric asymmetry �E , which describes deviations of the heat current in a given
contact when voltages are exchanged, and contact asymmetry �C , which quantifies the difference between the
power measured in two distinct electrodes. In the linear regime, both asymmetries agree and are proportional
to the Seebeck coefficient, the latter following at low temperature a Mott-type formula with a dot transmission
renormalized by inelasticity. Interestingly, in the nonlinear regime of transport we find �E �= �C and this
asymmetry departure depends on the applied bias configuration. Our results may be important for the recent
experiments by Lee et al. [Nature (London) 498, 209 (2013)], where these asymmetries were measured.
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I. INTRODUCTION

Thermoelectrical transport at the nanoscale is a phe-
nomenon of wide interest due to its fundamental and applied
perspectives [1]. From the practical point of view, nanostruc-
tures spur a wide range of promising thermoelectric applica-
tions such as thermocouples [2], local refrigerators [3], thermal
transistors [4], and thermal rectifiers [5], among others. The
conversion of waste heat into electricity seems to be more
efficient at the nanoscale than at macroscopic scales [6]. The
fast pursuit toward higher efficiency values of the generated
electrical power in relation to the supplied heat has reached
remarkable results [7,8]. However, related fundamental issues
such as the electronic heat flow traversing a nanodevice still
remain poorly understood mainly because thermal current is
not easily accessible in an experiment [9]. In many aspects,
heat flow inherently differs from its electrical counterpart and
can reveal information about the number of channels available
for transport [10], the presence of interactions [11], properties
of single-particle wave functions [12], or even superconducting
phase differences [13].

Recent works have investigated both experimentally and
theoretically the heat current in atomic-scale junctions [14,15].
Importantly, power dissipation at atomic scales depends
strongly on the way in which the transmission probability
varies with energy. Thus, for nanostructures showing a strongly
energy-dependent transmission, the measured heat flux is
shared quite asymmetrically among the contacts whereas
for those systems with a weakly energy-dependent transmis-
sion the heat asymmetry is strongly suppressed [14]. This
conclusion assumes that energy exchange between carriers
occurs elastically. However, in molecular or atomic junctions,
inelastic processes can be of critical importance when internal
degrees of freedom such as rotational or vibrational modes
come into play [16–22]. As a consequence, these can alter
the physical scenario. The fundamental question addressed
in this work is precisely how the heat-current asymmetry
is affected by inelastic processes. We are interested in the
contact asymmetry �C , which measures differences between
the source (J1) and the drain (J2) heat currents, and the electric
asymmetry �E , which quantifies the heat-current asymmetry
in a given electrode when the applied voltages V1 and V2 are

exchanged:

�C = J1(V1,V2) − J2(V1,V2), (1)

�E = J1(V1,V2) − J1(V2,V1). (2)

Furthermore, even when only elastic processes are present,
dephasing mechanisms can also take place. Therefore, it is
also natural to ask how heat is partitioned among the different
electronic reservoirs in the presence of dephasing.

To examine both issues, we use the voltage [23,24] and
dephasing [25,26] probe models, recently generalized to treat
heat-current flows [27–34]. In these formulations, inelastic
and dephasing processes are incorporated by considering a
fictitious terminal attached to the quantum system in such a
way that the net electrical and heat currents flowing through
the probe vanish. In particular, for a voltage probe a carrier
that enters the probe with a given energy is reemitted into the
conductor with an unrelated energy. In contrast, when only
dephasing processes are present, the energy-resolved heat and
charge currents are identically zero at each energy. Since the
model is independent of the microscopic details of the actual
scattering mechanisms, the results are simple to understand
and can be applied to a large variety of systems.

Our theory is illustrated with a prototypical model for
mesoscopic systems: a localized state (representing many
different quantum systems, i.e., atomic or molecular junctions,
quantum dots, etc.) attached to two electronic reservoirs
and subject to different chemical and temperature biases, as
depicted in Fig. 1.

II. THEORETICAL MODEL

When a mesoscopic conductor is coupled to i = 1, . . . ,N

electronic reservoirs and is driven out of equilibrium by
electrostatic fields {Vi} or temperature gradients {θi}, a flow
of charge and energy from the reservoirs toward the conductor
is established. Charge conservation dictates that all stationary
charge flows add up to zero,

∑
i=1,...,N Ii = 0, whereas the

sum of thermal currents must include the Joule heating term∑
i=1,...,N (Ji + IiVi) = 0. Within the scattering approach
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ARGÜELLO-LUENGO, SÁNCHEZ, AND LÓPEZ PHYSICAL REVIEW B 91, 165431 (2015)

Fictitious probe

FIG. 1. (Color online) Schematic of a generic nanoconductor
with energy level ε0 in the presence of a voltage V� and temperature
T� probes and coupled to left and right reservoirs by tunnel couplings
�1 and �2. Here, �� is the tunnel coupling with the probe. V� and T�

adjust themselves in order to cancel the net flow of heat and charge
through the probe. The internal potential in the conductor is denoted
with U .

formalism, the flows read as [35]

Ii = 2e

h

∑
j

∫
dEAijfj (E) , (3)

Ji = 2

h

∑
j

∫
dE (E − μi) Aijfj (E) . (4)

The factor 2 originates from spin degeneracy since we do
not consider external magnetic fields. The heat current Ji =
J E

i − ViIi is given by sum of the energy current J E
j =

(2/h)
∑

j

∫
dE(E − EF )Aijfj (E) and the associated Joule

dissipating heat power VjIj . The electrochemical potential
in reservoir i is defined as μi = EF + eVi with EF the
Fermi energy, and fj (E) = [1 + exp((E − μj )/kBTj )]−1 is
the Fermi-Dirac distribution function. Each terminal has
temperature Ti = θ + θi , obtained from a temperature shift
θi with respect to the background temperature θ . The elements
Aij = Tr[δij − s

†
ij (E,U(�r,{Vk},{θk}))sij (E,U(�r,{Vk},{θk}))]

(with k = 1, . . . ,N ) are given in terms of the scattering matrix
s, where Tr s

†
ij sij = Tij is the transmission probability from

terminal j to contact i and the trace is performed over the
contact channels. Importantly, due to electronic repulsion the
potential profile inside the conductor is altered when charge
is injected by means of electrical or thermal biases. As a
result, the scattering properties of the conductor expressed by
sij (E,eU(�r,{Vk},{θk})) depend not only on the carrier energy
E, but also on the internal potential landscape U , which
depends in turn on the set of voltage and temperature shifts.
The electrostatic response can be determined from the Poisson
equation εv∇2U(�r) = −q with εv the vacuum permittivity
and q the total charge inside the conductor built up from
(bare) charges injected by electrical and thermal gradients
and screened charges created in response to the external
perturbations [36–38].

At sufficiently low biases in the applied voltages and
temperatures, Eq. (3) is expanded up to first order in the shifts

Vi and θi and the result can be expressed in matrix form

(
I
J

)
=

(
G L
M K

) (
V
θ

)
, (5)

where we have defined the vectors I = [I1, . . . ,IN ]T , J =
[J1, . . . ,JN ]T , V = [V1, . . . ,VN ]T , and θ = [θ1, . . . ,θN ]T .
The elements of the submatrices G, L, M, and K are the
transport coefficients

Gij = 2e2

h

∫
dE (Ni δij − Tij )(−f ′

eq), (6)

Lij = 2e

hθ

∫
dE (E − EF )(Ni δij − Tij )(−f ′

eq), (7)

Mij = θLij , (8)

Kij = 2

hθ

∫
dE (E − EF )2(Ni δij − Tij )(−f ′

eq), (9)

where Ni represents the channel number in the ith contact
and f ′

eq denotes the energy derivative of the Fermi distribution
function evaluated at Vi = θi = 0. Equation (8) is a conse-
quence of reciprocity. Additionally, the transmission in the
linear-response regime is evaluated at the equilibrium potential
and is thus independent of the nonequilibrium screeningU . We
will later consider the nonlinear regime, in which currents do
depend on U .

III. ELASTIC AND INELASTIC PROBES

To include inelastic processes in the thermoelectric trans-
port we consider an additional fictitious probe, denoted by
�, that plays simultaneously the role of an ideal voltmeter
and thermometer. Then, both charge I� and heat J� currents
through the probe are identically zero. Each current carrier
absorbed into the probe is reemitted with unrelated phase and
energy. We hence use the conditionsI� = J� = 0 to eliminate
the probe voltage V� and temperature T� and rewrite Eq. (5)
with modified transport coefficients:

G̃ij = Gij + D[Gi�(L��M�j − K��G�j )

+Li�(M��G�j − G��M�j )], (10)

L̃ij = Lij + D[Gi�(L��K�j − K��L�j )

+Li�(M��L�j − G��K�j )], (11)

K̃ij = Kij + D[Ki�(M��L�j − G��K�j )

+Mi�(L��K�j − K��L�j )], (12)

and M̃ij = θL̃ij insofar as the Kelvin-Onsager symmetry
condition is preserved even in the presence of the probe. Here,
D = (G��K�� − L��M��)−1.

When the source of scattering is elastic, one employs a
dephasing probe. The charge- (heat-) current density i(E)
[j (E)] is determined from the equation I(E) = ∫

dE i(E)
[J (E) = ∫

dE j (E)]. We impose the condition that for each
energy E the probe draws no net current i�(E) = j�(E) = 0,
resulting in the unique probe distribution function f� =
−∑

i A�ifi/A��. Substituting f� back into the charge and
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heat flows, one arrives at

Ii = 2e

h

∑
j

∫
dE

(
Aij − Ai�A�j

A��

)
fj , (13)

Ji = 2

h

∑
j

∫
dE (E − μi)

(
Aij − Ai�A�j

A��

)
fj . (14)

Here, Aij − Ai�A�j/A�� includes a transmission func-
tion renormalized by decoherence effects due to the probe
coupling.

IV. SOURCE-DRAIN CONDUCTORS: LINEAR RESPONSE
REGIME

In the following, we focus on a simple geometry: a
two-terminal conducting device as illustrated in Fig. 1. Let
V1 (V2) be the bias drop and temperature applied to terminal
1 (2) in the isothermal case (θ1 = θ2 = θ ). The power
measured at each contact is shown to exhibit different
values depending on the configuration measurement [14]. We
commence our analysis with the linear regime in which voltage
shifts are very small. Due to energy current conservation,
the condition J1(V1,V2) = −J2(V1,V2) holds. Hence, the
measured heat contact asymmetry [Eq. (1)] in the absence
of incoherent scattering becomes

�C = 2M11V = −2SG11V θ, (15)

to leading order in V = V1 − V2. Corrections would be of
the order of V 2. In Eq. (15), S = −L11/G11 represents the
Seebeck coefficient. The asymmetry is proportional to the
thermopower [14] since S indeed measures the asymmetry
between electronlike and holelike transport. Importantly, the
contact asymmetry [Eq. (1)] amounts to the electrical asymme-
try [Eq. (2)] due precisely to the energy conservation condition.
Now, in the presence of inelasticity (voltage probe) we find that
both heat asymmetries still coincide (� ≡ �C = �E) and are
given by

� = 2L11V θ + 2DV θ [G�1L��K1� − G�1K��L1�

−L�1G��K1� + θL1�L��L�1], (16)

which is valid up to linear order in V . Clearly, when the probe
is decoupled we recover Eq. (15).

At low temperature, a Sommerfeld expansion of Eq. (16)
yields

� = 4π2ek2
BV θ2

3h

(
T12 + T1�T�2

T1� + T2�

)′
+ O(θ4) , (17)

where the prime indicates that the energy derivative is
evaluated at E = EF . Equation (17) has a surprisingly simple
form. We recall that in the presence of a voltage probe the
transmission is split into the coherent term T12 associated
with those carriers that flow between source and drain without
interacting with the probe and the incoherent transmission
T1�T�2/(T1� + T2�), which accounts for the fraction of
carriers that are incoherently scattered through the probe
� [23]. Here, we find that the heat asymmetry is nicely given
by the energy derivative of both terms summed. In fact, Eq. (17)
can be interpreted as a Mott-type formula in which S, which
is proportional to T ′

12 in Eq. (15) due to the Mott relation [39],

becomes modified by the incoherent part but keeping the same
structural form.

For the dephasing probe, we first perform a linear expansion
for Vij in Eq. (14). Then, the heat asymmetry reads as

� = 4eV

h

∫
dE (E − EF )

(
T12 + T1�T�2

T1� + T2�

)
(−f ′

eq).

(18)
An important remark here is in order. The heat asymmetry for
the inelastic probe and the dephasing case differ at tempera-
tures higher than the energy scale at which the renormalized
transmission varies appreciably. However, to lowest order
in the background temperature, Eq. (18) identically gives
Eq. (17). This implies that at low temperature, the heat
asymmetry is largest when the renormalized transmission
(i.e., the coherent plus the incoherent terms) varies rapidly
with energy around EF and that both dephasing and inelastic
mechanisms contribute equally. Deviations appear to higher
order in θ . Importantly, when all transmissions are functions
of the local density of states [40], the asymmetry � cancels
out in the electron-hole symmetry case.

V. NONLINEAR HEAT ASYMMETRIES:
A QUANTUM DOT EXAMPLE

The nonlinear regime of thermoelectric transport shows
unique effects [37,38,41–43]. For the heat transport, rectifica-
tions have attracted a good deal of attention [44–58]. Crucially,
electron-electron interactions must now be taken into account.
It is worthy to mention that a description of the contact heat
asymmetry in terms of a probe-renormalized transmission is
then no longer possible. Instead, we need to self-consistently
find the internal potential of the conductor. For this purpose,
we illustrate the heat asymmetries for the relevant case of a
quantum dot coupled to two reservoirs. A quantum dot model
is the basic description of atomic and molecular junctions
in terms of localized atomic or molecular orbitals [59]. The
scattering matrix is modeled as a Breit-Wigner resonance

sij (E) = δij − i
√

�i�j

E − ε0 + i�/2
, (19)

centered at the atomic/molecular orbital level position ε0.
Here, �i denotes the tunneling rates when the localized level
is coupled to the left and right reservoirs (�i = �1,�2) and
�0 = �1 + �2. The total broadening is thus � = �0 + ��,
where the dot coupling to the fictitious probe �� quantifies
the degree of inelastic/dephasing processes in our transport
description. Due to the simplicity of the Breit-Wigner model,
the results for the dephasing and voltage/temperature coincide.
We leave open the question of having different heat asymmetry
responses for more intricate setups.

The internal potential U is assumed to be spatially ho-
mogeneous. We thus make the substitution ε0 → ε0 + eU in
Eq. (19). U is determined from a discretized version of the
Poisson equation in terms of a capacitance C: CU = qd − qeq,
where qd is the nonequilibrium dot charge

qd = 2e

π

∫
dE

�1f1 + �2f2 + ��f�

(E − ε0 − eU)2 + �2/4
, (20)
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and qeq follows from Eq. (20) by setting all voltages and
temperature shifts to zero (f1 = f2 = feq and thereby f� =
feq). Note that qd is a nonlinear function of the thermoelectric
configuration and that U depends implicitly on voltage and
thermal biases.

To compute the heat flow in the presence of interactions
and inelastic processes, a system of three nonlinear equations
are to be solved simultaneously: the capacitance equation to
obtain U({Vk},{θk}) and the two conditions for the fictitious
probe I� = 0 and J� = 0 that determine V� and T�. Then,
V�({Vi,θi}) and T�({Vi,θi}) are nonlinear functions of the
shifts applied to the electrodes. Once these parameters are
self-consistently obtained, heat-flow asymmetries can be
investigated. Remarkably and in contrast to the linear regime,
the contact �C and electrical �E asymmetries do not generally
coincide,

�C = 2J E(V1,V2) − (V1 + V2)I(V1,V2), (21)

�E = J E(V1,V2) − J E(V2,V1)

−V1I(V1,V2) + V2I(V2,V1). (22)

Here, we define J E(V1,V2) = J E
1 (V1,V2) = −J E

2 (V1,V2),
and I = I1 = −I2. Note that �C depends on the particular
way in which electrical biases are applied. For a symmetric
electrical bias configuration, �C is indeed a measure of
the energy current. Both asymmetries agree as long as the
transmission is symmetric under the transformation V1 � V2,
which leads to odd charge currents under reversing the bias
polarity. However, this condition is not generally met when
interactions are present and rectification effects then arise.
Importantly, the Joule heating term affects differently the two
asymmetries and is, in many cases, the dominant contribution,
as we demonstrate in the following.

VI. NUMERICAL RESULTS

In this section, we present numerical calculations for the
heat asymmetries of our two-terminal quantum dot in both
linear and nonlinear regimes. In either case, the integrals
following from substitution of Eq. (19) in Eqs. (3) and (4)
require a careful analysis (see Appendix). We begin with
the linear regime. In Fig. 2, we show the heat asymmetry
� = �C = �E as a function of the probe coupling ��/�0

[Fig. 2(a)] and the dot level ε0/�0, which can be tuned with an
external gate voltage [Fig. 2(b)]. We observe in Fig. 2(a) that
inelastic processes reduce the heat asymmetry � and that the
asymmetry is not a monotonic function of the gate. Due to the
probe coupling, the dot transmission acquires an additional
level broadening (we recall that � = �1 + �2 + ��). When
�� increases, the dot transmission becomes broader and shows
a weaker energy dependence. As a result, the energy current
is reduced overall. We notice that � shows electron-hole
symmetry, i.e., �(ε0) = −�(−ε0). This fact is more explicit
in Fig. 2(b) and is due to the absence of screening effects in
the linear regime. Here, the curves � versus the dot level show
a resonantlike behavior in which � becomes an extremum
for 2|ε0|/� � 1. Additionally, this � extremal point depends
quite strongly on kBθ (not shown here). Indeed, at very low
temperatures the value for which � is maximum or minimum

0 1 2 3 4
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4×10−06 5×10−06
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FIG. 2. (Color online) Heat-current asymmetry in the linear
regime (a) as a function of the coupling of the probe ��/�0, and
(b) versus the localized level ε0/�0. Parameters: EF = 0, �1 = �2 =
�0/2, eV = 0.01�0, kBθ = 0.01�0.

indicates the energy scale for which the transmission changes
more abruptly around the Fermi energy.

In the nonlinear regime, rectification effects arise, as illus-
trated in Fig. 3. For definiteness, we consider a symmetrically
electrical biased quantum dot, i.e., V1 = −V2 = V/2 with a
common background temperature θ for both contacts. This
electrical and thermal configuration mimics the experimental
conditions reported by Lee et al. in Ref. [14]. We show the
heat flow J = J1(V ) through contact 1 for a symmetrically
coupled quantum dot (�1 = �2) in Fig. 3(a), and for an
asymmetric tunnel configuration in Fig. 3(b) (�1 �= �2). In
both cases, we observe rectification effects J (V ) �= −J (−V )
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J=M
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(1)

V
2

J=M
(0)
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(c)

(e)
(f)

(d)

(a)

ΔC=J1(V)-J2(V)

ΔE=J1(V)-J1(-V)

Γ1=Γ2=Γ0/2
SYMMETRIC TUNNEL

Γ2=0.9Γ0

ASYMMETRIC TUNNEL

Γ1=0.1Γ0

CONTACT HEAT 
ASYMMETRY

ASYMMETRY
ELECTRICAL HEAT

FIG. 3. (Color online) Heat-current characteristic (J − V ) for
various values of the probe strength ��/�0 (a) for a symmetric
tunnel configuration �1 = �2 = �0/2, and (b) for an asymmetric
tunnel configuration �1 = 0.1�0, and �2 = 0.9�0. (c) and (e) show
enlarged parts of J − V corresponding to the quadratic and linear
behavior of the heat current versus voltage, respectively. (d) and
(f) illustrate the contact (�C) and electrical (�E) heat asymmetries.
Parameters: EF = 0, kBθ = 0.01�0, ε0/�0 = 1, C = 0.
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FIG. 4. (Color online) Heat-current asymmetry in the nonlinear
regime for an asymmetric tunnel configuration �1 = 0.1�0 and
�2 = 0.9�0. Contact heat asymmetry �C = J1(V ) − J2(V ): (a) as
a function of the coupling of the probe ��/�0, and (b) versus
the localized level ε0/�0. Electrical heat asymmetry �E = J1(V ) −
J1(−V ): (c) as a function of the probe coupling ��/�0, and (d) versus
the dot level ε0/�0. Parameters: EF = 0, �1 = 0.1�0, �2 = 0.9�0,
eV = �0, kBθ = 0.01�0, C = 0.

even for moderate voltages. These are mainly caused by the
Joule heating term, which can be further strengthened by an
asymmetric potential response in the case �1 �= �2 [51]. In
fact, as shown in Fig. 3(c), the heat flow becomes a quadratic
function of voltage J (V ) = M (0)V + M (1)V 2 (M (0) = M11

represents the leading-order electrothermal coefficient [51]).
Thus, J is quickly dominated by the Joule power at low
bias PJoule = IV ∝ M (1)V 2. For a small-bias range, Fig. 3(e)
displays the linear transport regime in which J = M (0)V ∝ V

(Peltier effect). We observe that in the strongly nonlinear
regime, the effect of increasing ��/�0 [Figs. 3(a) and 3(b)]
causes a decrease of the Peltier and the heat current thus be-
comes more symmetric under reversal of the bias polarity. The
contact and electric heat asymmetries �C and �E are shown
in Figs. 3(d) and 3(f). We observe that inelastic processes
(increasing ��/�0) reduce the value of �C [Fig. 3(d)] since
the contact heat asymmetry �C coincides with the energy
current J E for symmetric biases, as shown in Eq. (21). Hence,
by increasing ��/�0 the transmission acquires a weaker
energy dependence, leading to a suppression of the energy
current for our device and therefore a decrease of �C . The
electrical heat asymmetry is, by construction, insensitive to
rectification effects, as depicted in Fig. 3(f). Moreover, we
also observe a decrease of �E as the amount of incoherent
scattering ��/�0 increases.

Finally, we discuss the behavior of the heat asymmetries
with the probe coupling strength �� and dot level ε0 in
Fig. 4 for the nonlinear regime (we set eV/�0 = 1). The
heat-contact asymmetry dependence with ��/�0 is presented
in Fig. 4(a) for different ε0/�0 values. We observe departures
from the electron-hole symmetry �C(ε0) �= −�C(−ε0) when

the strength of the probe is relatively small, whereas if ��/�0

becomes larger such effects are removed due to an overall re-
duction of this heat asymmetry. Figure 4(c) shows the electrical
asymmetry, which is electron-hole symmetric by construction.
As previously, �E is broadly reduced when ��/�0 grows.
The dot gate dependence of the heat asymmetries, for specific
values of ��/�0, is shown in Figs. 4(b) and 4(d). In both
cases, the heat asymmetries show a peak structure, which is
reduced with increasing probe strengths. However, Fig. 4(b)
clearly shows the absence of electron-hole symmetry for �C .

VII. CONCLUSIONS

In closing, we have formulated a generic framework for the
assessment of inelastic and dephasing processes in the power
asymmetry of nanoscale junctions. We have found that in linear
response, the heat-current asymmetries (both measured in a
given contact or in different electrodes) agree and are given
at low temperatures by the energy derivative of a modified
transmission function. In the nonlinear regime of transport,
both asymmetries differ and present an interesting behavior
in terms of the coupling to the dephasing probe and the gate-
tunable energy level. Quite generally, the heat asymmetries
vanish with an increasing amount of inelasticity or dephasing.

Our results are independent of the microscopic origin of
incoherent scattering. Qualitatively, we believe that our main
conclusions will be robust and applicable to a large variety
of systems. Yet, it would be highly desirable to investigate
in future works specific models taking into account, e.g.,
electron-phonon interactions.

Further extensions of the model should consider cooling
effects [60], whose efficiency in the nonlinear regime and in
the presence of incoherent scattering remains an open issue.
Another interesting question, perhaps more fundamental, is the
development of magnetic-field asymmetries in multiterminal
setups [61]. It is well known that in the nonlinear regime de-
partures of the Onsager reciprocity are quite general [52]. The
role of inelasticity and decoherence is less clear. Finally, we
would like to mention the exciting possibility of implementing
rectifying nanojunctions for energy harvesting [62]. A deep
study of the combined effect of nonlinearities and incoherent
scattering would bring the goal of waste-heat-to-electricity
nanoconverters closer to reality.
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Moreno for fruitful discussions. This work has been supported
by a SURF@IFISC fellowship, the MINECO under Grant
No. FIS2011-23526, the Conselleria d’Educació, Cultura i
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APPENDIX: CHARGE- AND HEAT-CURRENT
INTEGRALS

In our numerical analysis, it is worth to calculate the integral
for the charge current through the source electrode

I1 = 2e

h

∫
R

dE
�1�2

(E − ε)2 + �2/4
[f1(E) − f2(E)], (A1)
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and the corresponding heat flux

J1 = 2

h

∫
R

dE (E − μ1)
�1�2

(E − ε)2 + �2/4
[f1(E) − f2(E)].

(A2)

Here, ε can be ε0 for the linear response or ε0 + eU(V,θ )
in the nonlinear regime of transport, with U evaluated self-
consistently in terms of the applied voltage V and temperature
difference θ .

An analytical solution of Eqs. (A1) and (A2) can be
obtained by noticing that the Fermi functions can be expressed
in terms of the digamma function 
(z) = �′(z)/� (z):

fj (E) = 1

2

[
1 − tanh

(
E − μj

2kBTj

)]

= 1

2

{
1 + i

π

[



(
1

2
+i

wj (E)

π

)
−


(
1

2
− i

wj (E)

π

)]}
,

(A3)

where wj (E) = (E − μj )/(2kBTj ). The first (second) 


has singularities at wj = iπ (n + 1
2 ) [wj = −iπ (n + 1

2 )] with
n ∈ N.

Consider now the integral

I =
∫
R

dE τ (E)fj (E) = IA + IB + IC, (A4)

where τ (E) = [(E − ε)2 + (�/2)2]−1 and

IA = 1

2

∫
R

dE τ (E), (A5)

IB = i

2π

∫
R

dE τ (E)


(
1

2
+ i

E − μj

2πkBTj

)
, (A6)

IC = − i

2π

∫
R

dE τ (E)


(
1

2
− i

E − μj

2πkBTj

)
. (A7)

We compute these integrals using the residue theorem. For IA

and IC we choose the upper semidisk S+
R of radius R, while for

IB it is convenient to integrate over the lower semidisk S−
R (see

Fig. 5). In the limit of infinite radius (R → ∞), the integrals

FIG. 5. Integration contour in the complex plane.

along the external paths γ ±
R vanish and we find

IA = π

�
, (A8)

IB = i

�



(
1

2
+ i

ε − μj − i�/2

2πkBTj

)
, (A9)

IC = − i

�



(
1

2
− i

ε − μj + i�/2

2πkBTj

)
. (A10)

Substituting in Eq. (A4) and defining z±
j = ( 1

2 + �
4πkBTj

±
i

ε−μj

2πkBTj
), Eq. (A1) becomes

I1 = −4e

h

�1�2

�
Im[
(z+

1 ) − 
(z+
2 )], (A11)

where we have used the property 
(z∗) = 
∗(z).
The expression for the heat current [Eq. (A2)] is to be

treated with caution because in this case there arises a nonzero
contribution from the integration along γ ±

R . Consider

J =
∫
R

dz (z − μ1) τ (z) [f1(z) − f2(z)]

= lim
R→∞

i

2π
(JγR

− JS), (A12)

with

JS =
∫

S−
R

dz(z − μ1)τ (z)[
+
1 (z) − 
+

2 (z)]

+
∫

S+
R

dz(z − μ1)τ (z)[
−
1 (z) − 
−

2 (z)], (A13)

JγR
=

∫
γ −

R

dz(z − μ1)τ (z)[
+
1 (z) − 
+

2 (z)]

+
∫

γ +
R

dz(z − μ1)τ (z)[
−
1 (z) − 
−

2 (z)]. (A14)

Here, 
±
j (z) = 
( 1

2 ± i
z−μj

2πkBTj
) and the paths S±

R , γ ±
R are

crossed anticlockwise. JS can be obtained analogously to the
charge current case:

JS = 4πi

�
(ε − μ1) Im[
+

1 (z) − 
+
2 (z)]

−2πi Re[
+
1 (z) − 
+

2 (z)]. (A15)

To compute JγR
= Jγ −

R
+ Jγ +

R
, we use the polar representation

z = Reiθ ,

Jγ ±
R

=
∫ π

0
dθ

iReiθ (Reiθ ∓ μ1)

(Reiθ ∓ ε)2 + �2/4

[



(
1

2
+ i

−Reiθ ± μ1

2πkBT1

)

−


(
1

2
+ i

−Reiθ ± μ2

2πkBT2

)]
. (A16)

Let g±(R,θ ) be the function under the integral of Eq. (A16).
For |z| → ∞ we use the asymptotic value 
(z) → ln(z). As
a consequence, for every θ ∈ (0,π ) one has g±(R,θ ) −→

R→∞
i ln (T2/T1). Thus,

lim
R→∞

Jγ ±
R

= πi ln
T2

T1
. (A17)

165431-6



HEAT ASYMMETRIES IN NANOSCALE CONDUCTORS: THE . . . PHYSICAL REVIEW B 91, 165431 (2015)

Collecting Eqs. (A15) and (A17) in Eq. (A2), we finally obtain the analytical expression for the heat current:

J1 = −4�1�2

h�
(ε − μ1) Im[
(z+

1 ) − 
(z+
2 )] + 2�1�2

h
Re[
(z+

1 ) − 
(z+
2 )] − 2�1�2

h
ln

T2

T1
. (A18)
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[26] S. A. van Langen and M. Büttiker, Quantum-statistical current
correlations in multilead chaotic cavities, Phys. Rev. B 56,
R1680 (1997).

[27] K. Saito, G. Benenti, G. Casati, and T. Prosen, Thermopower
with broken time-reversal symmetry, Phys. Rev. B 84, 201306
(2011).

[28] D. Sánchez and L. Serra, Thermoelectric transport of meso-
scopic conductors coupled to voltage and thermal probes, Phys.
Rev. B 84, 201307 (2011).

[29] A. Caso, L. Arrachea, and G. S. Lozano, Defining the effective
temperature of a quantum driven system from current-current
correlation functions, Eur. Phys. J. B 85, 1 (2012).

[30] S. Bedkihal, M. Bandyopadhyay, and D. Segal, The probe
technique far from equilibrium: Magnetic field symmetries of
nonlinear transport, Eur. Phys. J. B 86, 1 (2013).

[31] J. P. Bergfield, S. M. Story, R. C. Stafford, and C. A. Stafford,
Probing Maxwell’s demon with a nanoscale thermometer, ACS
Nano 7, 4429 (2013).

[32] Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, From
local force-flux relationships to internal dissipations and their
impact on heat engine performance: The illustrative case of a
thermoelectric generator, Phys. Rev. E 88, 022137 (2013).

[33] K. Brandner and U. Seifert, Multi-terminal thermoelectric
transport in a magnetic field: bounds on Onsager coefficients
and efficiency, New. J. Phys. 15, 105003 (2013).

[34] J. Meair, J. P. Bergfield, C. A. Stafford, and P. Jacquod, Local
temperature of out-of-equilibrium quantum electron systems,
Phys. Rev. B 90, 035407 (2014).

[35] P. N. Butcher, Thermal and electrical transport formalism
for electronic microstructures with many terminals, J. Phys.:
Condens. Matter 2, 4869 (1990).
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