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Reservoir computing with a single time-delay autonomous Boolean node
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We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element
with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between
30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of
computational performance on system parameters to find the best operating point of the reservoir. When the best
parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over
time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs
are only provided to the reservoir for 7.5 ns.
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Classical von Neumann machines cannot efficiently per-
form some tasks, such as pattern recognition and classification,
that animal brains do with relative ease. This observation
motivates the search for novel computational paradigms,
particularly those with biological plausibility. One approach
is reservoir computing (RC) [1,2], a method of efficiently
training recurrent neural networks to perform a given task.
In conventional RC, computation is performed by a large
recurrent network of nonlinear elements with arbitrary con-
nection weights (the reservoir) [3,4]. The reservoir performs
a nonlinear transformation on a time-dependent input signal,
mapping it onto a high-dimensional state space in which it
is linearly separable from other inputs. During training, the
weights of connections within the reservoir are kept fixed and
the weights of connections to an output layer are determined
by linear regression with target outputs.

Remarkably, a large complex network is not necessary
for RC. In fact, any system that is able to map input
states onto a high-dimensional state space and that fulfills
three commonly cited sufficient conditions for RC [2]—
separation of input states, generalization of similar inputs
to similar outputs, and fading memory—can be used [5].
For example, previous experiments [5–10] have shown that
a high-dimensional transient output can be generated with
a single physical nonlinear device that time-multiplexes
virtual nodes using time-delay feedback. These experiments
demonstrated that a RC with time-delay feedback can
achieve excellent performance on time-dependent pattern
recognition tasks such as speech recognition and time-series
prediction.

The success of these systems motivates the exploration
of other physical time-delay systems that possess suitable
characteristics for RC. In this vein, we introduce a RC
consisting of a single autonomous Boolean logic element that
executes the exclusive-or (XOR) function with two time-delay
feedback lines. The state of an autonomous Boolean network
with time-delay feedback depends on a continuous history of
its past states, making the dynamics much more complex than
in synchronous systems, which depend on only a discrete set
of past values. This added complexity allows small resource-
efficient systems to perform the required high-dimensional
transformation on inputs [11,12].

Here we demonstrate experimentally that this simple time-
delay autonomous Boolean reservoir is capable of producing
dynamics that fulfill the sufficient conditions for RC and can
solve a classification task. We find that input signals produce
chaotic transients with windows of consistency [13]. We then
use a measure of effective dimensionality to show that optimal
operating points of the reservoir can be found by varying
the lengths of the time delays. Finally, we show that with an
appropriate choice of parameters, the system is able to classify
input signals with an accuracy that decreases with time.

We build the reservoir shown in Fig. 1 on an Altera Cyclone
IV field-programmable gate array (FPGA), an integrated
circuit comprised of ∼105 distinct logic elements. Each logic
element can be configured to compute an arbitrary Boolean
function on several inputs and wired to other logic elements on
the chip using a hardware description language. In addition, the
FPGA architecture allows for asynchronous logic operations
and the inherent rise time of the logic elements can be used to
realize physical time delays.

The XOR operation is chosen as the Boolean node for several
reasons. First, it exhibits maximum Boolean sensitivity: When
any of the inputs to a XOR gate are flipped, the output is
also flipped [see Fig. 1(c)], which produces dynamics with
maximal spreading with respect to the input states. Second,
the XOR operation has a balanced output, meaning that, for the
2n possible combinations of n-bit input patterns, half result in
0 and half result in 1. Choosing a balanced Boolean function
prevents the system from being biased toward 0 or 1 over
time.

We realize the physical time-delay feedback lines by
exploiting the finite response time of the FPGA’s logic
elements. Delay line 1 (2) is constructed by wiring N1 (N2)
pairs of inverters in series; we call a pair of inverters a delay
element. A pair of inverters is used as a delay element instead of
a single copier to correct for an observed asymmetry between
the rise and fall times of the logic elements [14]. When the lines
are implemented on the FPGA, we observe a certain degree of
heterogeneity in the delays due to physical imperfections. To
reduce the effect of the heterogeneity as much as possible, we
manually fix each of the delay lines to specific logic elements
next to each other on the FPGA rather than allowing them to
be automatically placed by a compiler.
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FIG. 1. (a) Circuit diagram of the single-node time-delay reser-
voir. (b) Time delays are realized as a cascade of pairs of inverter
gates. (c) Truth table for the three-input XOR gate. Two stable fixed
points exist: When all inputs are 0 (1), the output is 0 (1).

The experimentally measured delay times T1 (T2) resulting
from N1 (N2) between 7 and 20 delay elements are listed in
Table I. The average delay time due to a single delay element
is 0.59 ns, but the variation between elements in the same line
is large, ranging between 0.43 and 0.99 ns. By manually fixing
the lines, however, much of the heterogeneity between the two
lines is eliminated: The difference between T1 and T2 is, on
average, 0.03 ns and is never more than 0.1 ns.

To demonstrate that this system fulfills the sufficient
conditions for RC described above, we observe the transient
response of the reservoir to different inputs. Input data are
encoded in words of bits that are supplied to the reservoir in
the form of sequential strings of little-endian (least-significant
bit first), non-return-to-zero digital voltages at 400 MHz. After
a word is completed, the data in wire of the reservoir is
tied to 0. Similar initial conditions are assured by allowing
the system to settle into the fixed point XOR(0,0,0) = 0 before
inputting data. A header to the input is necessary to distinguish
patterns with leading or trailing zeros: To a reservoir sitting at
the fixed point XOR(0,0,0) = 0, the word 0100, for example,
appears to be just a time-shifted version of 0010. Including
a one-bit header changes 0100 to 01001 and 0010 to 00101,
which appear as distinct inputs.

The circuit in Fig. 1(a) is predicted [11,12,15] to have
aperiodic behavior when the time delays are incommensurate.
Indeed, when data are fed to the experimental reservoir, a long
complex transient is produced. The first 100 ns of four complex

TABLE I. Measured delay times for each delay line.

N1,N2 T1 (ns) T2 (ns)

7 3.76 3.75
8 4.31 4.31
9 5.30 5.25
10 5.79 5.79
11 6.35 6.44
12 6.79 6.89
13 7.50 7.49
14 7.94 7.92
15 8.44 8.41
16 8.99 8.96
17 9.75 9.76
18 10.30 10.25
19 10.74 10.76
20 11.42 11.38

FIG. 2. (Color online) Experimentally observed transient dy-
namics of four unique input patterns (noted on the y axes), generated
by a reservoir with N1 = 17,N2 = 18. The solid blue (dark gray)
vertical line marks t = 7.5 ns, where the input word ends.

transients captured by a high-speed oscilloscope are shown in
Fig. 2 for N1 = 17,N2 = 18 elements. Each of the transients
is generated by a unique 2-bit input word. Clear Boolean-like
transitions between high and low voltages can be observed,
albeit with a finite slew rate. By direct inspection, it is clear that
the output patterns resulting from each of the distinct inputs
are unique. We find that a simple event-based model including
a low-pass filter to remove short pulses can reproduce the
observed dynamics [15,16], but it is not described further here.

In addition to output states that are unique to the inputs,
reliable computation requires reproducibility of the outputs,
i.e., reservoir responses to the input signals must be con-
sistent [13]. Starting with the reservoir in its fixed point,
we repeatedly observe transients by providing a word to the
reservoir, recording the output time series for 1 μs, and then
forcing the system back into its fixed point before repeating
the experiment.

To quantify the consistency of reservoir states, we define
the measure of the output state space as the Boolean distance

di,j (t) = 1

τ

∫ t+τ

t

xi(t
′) ⊕ xj (t ′)dt ′, (1)

where xi(t) ∈ {0,1} is the Booleanized time-dependent output
state corresponding to input i. We inject the four 2-bit
input patterns (i ∈ {00,01,10,11}) into a reservoir with N1 =
8,N2 = 11 elements. The average distances between the output
time series from each of the input words is shown in Fig. 3.
Consistency can be observed by comparing the distances
di,i(t) between transients generated by the same inputs with
those generated by different inputs [di,j (t), i �= j ]. For each
i, di,i(t = 0) is significantly smaller than di,j (t = 0), but
increases exponentially until it converges with di,j (t). The
window of exponential divergence in di,i(t), a signature of a
chaotic transient, is indicated by dashed black lines in Fig. 3.
The slopes of these lines, which indicate how quickly di,i(t)
diverges, correspond to the local Lyapunov exponents of the
system.
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FIG. 3. (Color online) Boolean distances (τ = 100 ns) di,i and
di,j (i �= j ) averaged over 50 output time series from a reservoir
with N1 = 8,N2 = 11 elements for four distinct inputs. The solid
blue (dark gray) vertical line represents the end of the consistency
window, beyond which states are not distinguishable.

The minimum time to the convergence of di,i(t) with di,j (t)
in Fig. 3 is approximately 145 ns and thus the transient xi(t)
due to input i is distinguishable from xj (t) for 145 ns. We call
this period of time the consistency window. For T1,T2 between
3.75 and 11.42 ns (N1,N2 between 7 and 20 elements), we find
consistency windows between 30 and 300 ns. The existence of
the consistency window suggests that the reservoir fulfills the
separation and generalization requirements introduced above.

To quantify the ability of the reservoir to perform effective
computation and characterize its performance as a function
of the size of the delays, we consider the measures known
as kernel quality and generalization ability [17,18]. Once the
consistency window for particular values of N1 and N2 is
measured, the m × m state matrix MK is created using the
following procedure. Data are collected from the reservoir by
sampling the data out wire at 400 MHz to RAM blocks
located on the FPGA. The size m of the matrix is defined
as the number of samples that can be collected within the
consistency window (12 � m � 120 samples for consistency
windows of 30 � L � 300 ns). The state matrix MK is then
formed by collecting m samples from the resulting time
series of m distinct inputs. The normalized kernel quality
K = 1

m
rank MK is defined as the rank of the normalized state

matrix. A system with perfect separation will produce linearly
independent outputs for all possible input states, i.e., K = 1.

The normalized generalization ability � = 1
m

rank M� is
calculated using the same procedure, except that M� is formed
by m outputs from m distinct inputs, each of which is preceded

by the same string of constant bits. A system with perfect
generalization has � = 1/m, meaning that perturbations to
the constant string of input bits do not cause a distinguishable
change to the output.

An effective reservoir simultaneously maximizes K and
minimizes �, i.e., maximizes their difference K − � ≡ �.
Thus, −1 < � < 1 is interpreted as the fraction of L that is
useful for computation. A perfect reservoir has � = 1 − 1/m,
indicating that almost the entire consistency window provides
useful information about the input, and � � 0 represents
a reservoir that fails to perform any useful information
processing. We can therefore define an effective computational
dimensionality D = L�. Thus, the best reservoir is the one
that maximizes D, which is bounded above by the length of
the consistency window.

We examine the effect of T1 and T2 on reservoir performance
by measuring D for different N1 and N2, shown in Fig. 4.
The lack of symmetry about the diagonal suggests that the
heterogeneity in delay times between lines 1 and 2, seen in
Table I, plays a significant role in determining the dynamics
and that the performance of the reservoir is highly dependent
on the ratio T1/T2. This result is consistent with [11,19], where
it was shown that T1/T2 determines an upper bound on the
period length of possible dynamics, giving rise to windows
with extremely long periods. The parameters that maximize D

are found to be N1 = 20,N2 = 7.
Using the parameters N1 = 20,N2 = 7 that maximize

reservoir performance, we now demonstrate the reservoir’s
ability to identify input patterns. To train the reservoir, we
collect the dynamics for the 2n possible n-bit input patterns
by saving S samples of the output to on-chip RAM blocks at
400 MHz. Once the samples x(t0),x(t1), . . . ,x(tS−1) have been
collected, they are transferred to a PC and used to form linear
combinations

Ci(tj ) =
W−1∑
k=0

w
ij

k x(tj+k) (2)

FIG. 4. Dependence of effective computational dimensionality D

on the length of the delay lines. The tiles are different sizes due to the
heterogeneity in the size of each delay element.
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FIG. 5. (Color online) Word recognition error rate for 2-bit input
sequences with N1 = 20,N2 = 7 elements. Solid blue (dark gray)
vertical lines separate training regions A, B, and C, defined in the
text.

for each word i = 0,1, . . . ,2n − 1 beginning at each sample
time tj = t0,t1, . . . ,tS−W−1.

The linear combinations Ci(tj ) are called classifiers and
the weights w

ij

k that define them are computed by linear
regression. The length of the classification window W defines
the number of samples used to compute each classifier. The
target of classifier Ci is 1 for the output pattern corresponding
to input i and −1 for all other patterns. Thus, when additional
time series are provided to the 2n classifiers, each computes
a scalar score for every sample point. We regard successful
classification as an event when the classifier with the largest
score is the classifier corresponding to the actual input.

We present the classification performance of the reservoir
in Fig. 5, which also demonstrates the effect of fading memory
in the system. Error rates for each input word with n = 2 bits,
obtained by testing the classifiers with 100 time series for each
input, are shown in Fig. 5 for N1 = 20,N2 = 7 elements (the
optimal parameters in Fig. 4). A time series length of S = 200
samples (500 ns) is collected and a classification window of
W = 50 samples (125 ns) is used. The consistency window
for this system is measured to be 215 ns. Thus, there are three
training regions. For classifiers Ci(tj ) that begin at times tj
less than 90 ns (region A), the entire window of classification
lies within the region of consistency. Classifiers that begin at
times greater than 215 ns (region C) are trained with only
samples from outside the consistency window. Classifiers
starting between 90 and 215 ns (region B) are trained with
a mix of data from inside and outside the consistency window.

The classification performance is the strongest in region
A, with the error rate remaining below 10% for approximately
70 ns, despite the input word being only 7.5 ns. In other words,

the classifiers are able to faithfully reconstruct the reservoir’s
input state with reasonable accuracy even after the reservoir
was no longer receiving information. Performance in region C
plateaus at an error rate of 0.75, i.e., chance, meaning that no
useful information about the input remains in the output after
the consistency window. Additionally, a rise in classification
error can be observed throughout region B, indicating that
the inclusion of data from outside the consistency window
decreases performance. We observe a similar trend for words
of n = 3 and n = 4 bits: The error rate is lowest in region A,
but gradually rises throughout region B to a plateau of 1 − 2−n

in region C. The error rate at a given time is generally higher for
larger words and the 32 possible words for n = 5 bits cannot
be accurately classified at any time. This behavior is similar to
that found in a reservoir that used electrical recordings from
neurons of the primary visual cortex of an anesthetized cat [20].

We conclude that, despite its simplicity, the single time-
delay feedback XOR reservoir produces dynamics suitable
for RC. In addition, the reservoir is shown to perform a
pattern recognition task. The complexity of the dynamics
produced by the relatively simple system described in this
article suggests that FPGAs are an exceptionally versatile
platform for realizing physical RCs.

Our results point to several future directions. For ex-
ample, it is possible to build larger Boolean networks on
FPGAs [14,21,22], which will allow for improved computation
in two ways. First, recent work studying the computational
ability of larger random Boolean networks without time
delays [23,24] motivates speculation that the performance of
the number classification task described above can be im-
proved with additional nodes. Second, the ability to run many
parallel input nodes will allow a mix of spatial and temporal
computation that could be attractive for speech and image
recognition. The ability to train the reservoir using digital logic
on the FGPA, instead of transmitting data to an external PC for
postprocessing, could also speed up training. As a result, the
simple system studied here will be crucial to understanding
the ability of much larger systems to process information.
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[2] W. Maass, T. Natschläger, and H. Markram, Neural Comput. 14,
2531 (2002).
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