
PHYSICAL REVIEW E 91, 062908 (2015)

Determining the sub-Lyapunov exponent of delay systems from time series
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For delay systems the sign of the sub-Lyapunov exponent (sub-LE) determines key dynamical properties. This
includes the properties of strong and weak chaos and of consistency. Here we present a robust algorithm based
on reconstruction of the local linearized equations of motion, which allows for calculating the sub-LE from time
series. The algorithm is inspired by a method introduced by Pyragas for a nondelayed drive-response scheme
[K. Pyragas, Phys. Rev. E 56, 5183 (1997)]. In the presented extension to delay systems, the delayed feedback
takes over the role of the drive, whereas the response of the low-dimensional node leads to the sub-Lyapunov
exponent. Our method is based on a low-dimensional representation of the delay system. We introduce the basic
algorithm for a discrete scalar map, extend the concept to scalar continuous delay systems, and give an outlook
to the case of a full vector-state system, from which only a scalar observable is recorded.
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I. INTRODUCTION

The exponential divergence of nearby trajectories is one
of the essential properties of chaotic dynamics. The average
rate of divergence is measured by the Lyapunov exponents
that form a spectrum characterizing the evolution of small
volumes in phase space. They further have consequences for
the dimensionality of the attractor and the entropy rate. The
determination of Lyapunov exponents is mostly restricted
to theoretical works because their calculation requires the
reconstruction of the local neighborhood of a trajectory.
Furthermore, it requires information about all degrees of
freedom as well as negligible noise levels, which is why
experimentally the determination of Lyapunov exponents from
time series is a rarely addressed challenge. Given a trajectory
of a dynamical system, basic methods to approach Lyapunov
stability [1–5] use the ergodic property of a chaotic flow to
return to an earlier visited point in phase space arbitrarily
close in the long term of its dynamic evolution. Thus, it allows
for a nearest-neighbor reconstruction of the local vector field,
which can also be carried out in the embedding space [6], if
only a scalar time series has been recorded.

However, the application of embedding algorithms to
time series obtained from high-dimensional systems is not
practical [7]. A phase space vector in such a system can easily
consist of hundreds degrees of freedom, where the probability
to find nearest neighbors in this space is negligible. Here we
tackle this problem for particular high-dimensional systems
by presenting a simple algorithm to extract information about
the chaotic trajectories of delay systems [8].

In recent decades, delay systems have become the focus
of a myriad of works in the field of nonlinear dynamics
and complex systems [9–11]. The simplest representation of
a delay system is a nonlinear dynamical node with time-
delayed feedback such that the equations of motion read
ẋ(t) = f(x(t),x(t − τ )) with x ∈ Rd and the delay time τ > 0.
This general notion can also be extended to the case of a
delay-coupled network of different nonlinear nodes where the

*thomas@ifisc.uib-csic.es

coupling delays stem from finite signal propagation velocities.
Many variations in this class of systems have been studied,
including those with multiple delays, variable delays, and
delay distributions. One may distinguish delay systems by
the type of nonlinear node and by the amount of delay. The
phase space of delay systems formally has infinite dimensions.
This becomes clear when the evolution a delay system needs
to be determined: The entire state x(t) for t ∈ [−τ,0] needs
to be given as initial conditions. This high dimensionality
favors, but not necessarily implies, a high-dimensional chaotic
dynamics depending on system and parameters. Hyperchaos
with hundreds of positive Lyapunov exponents has already
been identified from numerical simulations [12–14].

Previous studies on time-series analysis of delay systems
focused on their identification, reconstruction of the equations
of motion, and estimating the delay time [15–17]. These
works highlight the relevance of several aspects, such as
discrete versus continuous time, scalar versus vector character
of the system, and the relationship between the feedback
variable and the recorded variable, for the implementations
of the corresponding methods. A common core feature of the
existing methods lies in the embedding of a time series. Instead
of sampling the entire delay interval in order to approximate the
infinite-dimensional state vector, sampling a limited number
of points at the edges of the delay interval, i.e., around time
t and around time t − τ , reveals sufficient information about
the dynamics. This embedding is of clear practical advantage
when dealing with large delays. In delay systems one often
distinguishes between the small delay regime and the large
delay regime, which is defined by a time-scale separation
between the delay time and the characteristic time scales of the
nondelayed part of the system [18]. While for small delays the
same time-series analysis methods as for nondelayed systems
(see, e.g., [5]) can be applied, for large delays a different
approach will be necessary. In this paper we focus on the latter,
but our approach is not principally restricted to large delays.

In optical systems, delays in feedback or coupling connec-
tions often occur generically, due to their fast characteristic
time scales. Moreover, these systems are versatile and well
controllable and are therefore particularly suitable for the
study of delay dynamical systems. Prominent examples for the
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versatility of optical delay systems are the experimental and
theoretical studies of semiconductor lasers subject to optical
feedback and of optoelectronic oscillators, which have proven
very fruitful [19,20]. In these systems, the delayed feedback
may induce complex intensity and frequency fluctuations that
originate in high-dimensional chaos. Comparing the time
scales of the laser with the feedback delay, one often finds
that the device is operating in the large delay regime [21].
Considering the delayed feedback as an external drive of
the nonlinear node offers a promising perspective in this
case [22,23]. Then the response of the node can be charac-
terized by the sub-Lyapunov exponent (sub-LE).1 The sub-LE
is tightly connected to the maximum Lyapunov exponent
and determines its scaling behavior especially by variation
of the delay. The sub-LE can be considered an essential
quantity underlying the chaotic dynamics, defining properties
such as strong and weak chaos [26]. In particular, a positive
sub-LE defines the regime of strong chaos, which cannot be
synchronized, while a negative sub-LE refers to weak chaos,
which in principle can be synchronized. In addition, the sub-LE
determines the consistency properties of the dynamical node
with respect to the delayed feedback signals. The analogy to the
drive-response scheme is limited in the sense that the sub-LE is
not part of the full Lyapunov spectrum of the system, whereas
in the original drive-response scheme the conditional exponent
does appear [25]. For the case of semiconductor lasers subject
to optical feedback, nontrivial transitions of the sign of the
sub-LE have been documented by variations of feedback or
pump parameters only, corresponding to transitions between
strong and weak chaos [27–29].

Since the sub-LE is determined by the response of the
nonlinear node only, we aim at an algorithm using a low-
dimensional embedding in order to calculate this quantity
from time series. Naturally, this leads to the already proposed
methods of reconstructing the equations of motion locally. An
important and comprehensive contribution is provided by the
works of Bünner and co-workers [17,30,31]. These studies
include the calculation of Lyapunov spectra for the entire
delay system. Our study on the sub-LE complements these
findings by applying and extending the existing techniques.
Beyond this, the perspective of drive-response systems, which
leads to the sub-LE, offers additional insights into the origin
of the emerging delay dynamics that cannot be obtained by
reconstruction of phase space or the equations of motion alone.

In Sec. II we introduce the basic algorithm by means of a
scalar discrete map. The performance is demonstrated by time
series of the logistic map with delayed feedback. In Sec. III
we extend the concept to the case of a scalar continuous delay
system and exemplify the application of the algorithm with
the Ikeda delay system. We further apply the method to exper-
imental time series from an optoelectronic system. Section IV
deals with the extension to a vector-state system. By means

1In Ref. [24] the term sub-Lyapunov exponent was first used for
the conditional Lyapunov exponent, where the latter was the typical
notation for this type of exponent after Ref. [25]. We use the different
notations to distinguish between the sub-LE of a delay system and
the conditional Lyapunov exponent in a nondelayed drive-response
scheme.

of numerical simulations of the Lang-Kobayashi equations for
semiconductor lasers with delayed optical feedback, we show
the performance of the algorithm in the case in which the
vector state is known. We finally give an outlook to the case of
a scalar time series of a vector system. In the case of the Lang-
Kobayashi trajectories, we apply the algorithm to intensity
time traces. We introduce a multiple-delay embedding in order
to guarantee a reasonable performance of the algorithm for
the sub-LE. We conclude with a discussion on the limitations
and possible extensions. Details of the implementation are
presented in Appendixes A and B, addressing the performance
of the method under variation of parameters as well as on time
series with measurement noise.

II. BASIC ALGORITHM

We consider a scalar discrete map with delay τ ∈ N,

xn+1 = M(xn,xn−τ ). (1)

We denote the time-dependent derivatives with respect to the
first and second arguments by an = D1M(xn,xn−τ ) and bn =
D2M(xn,xn−τ ), respectively. The tangent linear system of the
map describing an infinitesimal perturbation reads

δxn+1 = anδxn + bnδxn−τ (2)

and the reduced tangent system incorporates only the nonde-
layed term

δξn+1 = anδξn. (3)

Note that the latter is driven by the same sequence of coef-
ficients an as the complete linearization originating from the
full delay system. Iteration of the set of equations (1)–(3) with
typical initial conditions leads, after the decay of transients, to a
stationary trajectory xn, along with accompanying trajectories
δxn and δξn. From the average exponential evolution of
δxn, one obtains the maximum Lyapunov exponent λ of
the dynamics. Accordingly, from δξn one obtains the sub-
Lyapunov exponent λ0, which by its sign determines the
property of strong or weak chaos.

Reconstructing the local linearized map by the coefficients
an and bn will allow us to calculate the sub-LE λ0, which is
given by

λ0 = 〈ln |an|〉n, (4)

where 〈·〉n denotes the average over n = {1, . . . ,N} with
N being the length of the trajectory, from which, in the
formal definition of the Lyapunov exponent, the limit N → ∞
should be taken. Note that a reconstruction of the local linear
map would in principle also allow us to calculate the entire
Lyapunov spectrum of the whole delay system [31].

We first approximate the evolution of the infinitesimal
perturbations in Eq. (2) by finite perturbations obtained from
nearest neighbors. For each value of the trajectory xn we
search for its nearest neighbors xmn,j

with j ∈ {1, . . . ,J }.
The index mn,j is the position in discrete time of the j th
nearest neighbor of the pair (xn,xn−τ ). We calculate for each
(n,j ) the difference �xj,n = xmn,j

− xn and its τ -delayed part
acting as small perturbations. The indices are defined such
that we obtain an ordering according to the chosen norm
dj,n = ‖(�xj,n,�xj,n−τ )‖, meaning that dj,n � dj+1,n. For a
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description of the chosen norm, length of time series, and
number of nearest neighbors see the Appendixes. From the
obtained neighborhood of (xn,xn−τ ) we approximate the local
linear map by

�xj,n+1 = ãn�xj,n + b̃n�xj,n−τ + εj,n, (5)

where by linear regression with respect to ã and b̃ we minimize
the total error E2

n = ∑
j ε2

j,n. This type of error is referred to as
the one-step forecast error as discussed in detail in Ref. [17].
In a noise-free system, for the limit �x → 0 one may expect
the convergence ãn → an and b̃n → bn.

Our suggested procedure is exemplified by the logistic map
with delayed feedback

xn+1 = (1 − κ)L(xn) + κL(xn−τ ),

where L(x) = 4x(1 − x). The map is iterated starting from
a (τ + 1)-component vector of uniform random numbers in
the unit interval, serving as initial conditions of the delay
system. After a transient of 105 delay times we assume that
the trajectory has reached the attractor, which for most values
of κ is found to be chaotic, and we use time series from
this point on for the Lyapunov analysis. For the logistic map
the coefficients simply read an = (1 − κ)4(1 − 2xn) and the
correct sub-LE can be calculated from the average according
to Eq. (4).

We apply the described reconstruction method in order
to approximate the an from the time series only. From a
time series of N = 106 points a standard nearest-neighbor
search routine selects the J = 400 points serving to form
the perturbations �xj,n and their corresponding values at
time n − τ and n + 1. Linear regression for every time step
based on Eq. (5) reveals the reconstructed local linear map
and hence an approximation of the sub-LE. Figure 1 shows
the sub-LE from the true and reconstructed linear map as
a function of the feedback strength κ . The presented range
includes different dynamical regimes, from which most are
chaotic, including three transitions between strong and weak
chaos. The reconstruction reveals a perfect result in the entire
range.

0 0.1 0.2 0.3 0.4 0.5

−1.2

−0.8

−0.4

0

0.4

0.8

κ

λ 0

FIG. 1. (Color online) Sub-LE of the logistic map with delayed
feedback τ = 100 as a function of the feedback strength κ . The
blue (thick gray) line shows the true exponent from linearization
and the narrow black line with markers shows the approximation to
the sub-LE obtained from nearest-neighbor reconstructions perfectly
coinciding with true sub-LE. There are three transitions between
strong and weak chaos.

III. CONTINUOUS SYSTEM

A continuous system can be treated like a discrete map if
data with sufficient accuracy and time resolution are available.
However, for finite step sizes and resolution we find that the
reconstruction of a useful local linear map requires a more
sophisticated method in order to obtain reasonable results.
We extend the algorithm introduced above, starting from the
general case of a scalar continuous delay system with a single
constant delay τ > 0,

ẋ(t) = f (x(t),x(t − τ )).

In analogy to the map we define the time-dependent lin-
earizations u(t) = D1f (x(t),x(t − τ )) and v(t) = D2f (x(t),
x(t − τ )) by which we write the tangent linear systems for λ

and λ0, respectively,

δ̇x(t) = u(t)δx(t) + v(t)δx(t − τ ), (6)

δ̇ξ (t) = u(t)δξ (t). (7)

We aim to approximate the local linear system given by
Eq. (6) from finite perturbations. For a finite time step
δt the integral version of this equation is obtained by the
variation-of-constants formula

δx(t + δt) = A(t + δt,t)δx(t)

+
∫ t+δt

t

dt ′A(t + δt,t ′)v(t ′)δx(t ′ − τ ) (8)

with the evolution operator of Eq. (7) given by

A(t2,t1) = exp

{∫ t2

t1

u(t)dt

}
.

Discretizing the time to tn = nδt and δxn = δx(tn), we can
reduce the map (8) to

δxn+1 = anδxn +
∫ tn+1

tn

dt b(t)δx(t − τ ), (9)

with an=A(tn+1,tn) and b(t)=A(tn+1,t)v(t) for t∈[tn,tn+1).
The integral term cannot be reduced further; accordingly, we
have to deal with a functional expression. This functional
is the linearization of the general expression described in
Ref. [17]. Using K support points θk ∈ [0,δt] to sample the
delay term integral, we approximate the linear functional map.
Nearest neighbors are determined in the space of the (K + 1)-
tuple (x(tn),x(tn − τ + θ1), . . . ,x(tn − τ + θK )) to calculate
the perturbations �xj (tn) and their K delayed counterparts.
The approximated local linear map reads

�xj (tn+1) = ãn�xj (tn) +
K∑

k=1

b̃k�xj (tn − τ + θk) + εj,n.

(10)

From the regression coefficients ãn we calculate λ̃0 like for the
discrete map. Compared to the discrete map in the previous
section, in which only noise and nonlinear terms contribute
to the error, in the continuous case the error of the integral
approximation also contributes to the total error.

Employing the example of the Ikeda delay system,
we demonstrate the method and address the issue of the
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FIG. 2. (Color online) Sub-LE of the continuous Ikeda delay
system for τ = 10. By construction λ0 = −1 for all κ as indicated by
the dashed black line. The reconstruction algorithm is applied with
three different sampling methods: black, δt = 0.4 and one sampling
point at θ = 0.2; blue (gray), δt = 0.2 and one sampling point at
θ = 0.1; red (dark gray) with dots, δt = 0.4 and two sampling points
located at θ1 = 0.1,θ2 = 0.3. In the steady-state regime at κ < 2.3,
the reconstruction is not possible. At 2.3 < κ < 2.9 the dynamics
is periodic. The subsequent chaotic dynamics is characterized by
amplitudes and bandwidth increasing with κ . At low feedback the
sub-LE is recovered correctly even for the coarse sampling. With
increasing feedback the reconstruction error increases as well, so a
proper calculation of the sub-LE requires smaller δt or higher K .

approximation of the integral. The reduced equations of
motion read

ẋ = −x + κ sin(xτ ) (11)

and its linearization is consequently

δ̇x = −δx + κ cos(xτ )δxτ .

Due to the constant instantaneous term, it follows immedi-
ately that λ0 = −1 for all values of the feedback κ . Further,
any reconstruction of the local linear map with a step δt should
reveal a constant coefficient an ≡ exp(−δt). We integrate
Eq. (11) using a Heun method with step size dt = 0.001 for
various values of κ and a delay time fixed at τ = 10, which
can be considered a large delay. We discretize the numerical
time series by a step size δt and obtain the grid tn = nδt . The
nearest-neighbor reconstruction is applied correspondingly to
the previous section. Figure 2 shows the obtained sub-LE
from the reconstructed local linear maps compared with the
true value for different step sizes δt and different numbers of
integral samplings K . By variation of κ the system undergoes
a bifurcation route starting at steady state for κ = 0. For the
steady state below κ ≈ 2.3 the reconstruction fails due to
missing nearest neighbors, while for the small periodic window
between κ ≈ 2.3 and κ ≈ 2.9 the reconstructed map already
reveals reasonable results. In the subsequent chaotic regimes
the sub-LE is recovered well with a tendency of an increasing
error for large feedbacks. The dynamics for low and high
feedback differs in its amplitude and bandwidth, which both
affect the performance of our algorithm. By the amplitudes
increasing proportional to κ , according to the equations of
motion, an increasing number of oscillations of the nonlinear
delay part are covered, so the relative size of perturbations
describing a linear regime in a good approximation decreases.
An increasing bandwidth for large feedbacks means the

presence of high-frequency components in the time series,
which require a higher resolution in time. While for the low
feedback already the moderate step sizes reveal good results
for the reconstructed sub-LE, the high bandwidth at high
feedbacks needs to be covered by either a higher number of
sampling points for the integral in the delay part of the local
map or a reduction of the step size. With K = 1 and θ1 = δt/2,
i.e., a single sampling point for the delay term in the center
of the integration interval, the approximation of the sub-LE
improves by decreasing the step size δt , thus demonstrating
the convergence for δt → 0. A similar improvement of
performance can be obtained by an increased delay integral
sampling, where K = 2, while keeping the step size fixed. This
shows that the origin of the deviation from the correct sub-LE
partially lies in the imperfect recovery of the delay integral. A
combination of small step sizes and a proper reconstruction of
the integral term yields further improvement if the available
time series has enough data points and resolution.

The application of nonlinear time-series analysis methods
to experimental optical systems with delay has successfully
led to the identification and modeling of delay dynamics, as
well as to the precise determination of the delay time in, e.g., a
CO2-laser experiment with electro-optical feedback [16,30].
The algorithm described in this section is not restricted
either to noiseless numerical time series. As an illustration,
we compute the reconstructed sub-LE λ̃0 for time series
recorded from an optoelectronic experimental setup, which
can be modeled using the Ikeda delay system [32,33]. This
optoelectronic system is properly described by Eq. (11) after
a time renormalization by a factor t/TR , where TR is the
response time of the system. Thus, it follows that the true
sub-LE λ0 = −1/TR in the experimental system.

The algorithm is applied to a time series with N = 400k

points, sampled at 10 ns, using a splitting in 10% reference
and 90% pool trajectory (see Appendix A). We use a step
size of δt = 40 ns and K = 2 support points for the delay
term spaced by θ2 − θ1 = 20 ns. The delay time of the system
was estimated to be τexp = 20.79 μs using as the criterion
the maximum of the autocorrelation function at the first delay
echo, together with a small correction of 60 ns. This correction
corresponds to the minimum average fit error of the local
linear map and accounts for the typical shift of the delay
echoes in delay dynamical systems [21]. In Table I we present
the extracted values of the sub-LE for varying experimental
conditions, namely, different feedback values. Since the
response time of the system under analysis is governed by
a first-order low-pass filter with an experimentally measured
response time TR = 195 ± 4 ns, the expected sub-Lyapunov

TABLE I. Extracted values of the sub-LE for experimental time
traces of an optoelectronic Ikeda delay system.

κ λ̃0 (μs−1) λ̃0/λ0

2.8 −5.04 0.982
3.2 −5.06 0.986
3.6 −5.05 0.984
4 −5.09 0.992
4.4 −5.08 0.990
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exponent is λ0 = −1/TR = (−5.13 ± 0.1) μs−1. As shown in
Table I, the extracted values for λ̃0 approximate the expected
one for all feedback values. The relative error of the estimation
(λ̃0/λ0) is within a 2% margin, which is the size of the error
of the experimentally determined value for the sub-LE.

IV. VECTOR SYSTEMS: FLOWS

The most general case of a d-dimensional dynamical system
with a fixed delay τ is given by

ẋ(t) = f(x(t),x(t − τ )),

where the linearizations include the d × d Jacobians U (t) =
D1f (x(t),x(t − τ )) and V (t) = D2f (x(t),x(t − τ )). In order
to calculate Lyapunov exponents the tangent system

δ̇x(t) = U (t) · δx(t) + V (t) · δx(t − τ ) (12)

needs to be recreated from the time series, which may be only a
scalar recording s(t) = g(x(t)). Before we address the issue of
scalar recordings, we discuss the case that the entire trajectory
x(t) has been recorded. Provided this, it is straightforward to
recover the extension of the map (9) on a discretized time axis
like in Sec. III,

δxn+1 = an · δxn +
∫ tn+1

tn

dt b(t) · δx(t − τ ),

where an and b(t) are d×d matrices. With a sampling in time
as described in the previous section, nearest neighbors will be
sought in a (K + 1)d-dimensional space, which is why step
size δt and integral sampling K need to be kept as small as
possible in order to avoid large perturbation sizes.

A. Application to vector data

We apply the algorithm for the sub-LE to trajectories
obtained by the Lang-Kobayashi model for semiconductor
lasers with time-delayed feedback. It reads

Ė(t) = 1 + iα

2
GNn(t)E(t) + κE(t − τ ),

ṅ(t) = (p − 1)γNsol − [� + GNn(t)]|E(t)|2, (13)

with the parameters chosen like in Ref. [27] to be
GN = 2.142×10−5 ns−1, � = 357 ns−1, γ = 0.909 ns−1, and
Nsol = 1.707 × 108. The pump current of the laser enters as
p = I/Ith, with Ith being the threshold current of the solitary
laser, and is set to p = 1.02 only slightly above threshold.
The feedback delay is set to τ = 10 ns, which corresponds
to the long cavity regime, and the optical offset phase of the
feedback is neglected. The feedback gain κ serves as a free
parameter to access different dynamical regimes, especially
regimes of both strong and weak chaos. We integrate Eq. (13)
using a Heun method with step size 0.1 ps. A transient part
of 100τ is removed in order to obtain a stationary trajectory
representative for the attractor of the system. Corresponding
to the three-dimensional vector state of the system, there is a
spectrum of three sub-LEs (λ0,i) for each trajectory. From the
tangent linear system (12) we calculate the evolution operators
an, to which we apply the canonical QR-decomposition
method [4,25]. The sub-LE spectrum as a function of the
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FIG. 3. (Color online) Spectrum of sub-LEs from the Lang-
Kobayashi equations as a function of the feedback strength κ

consisting of the maximum (blue), second (green), and minimum
(red) exponents. Dashed lines indicate the true values calculated
by a linearization. Solid lines denote the reconstructed values using
nearest-neighbor reconstruction with a time step of δt = 10 ps, one
support point in the center of the delay term integral (θ1 = 5 ps), and
200 nearest neighbors for the regression at each point. The full vector
state of a trajectory of 1 μs was used and another 1-μs trajectory
served as pool for nearest neighbors.

feedback κ is shown in Fig. 3. While without feedback the sub-
LEs are concentrated around zero, with increasing feedback
there is a spread that is approximately proportional to the
feedback rate. The lower exponents evolve as λ0,2/3 ≈ −κ/2
with a small and largely constant difference, whereas the
maximum sub-LE shows a clearly different tendency with
transitions from negative to positive and back to negative.
These transitions of the maximum sub-LE correspond to the
transitions of the dynamics from weak to strong chaos and back
to weak chaos. Similar to the shape of the maximum sub-LE,
the maximum LE of the system and its Kolmogorov-Sinai
entropy also peak at intermediate feedback strengths κ [14,34].

Using the entire three-dimensional vector state x(t) =
(�(E),�(E),n)
 at time t and the delayed counterparts around
t − τ according to the sampling of the delay integral, we apply
the algorithm as discussed before to the numerical time series.
From the finite perturbations �xj (tn) and �xj (tn − τ + θk) the
local linear map is reconstructed. We chose a small step size of
δt = 10 ps and a single sampling point for the integral located
at its center, i.e., K = 1 and θ1 = 5 ps. With the approximated
sequence of evolution operators ãn our algorithm is able to
reproduce the sub-LE spectrum with all its features. An almost
exact agreement of the exponents for wide ranges of the feed-
back can be found. The largest deviations are located at small
feedback rates, however, maintaining the shape of the curves
and preserving the zero crossing of the maximum exponent at
κ = 13 ns−1. The remaining error is related to nonlinear terms
entering the local maps due to finite perturbation sizes as well
as the imperfect sampling of the delay term integral.

B. Application with scalar observables

We want to apply the same algorithm for reconstruction
of the local linear map and calculation of the sub-LE for the
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case that only a scalar observable of the vector state of the
delay system is recorded. It is known that, in such a case, it
is important to distinguish whether the delayed feedback is
scalar or vectorial and whether the feedback variable is the
one recorded or not in the case of scalar feedback [17]. For
discrete maps, a proper embedding enables the recovery of
the equivalent equations of motion in the embedding space
rigorously for scalar feedback [17]. We follow a different
approach aiming at continuous time systems with vectorial
feedback.

In analogy to a typical experimental setup with a semicon-
ductor laser subject to delayed optical feedback, we calculate
the optical intensity P (t) = |E(t)|2 from the same time series
we used before. The direct application of the algorithm like
in the case of the scalar time series from the Ikeda system
in Sec. III would not make sense because the reconstructed
map would suffer from false nearest neighbors originating
from the projection in phase space. We thus follow the idea
of phase space reconstruction using delay embedding. For
clarity we refer in the following to the term lag to distinguish
between the embedding time lags and the feedback delay of
the system. In the case of the drive-response setup, Pyragas
showed that the embedding method is useful, as soon as
the embedding dimension sufficiently covers all degrees of
freedom of the entire system consisting of the drive and
response [25]. Although it appears reasonable to consider
P (t − τ ) as a drive variable and P (t) as an observable of
the response system, we will not be able to meet the necessary
conditions in our case. This is due to the fact that the drive
in the delay system originates from a driven system, in the
sense that the state at t − 2τ acts on the state at t − τ and
analogously for further multiples of the delay. Apparently the
entire complexity of the high-dimensional delay dynamics
enters here, so the reduction to the simple drive-response
scheme may fail. Reference [35] comprises a study on Taken’s
embedding theorem for driven systems. Here we consider
the incompleteness of the vector-state reconstruction as an
additional source of error and apply the algorithm directly in
order to obtain an estimate for the effect of this error. We apply
the embedding part of the Pyragas algorithm as for the case of
a drive-response relationship with the embedding dimension
being the dimension of the node of the delay system. Further,
we also use the method of setting embedding lags equal to
the step δt of the map, which by construction reduces the
number of fit parameters. The resulting local linear map for the
three-dimensional embedding of the simulated laser intensity
on a grid tn = nδt reads

�Pj,n+1 = ãn · �Pj,n + b̃n · �Pj,n,τ + εj,n. (14)

It forms the reconstructed neighborhood of Pn+1 = P (tn+1) as
well as the embedded phase space vectors Pn = (P (tn),P (tn−1),
P (tn−2))
 and Pn,τ = (P (tn − τ ),P (tn−1 − τ ),P (tn−2 − τ ))
.
The fit coefficients are linear forms ãn = (ãn,1,ãn,2,ãn,3) and
b̃n = (b̃n,1,b̃n,2,b̃n,3). Nearest neighbors are sought in the joint
space of (Pn,Pn,τ ) to construct the perturbation vectors. In
analogy to the conditional Lyapunov exponents that are being
calculated from the ãn in the case of drive-response schemes,
we calculate the sub-LE spectrum for the delay system. The
results for the spectrum of the Lang-Kobayashi trajectories are
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FIG. 4. (Color online) Spectrum of sub-LEs from the Lang-
Kobayashi equations as a function of the feedback strength κ

consisting of the maximum (blue), second (green), and third (red)
exponents. Dashed lines indicate the true values calculated by a
linearization. Solid lines (both with and without markers) denote
the reconstructed values using nearest-neighbor reconstruction with
a time step of δt = 10 ps. The total length of the time series was
20 μs or N = 2 × 106 points with splitting in 5% reference and
95% pool; see Appendix A. Only the intensity of the simulated
semiconductor laser was used as a scalar observable of the trajectory
underlying the calculation of the spectrum. Solid lines without
markers denote the result obtained by simple embedding using three
support points at (tn,tn−1,tn−2) and three support points for the first
delay at (tn − τ,tn−1 − τ,tn−2 − τ ). Solid lines with markers denote
the result of the extended embedding using also the past state two
delay times before at (tn − 2τ,tn−1 − 2τ,tn−2 − 2τ ).

shown as solid lines (without markers) in Fig. 4. We observe
that general features of the spectrum like the spread with
increasing feedback rate and the approximate location of the
exponents are already reproduced. Still, the results are clearly
not as good as those presented in Fig. 3, indicating the impact of
the error from embedding, although except for the embedding
procedure there are no major procedural changes compared to
the reconstruction using the vector states in Sec. IV A.

C. Extended embedding

We propose a method to overcome the limitations of the
phase space reconstruction using extended lag embedding.
The idea is based on the iterative drive argument presented
above. The linear map as given by Eq. (14) is incomplete
in the sense that also information from further multiples
of the delay time causally acts on Pn+1. In particular, the
state of the drive, i.e., the delayed vector state x(t − τ ) of
the node, can be considered as insufficiently reconstructed
by the vector Pn,τ . Thus we extend the drive state by
the information available another delay time earlier. The
extended vector Pn,τ = (P (tn − τ ),P (tn−1 − τ ),P (tn−2 − τ ),
P (tn − 2τ ),P (tn−1 − 2τ ),P (tn−2 − 2τ ))
 is incorporating in-
formation from a previous delay interval. Accordingly, the
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linear form for the delay term is extended as b̃n =
(b̃n,1, . . . ,b̃n,6). The increased dimensionality is a clear draw-
back for the performance of the algorithm because nearest
neighbors will be sought in a high-dimensional space and
will be more distant than in the case of lower dimensions.
Still, with the presented number of dimensions and length of
the time series as described above, one obtains reasonable
performance on standard computers. Except for the extended
embedding of the delay term, we leave the algorithm as before.
The outcome of the extended technique is shown as solid lines
with markers in Fig. 4 in comparison with the simple lag
embedding of the delay term as well as with the true exponents.
Underlying time series and algorithm parameters are the same.
Although the increased dimensionality also leads to increased
nearest-neighbor distances because the total length of the time
series is kept constant, we recognize a clear improvement of
the reconstructed sub-LE spectrum. The leading exponent is
reconstructed almost perfectly, in particular the zero crossing
is reproduced. The reconstruction of the middle exponent
can also be regarded as excellent, while the lower exponent
still shows a big deviation from its true value. However, the
improvement compared to the simple lag embedding is already
visible also in the lowest exponent. Among other possible
extensions of the algorithm for scalar observables, we regard
the incorporation of multiple delays as the method yielding
the most significant improvement.

V. DISCUSSION AND OUTLOOK

We have developed and characterized a robust algorithm
to compute the sub-Lyapunov exponent from time series of
delay systems in the chaotic regime. The algorithm is based on
the reconstruction of the local linearized equations of motion,
as has been laid out by Bünner and co-workers [15,17] and
Hegger and co-workers [16,31]. This representation of a delay
system directly leads to a drive-response description, in which
the sub-Lyapunov exponent is a property of the response
system. Since our aim is the analysis of continuous vector-state
systems, we construct our method in three steps.

First, we use the example of the logistic map with delay to
introduce the reduction to a local map and we define metric
distances in the space formed by the instantaneous and delayed
variables for the nearest-neighbor search. Second, we present
the scalar, continuous, Ikeda delay system to discuss the
influence of a discretization time step and the approximation
of the functional integral part. Third, we study vector systems
and show that the algorithm can extract the true values of the
sub-LE when the full information of the system is known.
Finally, we tackle the challenge of having access to a single
scalar observable of the vector system and show that the
algorithm, in this case, requires an extended lag embedding.
For all the numerical configurations covered in this paper, the
algorithm is remarkably precise and recovers the true value
of the sub-LE. In addition, we show by example that this
algorithm is robust to noise and can extract the sub-LE from
experimental time series.

Our method faces common trade-offs because the calcu-
lation of Lyapunov exponents is formally based on limits,
which in practice cannot be met simultaneously. For instance,
the finite size of perturbations is a dominant source of error

because nonlinear terms of the local vector field are involved.
This issue might be addressed by extrapolation techniques,
which could serve also for taking the limit of a small step
size. There is also potential for extensions and adaptations as
well as for estimations of the error when applying embedding
to scalar recordings of vector data. Measuring multivariate
experimental time traces could clearly support our method
here and for the dynamics of semiconductor lasers it has
recently been shown to be possible to obtain the required
information [36].

The presented perspective, in which the node of the delay
system is considered as a response system, allows for accessing
intrinsic dynamical properties, which otherwise would be
practically impossible. With the applicability to real world
data the method is very promising for extracting relevant
information from physical systems. The recovery of the sub-
LE will also be helpful in a context where the transformation
by the nonlinear node needs to be tailored for an application.
Beyond the results presented here, where an entire trajectory is
only described by a single exponent, the presented algorithm
will also allow for the study of finite-time Lyapunov exponents.
In multiscale systems a phase space resolved version of the
sub-LE can provide valuable information about the local
dynamics. In conclusion, given the relevance of the sub-LE for
analysis as well as application of delay systems and given the
difficulty to properly analyze such high-dimensional systems
in general, this paper paves the way to a better characterization
of delay systems from time series.
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APPENDIX A: TECHNICAL IMPLEMENTATION

1. Splitting time series

Practically, in order to avoid nearest neighbors being close
in time to a reference point, we implemented an asymmetric
procedure consisting of a reference time trace and another
equivalent time trace acting as a pool from which nearest
neighbors are chosen. The reason for this choice lies in the
amount of computation. While for the example of a typical
Lang-Kobayashi trajectory a reference time series of 1 μs
is sufficient in terms of the convergence of the finite-time
Lyapunov exponent to its limit value, one may need a much
longer trajectory serving as a pool for nearest neighbors
of the reference points in order to obtain sufficiently small
nearest-neighbor distances. We particularly make use of this
asymmetry in Sec. IV C, in which we adapt the algorithm to
work with scalar observables of the vector state.

2. Nearest-neighbor search

The space of the state variables of the nonlinear node,
whether they are the original ones or substitutes from lag
embedding, is not a priori a metric space. The choice of
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the norm defining distances between two points is arbitrary
and theoretically does not affect the calculation of Lyapunov
exponents, when working with infinitesimal perturbations and
taking the limit of infinite time for averaging. In the context of
our study, where the limit conditions are not completely met,
the choice of a proper norm is relevant. We apply the Euclidean
norm after guaranteeing that the phase space variables are
sufficiently uncorrelated. If this is the case, the result hardly
depends on the applied norm. We confirmed this using instead
the maximum norm and also a mixed norm, which first takes
the Euclidean distance in the instantaneous vector and the
delayed vector separately and then measures the maximum of
both. For the scalar observable of the vector state, in which
we linked the embedding lag to the step size δt given by the
sampling, we found that one obtains the best results in terms
of lowest fit error and closest approximation of the sub-LE if
the step size is taken to be small compared to the time of the
first zero crossing of the autocorrelation function. This choice
is unusual in terms of the typical embedding lags because it
naturally leads to a prolate attractor projection. We unfold
this set of points using a Gram-Schmidt orthogonalization
separately on the instantaneous vector and the delayed vector
before applying the standard norm.

APPENDIX B: ROBUSTNESS

The minimal number of nearest neighbors to construct
small perturbations around a reference point is given by the
number of coefficients. With the linear regression method the
minimal number is higher, typically by a factor 2, because of
singular matrices appearing frequently during the calculation.
For our calculations we use a much higher number of nearest
neighbors than technically necessary. This method has three
advantages if sufficient data are available. First, the fit with
J � Jmin introduces a certain robustness with respect to
additive noise. Second, the results become insensitive to
second-order nonlinear terms that may play a role for finite
perturbations. Finally, a dynamical error occurs even in a
noise-free system when approximating the integral part of the
delay term in the continuous case. We demonstrate these issues
by means of application of our algorithm to time series from
the logistic map with delay and the continuous delay Ikeda
system like in Secs. II and III.

1. Additive noise

We add measurement noise to the trajectories of the delayed
logistic map such that xn → x ′

n = xn + rξn with ξn being
normally distributed random numbers with unit variance. The
reconstruction algorithm is applied to the time series x ′

n to
calculate the sub-LE from the obtained coefficients ãn. The
standard deviation r of the noise term is compared to the

average size of the perturbations �x ′2 = 〈�x ′2
j,n〉 from nearest

neighbors yielding the effective noise strength reff = r/�x ′.
Figure 5 shows a comparison of the obtained exponents with
three clearly distinct numbers of nearest neighbors, where the
length of the pool trajectory has been adapted proportionally
such that the average size of perturbations is the same and
the results are comparable. The noise term leads to over-
or underestimation of the sub-LE. For increasing J , the
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FIG. 5. (Color online) Reconstruction of the sub-LE of the de-
layed logistic map at feedback κ = 0.25 with additive Gaussian
measurement noise. The true exponent λ0 = 0.1588 is indicated by
the dashed horizontal line. The horizontal axis is the effective noise
strength reff . The reconstructed exponent is shown for J = 4 (black),
J = 40 (red with dots), and J = 400 (blue with circles), with pool
sizes 2×103, 2×104, and 2×105, respectively.

reconstructed λ̃0 converges to the true λ0 if r < �x ′. We
further note a small offset of the exponent for small J in
the limit of low noise, which can be explained by nonlinear
terms affecting the finite perturbations and is compensated by
large J as well.

2. Dynamical error

For the time series of the continuous Ikeda delay system,
there are two sources of error in the reconstructed local linear
map, namely, nonlinearities affecting finite perturbations and
the finite sampling of the delay integral term. One may
distinguish the contributions to the approximation error in
the sub-LE by varying parameters of the algorithm such that
either one or the other source can be excluded from the
effect. We demonstrate here that the fit using a large number
of nearest neighbors can partially compensate for such an
error. At an intermediate feedback rate of κ = 10 we apply
the reconstruction algorithm to the time series using different

10 100

−1.2

−1.1

−1

−0.9

J

λ 0

FIG. 6. Convergence of the reconstructed sub-LE of the numeri-
cal Ikeda system (solid line with markers) to the true sub-LE λ0 = −1
(dashed line) with increasing number of nearest neighbors J at
feedback strength κ = 10.
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numbers J of nearest neighbors. The length of the pool time
series is adapted proportionally to keep the average size of
the perturbations and hence the average error of a single
perturbation constant. Figure 6 shows the convergence of the

reconstructed λ̃0 to the true λ0 = −1 for increasing J . Around
J = 100 the convergence is on the order of the remaining
error, which originates from higher-order nonlinearities and
the finite reference trajectory.
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