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This work provides new insights in the field of applied photochemistry based on semiconductor-free
nanoporous carbons and its application to sunlight energy harvesting. Using carbon materials of
increasing average pore size, chemical functionalization to introduce a variety of O- and S-containing
functional groups and monochromatic light, we have shown the dependence of the photochemical
conversion of phenol in the confinement of the carbons nanopore space with the wavelength of the
irradiation source, the dimensions of the pore voids and their surface chemistry. The photochemical
conversion of phenol inside the carbons pore space was found to be very sensitive to the nature of the S-
containing groups and the confinement state of the adsorbed pollutant.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The use of sunlight as a sustainable low cost source of energy
remains a largely investigated topic due to its potential application
in various fields [1,2]. After the first studies reporting the degra-
dation of cyanides in solution upon irradiation of ZnO and TiO2
electrodes [3e6], the interest in heterogeneous photocatalysis for
the degradation of pollutants has significantly increased. However,
advances in the area have rather been restricted to the use of
inorganic semiconductors -mainly transition metal oxides and
sulfides-that should be stable, nontoxic, inexpensive, as well as
having suitable electronic band positions for an efficient visible
light absorption.

An interesting approach to improve the usually low photonic
efficiency of most photocatalysts is the incorporation of carbon
additives; the strong carbon/semiconductor interfacial electronic
effects and the high electron mobility in the carbon matrix boost
the separation of photogenerated charge carriers, improving their
possibility to react with electron donor/acceptors present in the
medium [7e10].
a).
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More recently, the photochemical activity of nanoporous car-
bons has been reported, demonstrating their potential for an effi-
cient use of light in chemical reactions in the confinement of pore
spaces [11,12]. This has opened new perspectives for the application
of carbon materials in photoluminescence and photocatalytic pro-
cesses (ca. photooxidation of pollutants, regeneration of exhausted
adsorbents, photoelectrochemical splitting of water and enhanced
adsorption/oxidation) [13e19].

The conversion of light inside the carbon pore space has been
found to be very sensitive to confinement effects and the surface
functionalization of the carbon [20e22]. Several authors have re-
ported the possibility to modulate the photochemical response and
light absorption features of nanoporous carbons upon tuning the
surface acidic/basic character and pore architectures. By intro-
ducing N and S-containing groups to the carbon and enhancing the
interfacial molecule/carbon/light interactions (through adequate
pore-guest matching), it is possible to favor the sunlight harvesting
and its conversion into chemical reactions [22e26].

Aiming at understanding the mechanisms governing the con-
version of light in chemical reactions in the pore space of nano-
porous carbons, we herein report the combined effect of S-doping
and nanopore size on the photooxidation of phenol. We show the
dependence of the photochemical activity in the UVevisible range
on the nature of the sulfur functionalities and pore dimensions,
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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choosing the photooxidation of phenol as a model reaction.

2. Experimental

2.1. Materials

A series of nanoporous carbons with progressively changing
pore structureswere obtained from the activation of coal under CO2
atmosphere (10 �C/min up to 850 �C in 100 mL/min N2, then switch
to CO2, 10 mL/min) for variable periods of time. The samples were
labelled as F, F1 and F4, where the number represents the
increasing burn-off degree achieved in the activation. To introduce
S-containing functional groups, F, F1 and F4 samples were exposed
to H2S (ca. 1000 ppm balanced in nitrogen, flow rate 150 mL/min)
for 3 h at 800 �C (heating rate 10 �C/min). The nomenclature
assigned to the S-doped carbons is the name of the initial material
followed by “S” (i.e., F-S, F1-S and F4-S).

2.2. Irradiation set-up and phenol photooxidation

To isolate the effect of the carbon/light interactions taking place
inside the pores, the photochemical reaction was carried out from
the adsorbed state, irradiating aqueous suspensions of the nano-
porous carbons loaded with the target pollutant [11,12]. The
amount of phenol adsorbed in the pore system (ca. 90 mmol/g
carbon) was below themaximum adsorption capacity of all carbons
addressed in this work; this assures the confinement of phenol in
the micropores [11,12], and prevents desorption during the irradi-
ation (eliminating the contributions of direct photolysis and
adsorption/desorption kinetics). Furthermore, the use of mono-
chromatic light allows us to differentiate the conversion of high and
low energy photons. Details on the phenol photooxidation proce-
dure have been described elsewhere [12,20]. Briefly, suspensions of
the carbon materials in a phenol solution are allowed to equilibrate
until all phenol is completely removed, and then irradiated for
30 min under stirring. The solution is filtered out and analyzed. The
carbons are further extracted with ethanol and the alcoholic solu-
tion is also analyzed (extraction yields are previously determined).
Direct phenol photolysis was also performed for comparison. All
the measurements were done at least in triplicate. A Xe lamp
(300 W) coupled to a monochromator was used to irradiate the
samples. The photon flux arriving at each wavelength was
measured through ferrioxalate actinometry following IUPAC rec-
ommendations; experimental details are given in the Supplemen-
tary Information (SI), along with the corresponding values at each
wavelength (Fig. S1).

2.3. Spin trapping electron spin resonance (ESR) measurements

The formation of paramagnetic species in solution during irra-
diation of the carbon suspensions was detected by a nitrone spin
trapping agent (5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-
oxide, DEPMPO). This compound is capable of forming spin adducts
with hydroxyl and superoxide radicals, creating more stable
nitrone radicals that are easily detected by ESR spectroscopy in
aqueous solution. About 0.5 g/L of the carbon samples were sus-
pended in 5 mL of HClO4 buffer (pH 3), and the appropriate volume
of DEPMPO was added to the suspension to reach a final concen-
tration of 18 mM. Samples were introduced in capillary quartz
tubes and irradiated for 5, 10, 20 and 60 min (Philips TL K40W/05
lamp, with a broad emission peak centered at 365 nm). ESR spectra
were immediately recorded from the solution (after filtering out
the solids) at room temperature on a Bruker ESP 300E X band
spectrometer with the following spectral parameters: receiver gain
105; modulation amplitude 0.52 G; modulation frequency 100 kHz,
microwave frequency 9.69 GHz; microwave power 5.024 mW;
conversion time 40.96 ms; center field 3450 G, sweep width 120 G.
The intensity of the second line in the spectra was used for the
quantification of the signals.

2.4. Textural characterization

The textural properties of the samples were determined by
means of N2 adsorption isotherms at �196 �C in a volumetric
analyzer. Before the experiments, the samples were outgassed at
120 �C 17 h to constant vacuum (10�4 Torr). The specific surface
area, SBET, and pore volumes were evaluated from the gas adsorp-
tion isotherms using the DubinineRadushkevich equation. The
pore size distribution in the full micro-/mesopore range was
calculated from the N2 adsorption isotherms using the 2D-NLDFT-
HS (www.NLDFT.com) model assuming surface heterogeneity of
carbon pores [27].

2.5. Elemental analysis

Samples were chemically characterized by elemental analysis.
The determination of carbon, hydrogen and nitrogen was carried
out by a LECO CHNS-932 (ASTM D-5373), sulfur was measured in a
LECO S-144DR (ASTM D-4239) analyzer, while oxygen was directly
measured in a LECO VTF-900 CHNS-932 microanalayzer. All the
samples were previously dried under vacuum at 120 �C for 17 h.

2.6. Surface pH

The surface pH of the carbon samples was measured in an
aqueous suspension containing 0.4 g of carbon sample powder
added to 20 mL of distilled water. After equilibration under stirring
overnight, the pH value was measured using a glass electrode.

3. Results and discussion

Fig. 1 (top) shows the photochemical conversion of phenol in-
side the confined nanopore space of carbons with gradually
increasing pore size at selected wavelengths. The progressive
activation of carbon F under CO2 atmosphere to render samples F1
and F4 reflects in the evolution of porosity (in terms of surface area
and pore volumes, see Table 1). The conversion values were
normalized per photon flux to allow the comparison of the per-
formance at different wavelengths (absolute conversion values are
shown in Fig. S2). First of all, the phenol conversion in the nano-
confined state was higher than that of the photolytic reaction in a
solution (photolysis is ca. 4% at 269 nm and negligible at longer
wavelengths) for all carbons tested regardless the wavelength. This
confirms the efficient use of light for the photooxidation of phenol
in the constrained pore structure of the carbons, even at wave-
lengths corresponding to the visible range. Furthermore, the data
shows interesting differences in the photochemical performance of
the carbons at the different wavelengths, pointing out the
outstanding role of porosity and surface functional groups.

As previously reported for other nanoporous carbons using
various illumination conditions (i.e., monochromatic and poly-
chromatic light and various irradiation set-up) [11,12,20,21], the
dependence of the photochemical conversion on the wavelength
followed a U-shaped pattern. For all the nanoporous carbons the
conversion was more efficient at high (ca. 269 nm) and low (ca.
500 nm) energy photons corresponding to UV and visible light,
respectively. Similarly, all carbons tested showed a minimum at
400 nm (Fig.1), suggesting the presence of various photoactive sites
in the carbons, which would be activated under different illumi-
nation conditions (incident photon energy).

http://www.NLDFT.com


Fig. 1. (top) Normalized phenol conversion per incident flux at different wavelengths
for the studied nanoporous carbons. (bottom) Effect of sulfur on the conversion of
phenol, defined as the difference between the conversion in the S-doped and its
corresponding as-received carbon. (A colour version of this figure can be viewed
online.)

Table 1
Main textural parameters of the studied nanoporous carbons obtained from the
equilibrium nitrogen adsorption isotherms at �196 �C.

SBET
[m2 g�1]

VPORES
a

[cm3 g�1]
Wo (DR)b

[cm3 g�1]
Lc

[nm]

F 800 0.35 0.34 0.93
F1 1150 0.50 0.55 1.37
F4 1800 0.84 0.80 2.00
F-S 765 0.32 0.32 0.85
F1-S 1090 0.49 0.41 1.04
F4-S 1535 0.75 0.56 1.52

a Total pore volume evaluated from the N2 adsorption isotherms at �196 �C at p/
p0 ~0.99.

b Micropore volume evaluated from the DubinineRadushkevich method applied
to N2 adsorption isotherms.

c Mean narrow micropore size evaluated from the StoecklieBallerini equation.
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As for the effect of sulfur, the higher phenol conversions were
obtained for the S-doped carbons at all the wavelengths, with
respect to the pristine carbons. The exception is sample F, for which
the performances of the as-received and S-doped carbons are quite
similar. The superior photochemical conversion of the S-doped
carbons was more pronounced at 269 and 500 nm, demonstrating
the role of sulfur in the exploitation of both UV and visible light.
This is more clearly seen in the difference in the conversion of the S-
doped carbons vs. their corresponding undoped counterparts
(Fig. 1, bottom). As shown, the effect of sulfur becomes more
important for the carbons with a larger average pore size (samples
F1 and F4); this could be partly attributed to the higher sulfur
content in these carbons.

The enhanced effect of sulfur on the activity of nanoporous
carbons was also reported for the photoelectrochemical water
splitting using polychromatic light [22]; we herein correlate the
conversion of another reaction (phenol photooxidation) with the
wavelength of the irradiation source, the nanopore size and the
nature of the sulfur groups.

The nanoporous carbons' features were modified by a gradual
activation of carbon F under CO2 atmosphere in order to obtain a
series of materials with different average pore sizes. The progres-
sive activation of the carbons is seen in the evolution of porous
features (Table 1 and Fig. 2), whereas the chemical composition
remained rather unchanged. The analysis of the textural changes
was performed exclusively from the experimental N2 adsorption
isotherms at �196 �C; the use of CO2 adsorption to analyze the
narrow microporosity is not recommended in the case of highly
functionalized carbons (O-and S-doped) due to the occurrence of
specific interactions with the surface groups [28,29].

As expected, the gradual activation caused an increase in the N2

uptake (Fig. 2) due to the creation of pores and their enlargement.
The pristine carbon showed a type Ia adsorption isotherm [30],
characteristic of highly microporous materials with a narrow dis-
tribution of micropores pore sizes (w < 1 nm), whereas the acti-
vation caused an opening of the knee of the N2 isotherm (type IIb
shape) characteristic of materials with wider micropores and nar-
row mesopores (w < 2.5 nm). This is seen in the PSD calculated
from the N2 adsorption isotherms (Fig. 2). It is noted that the S-
doped carbons have a lower porosity that their corresponding non-
doped counterparts (there is a slight drop in the surface area and
pore volumes after the incorporation of sulfur). In contrast, the
changes in the PSD seen in the full micro/mesopore range are subtle
(Fig. 2), affecting mostly the larger pores. Indeed, a slight narrowing
of the average pore size (evidenced by the L parameter, Table 1) was
observed, indicating that sulfur is mainly incorporated in the larger
pores. This effect is more noticeable for sample F4-S that presents
the highest burn-off degree and the largest amount of sulfur.
Similar findings have been reported for the sulfurization of char-
coals [31].

The amount of sulfur incorporated depends on the porosity of
the carbons, being almost twice larger for the most activated car-
bon compared to the pristine F sample. The oxygen content in the
initial carbon is rather small (Table 2), and did not increase much
after the sulfur doping, suggesting that most of sulfur is in the form
of sulfides, thiophenes, and disulfides (non-oxidized groups). The
increase in the oxygen content after the incorporation of sulfur was
more pronounced for the carbons with wider pores, pointing to the
presence of oxidized sulfur groups. To evaluate the dependence of
the photochemical activity of the carbons on the amount and na-
ture of the sulfur species, the chemistry of the S-groups was
investigated by XPS (Table 2, Tables S1-S3 and Fig. S3-S5 in SI) and
TPD-MS (Fig. 3 and Fig. S6).

XPS analysis of the S 2p core level spectra revealed the presence
of two peaks at 163.6 and 164.7 eV (Fig. S4) that can be assigned to
thiophenes and disulfide groups, and oxidized sulfur in thioethers,
respectively [32]. No signal corresponding to free elemental sulfur
was detected. Interestingly, there is a clear correlation on the
relative distribution of the sulfur peaks with the burn off degree of
the carbons, as the intensity of the peak located at lower binding
energies (i.e., non-oxidized sulfur) decreases with the activation



Fig. 2. (a) Nitrogen adsorption isotherms measured at �196 �C of the studied carbons and (b) pore size distributions obtained applying the 2D-NLDFT-HS method to the N2 data. (A
colour version of this figure can be viewed online.)

Table 2
Chemical composition obtained by elemental analysis (wt.%), surface elements
determined by XPS (at.%) and surface pH.

Sample Elemental analysis, wt. % XPS analysis, at. % Surface pH

C H O S C O S O/C

F 96.15 0.70 2.90 0.11 87.4 12.6 ND 0.14 8.1
F1 95.92 0.45 3.43 0.10 90.2 9.8 ND 0.11 8.2
F4 95.85 0.22 3.73 0.11 91.4 8.6 ND 0.10 8.0
F-S 92.31 0.46 3.62 3.62 91.4 6.1 2.5 0.07 7.9
F1-S 88.23 0.37 6.07 5.34 87.7 10.5 1.8 0.12 7.6
F4-S 87.29 0.25 5.54 6.93 84.0 14.6 1.4 0.17 7.4

ND e non detected.

Fig. 3. Profiles from the temperature programmed desorption corresponding tom/z 48 and 64 signals for the studied carbons. (A colour version of this figure can be viewed online.)
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treatment of the carbons, as a result of surface oxidation. As the
overall sulfur content also increased with the activation, this sug-
gests that the formation of oxidized sulfur groups is favored in
carbons with larger pore sizes. This is expected to affect the
photochemical activity of the carbons, as discussed below.

TPD-MS also revealed interesting features of the S-containing
groups in the carbons. Besides the m/z signals corresponding to CO
and CO2 evolution -upon decomposition of O-containing groups as
quinones and carboxylic acids-, only those corresponding to the
release of SO (m/z 48) and SO2 (m/z 64) were detected (Fig. 3). This
would indicate that all released sulfur is bonded to the carbon
surface in oxidized configurations, which apparently contradicts
the XPS analysis. In fact, according to literature [31], sulfurecarbon
complexes in thiol and sulfide configurations are very reactive and
can be easily oxidized (chemisorbed oxygen or released from the
decomposition of O-groups) into SO and SO2 evolving groups upon
heating during the TPD assays. Thus, the detection of SO and SO2
cannot be used as a definitive confirmation of the chemical state of
the sulfur bonded to the carbon surface.

To clarify this, we performed a deconvolution of them/z thermal
profiles; as both m/z 48 and 64 signals showed similar trends
(Fig. S6), we further discuss those of m/z 48. Data corresponding to
the devolution analysis of the S-doped carbons is shown in Fig. 4.
There are three main peaks in the profiles that can be assigned to
thiol groups (P1 at ca. 330 �C), and to the decomposition of oxidized
sulfides (P2 and P3 at ca. 500 and 600 �C, respectively) [33,34]. The
contribution of P1 is quite high for the carbon with the narrowest
pore size (sample F-S), and it gradually decreases with an increased
activation level, while the relative abundances of P2 and P3 became
larger. This corroborates that above 500 �C, the m/z 48 and 64
signals are partly attributed to the presence of sulfur in an oxidized
form, in agreement with the XPS data. This supports our hypothesis
that the incorporation of oxidized sulfur groups to the carbon
surface is favored in the carbons with large pores, whereas thiols
and/or disulfides are dominant for the carbon with narrow pore



Fig. 4. Deconvolution of TPD-MS profiles corresponding to m/z 48 on the S-doped nanoporous carbons, and relative abundance of the deconvoluted peaks of SO (m/z 48) and SO2

(m/z 64). (A colour version of this figure can be viewed online.)
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sizes. In fact, in pores with sizes of the fraction of nanometers only
sulfur incorporated to aromatic rings in thiophenic configurations
can exist, owing to spatial constraints for bulky sulfoxides or
sulfones.

Taking all of these into account, the differences in the photo-
chemical response observed on the carbons must be discussed in
terms of their differences in surface chemistry and the confinement
state of phenol in the nanopore space. The light absorption features
of amorphous carbons depend on the electronic transitions
involving the sp2 carbon clusters [35e39] and/or the activation of
chromophoric groups on the carbon surface [21e24]. Upon irradi-
ation of the carbon excitons (holes or electrons) are formed, and if
their recombination is delayed they can participate in charge
transfer reactions with electron donors. Medium to low range ex-
citons (Frenkel-like created in the p-p* and s-p electronic transi-
tions involving zig-zag and carbine-like sites [38,40]) are expected
to be dominant in all nanoporous carbons [20,40e42]. Charge-
transfer excitons formed by localized states involving O-, S- and
C- atoms may be formed in F1 and F4 samples as well as in the S-
doped carbons, although they are expected to be negligible in the
initial F carbon (due to its lower level of functionalization).

For the undoped carbons, the gradual activation is not expected
to produce changes in their optical response since it affects the pore
size (i.e., enlargement), with no significant changes in surface
chemistry or the sp2/sp3 hybridization of carbon atoms. The lower
conversions for F1 and F4 -compared to that for F carbon-are then
attributed to the weaker adsorption of phenol molecules in the
large pores, thus decreasing the probability of splitting of the
photogenerated exciton by a fast charge transfer with electron
donors and/or holes scavengers (i.e., oxygen, adsorbed phenol,
water molecules to form radicals) [20,21].

In the case of the S-doped carbons several scenarios are plau-
sible. First, the incorporation of sulfur provokes a narrowing of the
average pore size (Table 1); this would boost the separation of the
photogenerated charge carriers (holes and electrons) in the nano-
pores due to the proximity of the adsorbed phenol molecules
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[20,21]. The fast charge transfer is favored in the S-doped carbons,
as the presence of heteroatoms lowers the energy difference be-
tween the electronic levels of the carbons [43,44]. The stabilization
of the holes through the oxidation of water (coadsorbed in the
nanopores) to form reactive oxygen species in the S-doped carbons
was supported by spin resonance spectroscopy using a nitrone as
trapping chemical [44]. A quantification of the radical species
detected in the pristine carbons compared to the S-doped carbons
is shown in Fig. 5 (the corresponding EPR spectra of all the samples
are compiled in Fig. S8).

The electrons generated are delocalized/spread through the sp2

domains of the carbons, allowing their participation in some other
electronic transitions with acceptors present in the medium (i.e.,
oxygen, transfer to the chromophores). Additionally, the S- and O-
containing groups can act as chromophores [45e47], photo-
generating excitons that also participate in the observed photo-
chemical reactions. Various oxidized forms of sulfur (thioesters and
sulfones) and O-containing groups have been reported to act as
chromophores [45,47]. Oxidized sulfur groups are bulky moieties
located in the wide micropores of the carbons, at the edges of the
aromatic graphitic sheets. The conjugation with the sp2 network of
the basal planes of the carbons favors the separation of the charge
carriers upon irradiation. The different chemical environments of
the S-groups explain the trend observed in the photochemical
response of the carbons. As seen from Fig. 1, the incorporation of
sulfur to the initial carbon improved the conversion of phenol but
the effect was less pronounced than that on the activated coun-
terparts. This suggests that thiols and/or sulfides -the dominant
moieties in FS- do not exhibit photoactivity towards oxidation at
the studied wavelengths. In contrast, when sulfur is predominantly
in oxidized forms, the photooxidative activity of the carbons is
largely improved, particularly at 269 and 500 nm and for sample
F4-S, which showed an abundance of these groups (Fig. 3). This
indicates the specific role of S and O containing groups in the
oxidation of phenol.
4. Conclusions

We show the pronounced effect of a confinement, wavelength
and S-functionalization on the exploitation of the energy harvest-
ing performance of nanoporous carbons. When sulfur is incorpo-
rated to a carbon matrix the conversion of light into a chemical
reaction (i.e., photooxidation of phenol, generation of O-radicals)
Fig. 5. Quantification of the oxygen radical species detected from the signal corre-
sponding to DEPMPO-OH adducts by integration of the ESR profiles. (A colour version
of this figure can be viewed online.)
becomes more efficient compared to that on the undoped carbons.
An adequate pore architecture is also essential to obtain higher
conversions in the constrained pore space; adjusting the pore size
to the dimensions of the adsorbed molecule inhibits the recombi-
nation of the photogenerated excitons, facilitating the stabilization
of the holes and electrons through the reaction with electron do-
nors and/or holes scavengers (i.e., dissolved oxygen, adsorbed
phenol, water molecules to form radicals). In all cases conversion in
the confined pore space of the functionalized carbons were higher
than those in a solution.

Besides S-doping, the light-stimulated conversion of phenol was
very sensitive to the nature of the sulfur moieties incorporated to
the carbon matrix, as well as highly dependent on the wavelength
of the irradiation source. This behavior is also linked to the ability of
the oxidized sulfur moieties to act as chromophores, being acti-
vated by low energy photons (sunlight). This was corroborated by
the higher amount of oxygen radical species measured in the S-
doped carbons. The versatility of nanoporous carbons in terms of
structure, porosity and surface chemistry makes it very promising
to invest on their use as sustainable photoactive materials for
various applications (e.g. photoelectrochemical water splitting for
hydrogen and oxygen evolution, pollutants photooxidation). The
challenge, however still remains in boosting their sunlight energy
harvesting ability by balancing the surface composition, porosity,
and charge-carrier mobility.
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