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ABSTRACT
Seismic, deformation, and gas activity (unrest) typically precedes 

volcanic eruptions. Tracking the changes of this activity with moni-
toring data makes it increasingly possible to successfully forecast 
eruptions from stratovolcanoes. However, this is not the case for 
monogenetic volcanoes. Eruptions from these volcanoes tend to be 
small but are particularly difficult to anticipate since they occur at 
unexpected locations and there is very limited instrumental monitor-
ing data. Many monogenetic volcanic fields occur in high-density, 
populated areas and/or tourist destinations, and thus even a small 
eruption can have a major economic and societal impact. We have 
gathered the available instrumental data for unrest and combined 
it with new historical accounts of seismicity. Our occurrences are 
mainly from high magmatic flux oceanic islands (Canary Islands, 
Iceland, Papua New Guinea, Mexico, and Japan). We find that seismic 
activity may start one or two years before eruption, but it intensifies 
at approximately two or three months, and one or two weeks. The 
petrological and geochemical characteristics of the deposits show 
that multiple magma batches interacted in a subvolcanic reservoir, 
and multiple intrusions occurred on a similar time scales to the seis-
micity. We propose a general model for these eruptions where early 
dike intrusions in the crust do not erupt (e.g., stalled intrusions) and 
make small plumbing systems, but they probably are key in creating 
a thermal and rheological pathway for later dikes to be able to reach 
the surface. These observations provide a conceptual framework for 
better anticipating monogenetic eruptions in similar settings and 
magmatic fluxes and should lead to improved strategies for mitiga-
tion of their associated hazards and risks.

INTRODUCTION
One of the main problems in quantifying the probability of an eruption 

in a monogenetic volcanic field is the lack of monitoring data. Mono-
genetic fields can be intermittently active for millions of years, but the 
magmatic processes and unrest associated with eruptive episodes that form 
the individual volcanoes are very short compared with the quiescence 
periods (e.g., Koulakov et al., 2015). Many of the historical monogenetic 
eruptions have occurred before there was any instrumental monitoring 
data, and our current knowledge is based on a few accounts of histori-
cal eruptions (e.g., Baker, 1946; De la Cruz-Reyna and Yokoyama 2011; 
Sánchez, 2014). We have done an exhaustive revision and compilation of 
the unrest activity (mainly seismicity) of all the historical monogenetic 
eruptions for which we have had access (12 eruptions in total; Table 1). 
We have combined this information with the available data of the zoning 
patterns of crystals to derive a conceptual model that integrates the time 
scales from the crystals with the unrest seismic data, as has been done in 
stratovolcanoes such as Mount Etna (Kahl et al., 2011), Vesuvius (Morgan 
et al., 2006), or Mount St. Helens (Saunders et al., 2012).

STUDIED ERUPTIONS AND PREVIOUS WORK ON 
MAGMATIC PROCESSES

The eruptions we have studied (Table 1) include seven in the Canary 
Islands (Spain), two in the Michoacan-Guanajuato region of Mexico, 

and one each for the Higashi-Izu area of Japan, the Goropu Mountains 
(Owen Stanley Range, Papua New Guinea), and Heimaey island (Ice-
land) (Table 1). Geochemical and petrological studies of these eruptions 
show that they were affected by open-system processes involving multiple 
magmas (Klügel et al., 2000; Johnson et al., 2008; Valentine and Hirano, 
2010; Rowe et al., 2011; Martí et al., 2013; Longpré et al., 2014; Albert et 
al., 2015). Mixing between mafic magmas has been reported in seven of 
the ten cases (Table 1). For the Jorullo and Paricutin (Mexico) eruptions, in 
addition to mixing between similar magmas, upper-crustal assimilation has 
also been proposed, and implies stalling magma batches at various crustal 
levels (Johnson et al., 2008; Rowe et al., 2011). Thus, these petrological 
studies suggest that these monogenetic eruptions are not driven simply 
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TABLE 1. UNREST ACTIVITY AND TIMING OF MAGMATIC PROCESSES

Eruption Location Date
(A.D.)

Magma mixing or 
assimilation, and 

ascent times

Seismic unrest 
activity

SF, F, A* Tenerife (Canaries) 1704–1705 1 year
2 months
2 weeks

 1 week–1 month†

CH§ Tenerife (Canaries) 1909 Yes 2 years†

2–3 months†

SJ# La Palma (Canaries) 1949 Years
Few months

Days

2.5 years†

90 days†

3 days†

T** La Palma (Canaries) 1971 Yes  Weeks–months†

6 days†

EH†† El Hierro (Canaries) 2011 1 month/25–150 days
3 weeks/2–90days

4–5 years§§

3 months§§

1 month§§

J## Michoacan (Mexico) 1759 10–200 days 5 months†

3 months†

P*** Michoacan (Mexico) 1943 Yes 2 months§§

Weeks§§

G††† Goropu Mountains 
(Papua)

1943 Unknown 2 years†

2–3 months† (?)
E§§§ Heimaey (Iceland) 1973 Yes 2 days§§

1 day§§

IO### Higashi-Izu (Izu 
Peninsula, Japan)

1989 Unknown 2 weeks§§

9 days§§

*SF—Siete Fuentes, F—Fasnia, A—Arafo. Petrological data from Albert et al. 
(2015). Unrest data from Sánchez (2014).

†—Seismic historical accounts.
§CH—Chinyero. Petrological data in this study (see the Data Repository [see text 

footnore 1]). Unrest data from Sánchez (2014).
#SJ—San Juan. Petrological data from Klügel et al. (2000). Unrest data from 

Sánchez (2014).
**T—Teneguía. Petrological data from Araña and Ibarrola (1973). Unrest data 

from Klügel et al. (1997) and Sánchez (2014).
††EH—El Hierro. Petrological data from Martí et al. (2013) and Longpré et al. 

(2014). Unrest data from Instituto Geográfico Nacional (www.ign.es).
§§—Monitored seismicity.
##J—Jorullo. Petrological data from Johnson et al. (2008). Unrest data from 

Yokoyama and De la Cruz-Reyna (1990), Carreón Nieto (2002) and De la Cruz-
Reyna and Yokoyama (2011).

***P—Paricutín. Petrological data from Rowe et al. (2011). Unrest data from 
Yokoyama and De la Cruz-Reyna (1990).

†††G—Goropu. Unrest data from Baker (1946).
§§§E—Eldfell. Petrological data from Mattsson and Oskarsson (2005) and Higgins 

and Roberge (2007). Unrest data from Thorarinsson et al. (1973).
###IO—Ito-oki. Unrest data from Ukawa (1993).
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by dikes that travel from the mantle to the surface, but support a more 
complex scenario of magma interactions and assimilation in subvolcanic 
reservoirs, and has been proposed also for other systems (e.g., Németh et 
al., 2003; Johnson et al., 2008; Rowe et al., 2011; Brenna et al., 2012; Martí 
et al., 2013; Longpré et al., 2014; Albert et al., 2015; Cortés et al., 2015).

In addition, modeling of the zoning patterns of olivine crystals of the 
Siete Fuentes, Fasnia and Arafo eruptions in the Canary Islands (Albert 
et al., 2015) shows that there were several storage regions and magma 
mixing events that occurred approximately one year, two months, and two 
weeks before the eruption. Similar time frames from crystals have been 
found in the other studied eruptions of San Juan (Klügel et al., 2000), 
Jorullo (Johnson et al., 2008) and El Hierro (Martí et al., 2013; Longpré 
et al., 2014). Below we show that the time scales from the crystals and 
those of seismic unrest in these monogenetic eruptions can be correlated, 
and thus allow us to propose a new conceptual model of magma storage 
and migration before eruption.

METHODS
Instrumental monitoring data are available for four eruptions, but only 

for El Hierro 2011 (Canary Islands) the data are of high quality by modern 
standards (López et al., 2012). For the rest of the eruptions, we recorded 
the time series of accounts of felt earthquakes in historical documents (see 
Table 1, and the GSA Data Repository1). Some documents give the number 
of seismic events, the effects on people, and buildings, and sometimes an 
intensity value (e.g., Mercalli scale). Other reports are not detailed enough 
to discern between intensities or to establish a detailed time series of the 
number of seismic events. The lack of data in some periods for some 
eruptions could be due to the lack of historical reports, not to the lack of 

1 GSA Data Repository item 2016063, details of the seismicity and a brief 
petrological review, is available online at www.geosociety.org/pubs/ft2016.htm, 
or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. 
Box 9140, Boulder, CO 80301, USA.

earthquakes. We compared the time frames and intensity of seismic activ-
ity between different events using a normalization of times with respect 
to each eruption and number of events (Fig. 1).

We validated the use of historical earthquake accounts as a proxy for 
the level of seismicity before an eruption by using the recent data set from 
the El Hierro 2011 eruption (www.ign.es). We compared the number of 
felt earthquakes before and after the El Hierro 2011 eruption with the 
total number of monitored seismic events and geodetic data (Fig. DR1 
in the Data Repository). We found that, in general, the evolution of felt 
seismicity and measured seismicity agree quite well (despite changes 
in the instrumentation in the seismic network), and hence validates our 
approach of using felt seismicity to compare between different eruptions.

RESULTS
The seismic and felt earthquake data that we have compiled (Fig. 1) 

show that there are some common features between the eruptions. Some 
seismic events occur between one or two years before eruption, and they 
are followed by calm periods. Comparison of felt and instrumental seis-
micity, with deformation, during the El Hierro eruption (Supp. Fig. 1) 
suggests that seismicity earlier than a few months before an eruption 
could be, in fact, taken as background levels. However, for other cases 
(e.g., San Juan 1949 eruption, Canary Islands), there are seismic and 
petrological data (see above) that suggest that magmatic processes and 
associated unrest started earlier than a few months before the eruption. 
The amount of seismicity strongly increases two or three months before 
the eruption in almost all cases. These seismic crises might reflect the 
repetitive intrusions of magma in the crust, and thus probably correspond 
to mid-crustal stalled intrusions (Moran et al., 2011). These intrusions 
would stall and start to crystallize due to cooling or degassing, and create 
a small plumbing system. The depth at which these intrusions stall is dif-
ficult to constrain but some seismic and petrological data suggest 5–15 
km below the volcano (Klügel et al., 1997; Johnson et al., 2008; Browne 
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Figure 1. Pre-eruptive seismic unrest of historical monogenetic eruptions and calculated mixing/intrusion times. The eruption is shown as a 
black line at time = 0. Red dashed lines indicate 90 and 15 days prior to the eruption. Gray areas correspond to 90 days before the eruption. A: 
Historical accounts are shown as triangles, and instrumentally monitored data as dots. Generally, the seismicity trend changes approximately 
two or three months, and one or two weeks, before the eruption. Inset shows a zoom view of the gray area of the main figure. Siete Fuentes, 
Fasnia and Arafo (SF,F,A: light blue triangles); Chinyero (CH: dark pink triangles); San Juan (SJ: dark blue triangles); Teneguía (T: purple 
triangles); El Hierro (EH: orange dots); Jorullo (J: yellow triangles); Paricutín (P: green dots); Ito-oki (IO: gray dots). Details of the seismicity 
are given in the Data Repository (see footnote 1). B: Calculated mixing times for the available eruptions. Times from San Juan eruption are 
only approximated (dashed lines). The data sources for this figure are reported in Table 1 and Data Repository.
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et al., 2010; Cerdeña et al., 2014; Cortés et al., 2015). Finally, virtually all 
the eruptions show a sharp increase in seismic activity approximately two 
weeks to two days before eruption, and might be related to magma migra-
tion toward the surface (Johnson et al., 2008). The time frames from the 
seismicity we have found match with those derived for the magma mixing 
and transport episodes derived from the crystal zoning studies (Fig. 1).

DISCUSSION AND CONCLUSIONS
An intriguing aspect of the petrological and geochemical data for the 

eruptions we studied is that open systems and mixing are prevalent, and 
imply that magmas coming from depth are commonly intercepted by a 
shallower reservoir. This can be expected in areas with high volcanic fluxes 
such as Iceland, but not in, for example, the Canary Islands were eruptive 
fluxes are not high. The commonality of open-system processes for many 
of these events may rather indicate that the early seismicity corresponds to 
stalled intrusions. In other words, for the studied cases, magmas coming 
from depth in dikes were not able to go straight to the surface, but stalled at 
some intermediate depth (Figs. 2A and 2B). There are many parameters that 
control whether mafic dikes from the mantle will be able to reach the surface, 
including magma buoyancy, thermal survival, tectonic stress, or preexisting 
crustal discontinuities (Rubin 1995; Valentine and Gregg, 2008; Rivalta et 
al., 2015). Our data set does not allow us to identify a precise control on 
each of the eruptions, but the existence of a shallow plumbing system at 
mid-crustal levels (5–15 km) may suggest that dikes separated from their 
sources and traveled as small batches. Once at shallow depths (5–15 km), 
magmas can cool, probably degas and crystallize, and evolve toward more 
differentiated compositions. Repetitive intrusions of small magma batches 
at the same location are probably able to modify the thermal and rheologi-
cal state of the crust through which they pass and reside, and thus, when 
renewed dike intrusions from depth occur, they require progressively lower 
energy to reach the surface and erupt (Fig. 2) (Strong and Wolff, 2003).

Our conceptual model stems from the available compilation of seis-
mic unrest and petrology of the erupted magmas from a limited number 
of mainly high-flux systems from oceanic islands, and it might not be 
universal for all monogenetic eruptions. Some geochemical studies of 
deposits from monogenetic eruptions and their mantle xenoliths (e.g., 
Spera, 1984; Valentine and Perry 2007) have proposed direct magma 
transfer from the mantle to the surface. It seems plausible that monogenic 
eruptions from low-flux continental interiors that are controlled by tectonic 
processes might work differently, and may allow direct magma transfer 
from the mantle to the crust (e.g., Valentine and Perry, 2007). This would 

lead to shorter seismic unrest and thus less time to anticipate or prepare 
for the eruption (Fig. 2C). However, detailed petrological studies of the 
crystal cargo for such eruptions are lacking, and using bulk-rock geochem-
istry is difficult to identify open-system processes and mixing of magmas 
from the same liquid line of descent. Moreover, some studies of mantle 
xenoliths suggest magmas stalling at multiple depths (Klügel et al., 1997; 
Klügel, 2001; Jankovics et al., 2015). Detailed petrological studies (e.g., 
crystal zoning; Albert et al., 2015) of monogenetic eruptions coupled with 
experiments and numerical models of dike migration should be able to 
test the importance of repetitive intrusions in allowing mafic magmas from 
monogenetic eruption to reach the surface.
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