Ana Sanz-Aguilar ${ }^{l}$, José Manuel Igual ${ }^{l}$, Daniel Oro ${ }^{l}$, Meritxell Genovart ${ }^{1}$ and Giacomo Tavecchia ${ }^{l}$.
${ }^{1}$ Population Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Miquel Marqués 21, E-07190 Esporles, Islas Baleares, Spain Author's e-mail: asanz@imedea.uib-csic.es, jm.igual@imedea.uib-csic.es, d.oro@uib.es, m.genovart@uib.es, g.tavecchia@uib.es
*Corresponding Author: Ana Sanz-Aguilar, Population Ecology Group, IMEDEA (CSIC-UIB), c. Miquel Marqués 21, 07190, Esporles, Spain, E-mail: asanz@imedea.uib-csic.es /ana.sanzaguilar@gmail.com

Running title: Estimating vital rates with partial monitoring

Summary

1. In evolutionary and ecological studies, demographic parameters are commonly derived from detailed information collected on a limited number of individuals or in a confined sector of the breeding area. This partial monitoring is expected to underestimate survival and recruitment processes because individuals marked in a monitored location may move to or recruit in an unobservable site.
2. We formulate a multi-event capture-recapture model using E-SURGE software which incorporates additional information on breeding dispersal and the proportion of monitored sites to obtain unbiased estimates of survival and recruitment rates. Using simulated data we assessed the biases in recruitment, survival and population growth rate when monitoring 10% to 90% of the whole population in a short and a long-lived species with low breeding dispersal. Finally, we illustrate the approach using real data from a long-term monitoring program of a colony of Scopoli's shearwaters Calonectris diomedea.
3. We found that demographic parameters estimated without considering the proportion of the area monitored were generally underestimated. These biases caused a substantial error in the estimated population growth rate, especially when a low proportion of breeding individuals were monitored.
4. The proposed capture-recapture model successfully corrected for partial monitoring and provided robust demographic estimates.
5. Synthesis and applications. In many cases, animal breeding populations can only be monitored partially. Consequently, recruitment and immature survival are underestimated, but the extent of these biases depends on the proportion of the area that remains undetected and the degree of breeding dispersal. We present a new method to obtain robust and unbiased measures of survival and recruitment processes from
capture-recapture data. The method can be applied to any monitored population regardless of the type of nests (e.g. artificial or natural) or breeding system (e.g. colonial or territorial animals) and it only relies on an estimate of the proportion of the monitored area. The unbiased estimates obtained by this method can be used to improve the reliability of predictions of demographic population models for species' conservation and management.

Key-words: Calonectris diomedea, Scopoli's shearwater, demography, capturerecapture, multi-event, experimental design, vital rates, dispersal, population modelling, partial monitoring

Introduction

Population ecologists use mathematical models of animal populations to describe the current population status and forecast future trajectories (Caswell 2001; Morris \& Doak 2002). Population models require precise, robust and unbiased estimates of demographic parameters (Morris \& Doak 2002; Williams, Nichols \& Conroy 2002; Zabel \& Levin 2002), which in most ecological studies are estimated by monitoring only a portion of the population (Fig. 1) (Yoccoz, Nichols \& Boulinier 2001). Partial monitoring is inevitable because, in addition to problems inherent to species distribution and monitoring effort, animals may recruit in inaccessible/unobservable sites. A common case, for example, is monitoring programs conducted at artificial breeding sites (e.g. nest boxes), in which individuals breeding in natural places remain undetected (see examples in Tavecchia et al. 2002; Pilastro, Tavecchia \& Marin 2003; Cannell et al. 2011). Similarly individuals may breed in inaccessible sectors of the breeding areas (Jenouvrier et al. 2008; Sanz-Aguilar et al. 2010; Fig. 1).

Capture-recapture techniques provide an analytical approach to obtain robust estimates of many demographic parameters from detailed life-history data of marked animals (Lebreton et al. 1992; Williams, Nichols \& Conroy 2002; Thomson, Cooch \& Conroy 2009). The appeal of capture-recapture techniques is that detection failures can be incorporated into the model and demographic parameters can be estimated together with detection probabilities. Detection failures can result from imperfect detection or a temporary emigration from the study area, such as delayed recruitment or intermittent breeding (Jenouvrier et al. 2008; Sanz-Aguilar et al. 2011). Capture-recapture models with unobservable states/sites ('ghost' states/sites) can be used to incorporate temporary movements and they have been applied for the study of recruitment processes and reproductive skipping (e.g. Jenouvrier et al. 2008; Kendall, Nichols \& Hines 1997; Sanz-Aguilar et al. 2011). A limitation of capture-recapture models, however, is that permanent, as opposed to temporary, emigration is generally confounded with mortality (unless information on dead recoveries or auxiliary sightings are available, Burnham 1993; Barker 1997). Thus, animals that recruit and permanently breed into unobservable areas are assumed to be dead and parameters refer to animals in monitored sites only (e.g. local survival, Lebreton et al. 1992).

Parameters derived from the monitored areas/nests are then typically assumed to be representative of the whole population. However, Lambrechts, Visser \& Verboven (2000) pointed out the risks associated with monitoring a limited area or number of breeding places when studying recruitment. Indeed, individuals born in monitored nests will remain undetected if they recruit in unobservable locations, negatively biasing the measure of lifetime recruitment and individual fitness (Lambrechts, Visser \& Verboven 2000). The problem of underestimating recruitment is not confined to evolutionary studies. Population models require non-biased demographic estimates for obtaining
robust projections and reliable conservation diagnoses. In many animals, adult dispersal distances between breeding seasons are relatively short or even non-existent, but juveniles typically perform natal dispersal, i.e. they depart permanently from their natal site and/or area looking for their first breeding site (Gaines \& McClenaghan 1980; Greenwood 1980; Greenwood \& Harvey 1982). Consequently, in addition to recruitment, immature survival derived locally may also be underestimated when breeders tend to be faithful to their breeding site (see for example Ballerini et al. 2015). This bias may be important in ecological and conservation studies of short-lived species (Sæther \& Bakke 2000) and in species with deferred breeding in which the prebreeders' survival and recruitment probabilities are often responsible for the observed population fluctuations (Gaillard et al. 2000; Votier et al. 2008; Sergio et al. 2011; Servanty et al. 2011) and may play an important role in future population dynamics (Sergio et al. 2011). Here we propose a method to obtain unbiased estimates of recruitment and survival in partially monitored populations; a very common situation in natural populations. This analytical approach allows the estimation of immature survival and age-dependent recruitment probabilities taking into account the recruitment of those animals that breed in unobservable locations. In this respect, our approach corrects the biases reported by Lambrechts, Visser \& Verboven (2000) and provides unbiased estimates of recruitment processes. The method joins classical capture-recapture models based on individual encounter histories with additional information on breeding dispersal and the proportion of the monitored population in a multi-event framework (Pradel 2005). We validate our modelling approach and explore the consequences of estimating demographic parameters through partial monitoring of breeding sites using simulated data on two hypothetical species: a short-lived species breeding in their first year of life, and a long-
lived species with deferred breeding. Finally, we illustrate our approach using a longterm data set from a monitored population of Scopoli's shearwaters Calonectris diomedea. As occur in many other shearwaters and petrels, the hypogeous nesting habit of the species makes it difficult to locate and access nests, and consequently only a portion of the population was monitored. This monitoring scheme is expected to underestimate immature survival and recruitment probability as some new breeders born in the colony may recruit in unobservable or inaccessible nests, leading to incomplete records of age-related recruitment processes. Our modelling approach successfully estimates vital rates in the presence of incomplete monitoring of breeding sites, which would otherwise be underestimated by classical capture-recapture methods. We show that population viability analyses, highly relevant in conservation biology and for species management, predict biased population trajectories when the demographic parameters are estimated without the proposed correction for partial monitoring.

Materials and methods

Estimating demographic parameters in the presence of uncertainty

When only a portion of the breeding area is monitored, marked individuals can recruit in unobservable or inaccessible breeding places. Newly developed multi-event models (Pradel 2005) distinguish what can be observed in the field, i.e. the events coded in the individual encounter history, from the underlying individual states (Pradel 2005). This allows for the possibility that individuals recruit at unobservable breeding locations. For the sake of simplicity, we denote locations in which breeding animals can be seen or caught as 'observable nests' and those in which animals breed undetected as 'unobservable nests'. We consider six biological states in which an animal can be at a given time: pre-breeder (PB), first-time breeder in an observable nest (FTBo), first-time breeder in an unobservable nest (FTBu), experienced breeder in an observable nest
(EBo), experienced breeder in an unobservable nest (EBu) and dead (D; Fig. 2). Note that an intermediate state (first-time breeder, noted ' B ') was included to model recruitment, independently from where the recruitment occurs (observable/unobservable nests; Fig. 2). This intermediate state is necessary to model and estimate separately the age-dependent recruitment. What we observed, i.e. the events, are simply the marking at birth (event coded ' 1 ') and the following recaptures as a breeder (event coded ' 2 '). The event for unobserved individuals on a particular occasion is coded as ' 0 '. We describe the probability associated with the state-dependent observations using the following probabilities:
$\phi_{\mathrm{i}, \mathrm{j}}{ }^{s}=$ the probability of surviving in state s for an individual of class j between time i and $i+1$. Note that j denotes a general grouping factor (e.g. sex or age).
$\pi_{\mathrm{i}, \mathrm{j}}{ }^{\text {PB-B }}=$ the recruitment probability for an individual of class j, i.e. the probability of moving from a pre-breeding state to a breeding state between time i and $i+1$.
$\beta_{\mathrm{i}}=$ the probability, conditional to π, to recruit into an observable nest between time i and $i+1$. We assume recruitment to occur randomly, thus this probability is equal to the proportion of observable nests in the study area.
$\delta_{\mathrm{i}, \mathrm{j}}=$ the probability of changing nests for an individual of class j after a breeding attempt between time i and $i+1$; assumed to be random and independent of observability status.
$\mathrm{p}_{\mathrm{i}, \mathrm{j}}{ }^{\mathrm{s}}=$ the probability of observing an individual of class j, in state s at time i. The multi-event model can be built using the above quantities to describe the probability of being in a particular state or moving between states. The first vector in multi-event models should contain the initial state probabilities, corresponding to the probabilities that an encounter history starts from a given state. Here the vector is
degenerated because all individuals were captured for the first time as PB (i.e. marked at birth) so the probability was 1 for the PB state (vector 1).
$\left.I S=\begin{array}{cccccc}P B & F T B o & F T B u & E B o & E B u \\ (1 & 0 & 0 & 0 & 0\end{array}\right) \quad$ vector 1

The multi-event model uses a series of matrices with departure states in rows and arrival states in columns to describe the conditional processes considered (Pradel 2005;

Choquet, Rouan \& Pradel 2009). For the sake of simplicity, subscripts of the parameters are omitted, but note that each parameter can be modelled as a function of time, class and/or state. The first matrix considered (matrix 1) contains the state-dependent survival (ϕ).

The second matrix (matrix 2) corresponds to the recruitment probabilities (π) into an intermediate first-breeding state (B). This transition is conditional on survival probabilities and should thus be considered after matrix 1.

Recruitment $=$| PB |
| :---: |
| $P B$ |
| $F T B o$ |
| $F T B u$ |
| $E B o$ |
| $E B u$ |
| D |\(\left(\begin{array}{ccccccc}1-\pi \& \pi \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1\end{array}\right)\) matrix 2

The third matrix (matrix 3) includes the additional information collected by population monitoring (see below) and corrects for partial monitoring and breeding dispersal probability. In particular we include the probability that a first-time breeder recruits in an observable nest, which corresponds to the proportion of observable nests in the study
area (β), and the breeding dispersal probability, δ (i.e. the probability of changing nest after the year of recruitment). Assuming random breeding dispersal, the probability to move to an observable nest depends on the proportion of observable nests in the study area (β). Consequently, we combined β and δ parameters and we distinguished the probability α of dispersal into an unobservable nest as $\alpha=\delta(1-\beta)$ and the probability ω of dispersal into an observable nest as $\omega=\delta \beta$. Note that the quantities β, α and ω are fixed (i.e. not estimated by the model).

		PB	FTBo	FTBu	EBo	EBu	D	
Nest_type $=$	PB	1	0	0	0	0	$0)$	matrix 3
	B	0	β	1- β	0	0	0	
	FTBo	0	0	0	$1-\alpha$	α	0	
	FTBu	0	0	0	ω	$1-\omega$	0	
	Eво	0	0	0	$1-\alpha$	α	0	
	EВи	0	0	0		1- ω	0	
		0	0	0	0	0	$1)$	

The product of the three previous matrices defined the Markovian process between the states. The last matrix considered is the events matrix (matrix 4), corresponding to the resighting or recapture probabilities (p). Resighting or recapture probability of individuals breeding in unobservable nests is zero. We consider that pre-breeders (PB) have an initial capture probability of 1 and their resighting or recapture probability is fixed at zero (i.e. only breeders are resighted or recaptured).

Recapture $\left.=\begin{array}{c|ccc}0 & 1 & 2 \\ P B & 1-p & p & 0 \\ F T B o & 1-p & 0 & p \\ F T B u & 1 & 0 & 0 \\ E B o & 1-p & 0 & p \\ E B u & 1 & 0 & 0 \\ D & 1 & 0 & 0\end{array}\right)$ matrix 4

A test to assess the goodness-of-fit (GOF) of multi-event models is not available at present. As an approximation, we assessed the GOF of the Arnason-Schwarz model (state- and time-dependent) using program U-CARE 2.3 .2 (Choquet et al. 2009).

Model validation and consequences of imperfect monitoring on derived population

parameters

When β is wrongly assumed to be 1 (i.e. all nests are observable) we expect immature survival and recruitment processes to be negatively biased. However, the importance of this bias may depend on the value of β and the importance of breeding dispersal processes in the studied species.

To investigate these points, we generated data considering two sets of parameters, one typical of a short-lived species (pre-breeder survival: 0.20 ; adult survival: 0.40 ; full recruitment at age 1 ; fecundity: 3 females produced per breeding female; see examples in small mammals and passerines in Schaub \& Vaterlaus-Schlegel 2001; Ernest 2003; Payevsky 2006) and one of a long-lived species (pre-breeder survival: 0.80; adult survival: 0.9 ; first reproduction at age 5 ; progressive recruitment: 0.5 ; and fecundity: 0.3 females per breeding female; see examples in large mammals and seabirds in Sæther \& Bakke 2000; Ernest 2003; Jenouvrier et al. 2008). All the scenarios assumed a recapture probability of 1 to consider an optimal situation in which all observable nests are monitored exhaustively. The first set of simulated data sets considered a breeding site fidelity of 1 (i.e. $\delta=0$) and 10 increasing values of β (from 0.1 to 1 ; see Appendix S2 in Supporting Information). Additionally, to investigate the effect of breeding dispersal on parameter estimation, we considered nine additional scenarios for each of the two hypothetical species: combining β values of $0.25,0.5$ and 0.75 with values of breeding dispersal δ of $0.1,0.2$ and 0.3 (see Appendix S2). For each set of parameters we simulated 1000 capture-recapture histories.

For each of these 38 simulated data sets, we ran: i) a classical multistate capturerecapture model, which did not take into account recruitment into unobservable sites, ii) a multistate model with an unobservable state (i.e. ghost site) but no supplemental data
and iii) the new multi-event model described above. Models were built and fit to the data using E-SURGE 1.6.3 (Choquet, Rouan \& Pradel 2009).

In a second step, to investigate the demographic consequences of not accounting for recruitment into unobservable nests, we used the estimates obtained by classical multistate modelling and their respective standard errors (SE) to calculate the expected stochastic population growth rate (λ) through an age- and stage-structured population model (see Appendix S3) (Caswell 2001; Morris \& Doak 2002; Cooch, Cam \& Caswell 2012). Demographic analyses were carried out with the package Popbio in software R (Team 2005; Stubben \& Milligan 2007) (Appendix S3). The variance of survival and recruitment parameters estimated from capture-recapture was incorporated into the model by randomly selecting parameter values from a beta-distribution (Morris \& Doak 2002). We ran 10000 stochastic population model simulations and calculated the mean stochastic population rates and their SE (Appendix S3).

Recruitment and immature survival of Scopoli's shearwater

To illustrate the modelling approach with real data, we used field data from a long-term monitoring program of a colony of Scopoli's shearwaters in a small islet off Mallorca, Balearic archipelago, Spain. Shearwaters breed in burrows, mainly located under boulders and vegetation, where a single egg is laid in May and incubated by both parents until June. Newborns leave the colony in October for their first trans-equatorial migration and come back to breed at 4-7 years old (Jenouvrier et al. 2008). Each year we monitored about 160 accessible nests. Every year a small number of new accessible nests is found and added to the monitoring scheme. Similarly some nests are lost every year due to vegetation cover or the occasional erosion of the rocky slopes, forcing individuals to change nests (Sanz-Aguilar et al. 2011). We used data on 1298 individuals ringed as chicks (event ' 1 ') since 2001 and their recaptures as breeding
adults in the monitored nests until 2014 (event ' 2 '). Survival probability was modelled following previous results of the same population (Sanz-Aguilar et al. 2011; Pradel \& Sanz-Aguilar 2012; Genovart et al. 2013; Tenan et al. 2014). In particular, we considered a constant survival parameter, no age effects in pre-breeder survival, a minimum age at first reproduction of 5 years and a time-dependent recapture probability of breeders. Models were built and fit to the data using E-SURGE 1.6.3 (Choquet, Rouan \& Pradel 2009). Additional information was used to obtain a measure of β (see Appendix S1). In particular, we obtained an estimate of the annual proportion of monitored nests, β, using a two-session capture-recapture protocol on marked fledglings (mean $\beta=0.585$, Table S1.1, Appendix S1). In addition, Sanz-Aguilar et al. (2011) estimated breeding dispersal probability in our population, δ, as 0.04 . This estimate was used to calculate the annual α and ω parameters of the third matrix described above (Table S1.2, Appendix S1).

Model selection was based on Akaike's Information Criterion adjusted for the effective sample size, AICc (Burnham \& Anderson 2002). During model selection we first modelled the effect of age (from 5 to age $8+$) on survival of breeders and subsequently the effect of age on recruitment probability (from 5 to age 11+). We built final models by combining the retained structures of survival and recruitment parameters (models differing ≤ 2 AICc points). For each final model j, we calculated the Akaike weight, w_{j}, as an index of its relative plausibility (Burnham \& Anderson 2002). Estimates were obtained by model averaging, where final models contributed to the final estimate according to their w_{j} (Burnham \& Anderson 2002). In order to study the robustness of parameter estimates taking into account parameter uncertainty of the proportion of monitored nests, β, and breeding dispersal probabilities, δ, we ran once again those final models considering nine combinations of the mean value and lower and upper 95\%
confidence interval of β and δ (Table S1.1-4, Appendix S1) and we calculated modelaveraged estimates for each combination.

Finally, we ran again the final models but considering the hypothetical full monitoring of the breeding population $(\beta=1)$ to obtain the estimates of parameters that will be obtained without corrections of β.

Results

Simulated data, capture-recapture and population models

Pre-breeder survival was underestimated for both the short-lived and long-lived simulated data sets without breeding dispersal $(\delta=0)$ when the possibility of recruitment in unobservable nests was not considered in the analyses (Fig. 3A \& 3C). Recruitment probabilities were correctly estimated for short-lived species (Fig. 3C) but underestimated for long-lived species when $\beta \leq 0.5$ (Fig. 3A). In contrast, breeder survival was correctly estimated for all simulated data sets (Fig. 3A \& 3C). In multistate models, considering an unobservable site (i.e. ghost site), but in which β was not fixed, only survival of breeders was estimated correctly (results not shown). When β value used in simulations was fixed in the multi-event model, all parameters were correctly estimated (Fig. 3B \& 3D). The population growth rate calculated assuming $\beta=1$ was negatively biased by its effects on immature survival and recruitment estimates. This effect was more pronounced for the short-lived than for the long-lived species, and under small values of β (Fig. 4).

In long-lived and short-lived simulated data sets with partial monitoring (β) of $0.25,0.5$ and 0.75 and low to moderate dispersal values ($0<\delta \leq 0.3$), pre-breeder survival was correctly estimated using the classical multistate model (assuming $\beta=1$) (Fig. S4.2 \& S4.5 respectively, Appendix S4). Recruitment probabilities were underestimated, especially under low values of β and high values of δ (Fig. S4.1 \& S4.4, Appendix S4).

Breeder survival was correctly estimated for short-lived species but underestimated for long-lived species (Fig. S4.3 \& S4.6, Appendix S4). Multistate models considering an unobservable site provided better recruitment estimates than classical multistate models but they showed very large parameter uncertainty, especially for short-lived species (Fig. S4.1-S4.6, Appendix S4) with additional problems of parameter identifiability (Appendix S4). By fixing the correct β, α and ω values used in data simulations, the multi-event models correctly estimated all parameters (Fig. S4.1-S4.6, Appendix S4). Despite contrasting results on parameter estimates with those obtained with $\delta=0$, the population growth rate calculated assuming $\beta=1$ was similarly negatively biased for both short-lived and long-lived species, especially under small values of β (Fig. S4.7, Appendix S4).

Real case study: the Scopoli's shearwater

The GOF test indicated that the general model assuming time- and state-dependent parameters explained the data adequately $\left(\chi^{2}=11.732\right.$, d.f. $\left.=11, P=0.384\right)$.

We began model selection considering the mean values of β and δ (Tables S1.1 and S1.2, Appendix 1) and eliminating non-significant effects from the general structure of the survival parameters (model s1, Table 1), which considered differences between prebreeders and breeders aged 5, 6, 7 and ≥ 8 and differences in recruitment probabilities between individuals aged 5 to 10 and ≥ 11. The model with the lowest AICc value indicates differences in survival between breeders aged 5 and ≥ 6 (model s6, Table 1), although a model including survival differences among breeders aged 5,6 and ≥ 7 was also highly supported ($\Delta \mathrm{AICc}=1.17$, model s3, Table 1). We selected the survival structure of model s6 to model recruitment probabilities (Table 1). The retained models ($\Delta \mathrm{AICc}=0.10$, Table 1) included recruitment differences for birds aged 5,6 and ≥ 7 (model r5, Table 1) and aged 5, 6, 7 and ≥ 8 (model r6, Table 1). Finally, we used these
retained structures (models s3, s6, r 4 and r5) to build the final models (models C1-C4, Table 1) and obtain the model-averaged estimates of survival and recruitment probabilities (Table 2). We ran again models $\mathrm{C} 1-\mathrm{C} 4$ fixing different combinations of β, α and ω parameters (considering mean values and lower and upper 95% confidence intervals of β and δ; Table S1.5, Appendix 1). All models showed similar estimates of survival and recruitment (Table S1.5, Appendix 1) to those obtained when using only the mean values (Table 2), confirming the robustness of parameter estimates. In our case study of Scopoli's shearwaters, by considering a hypothetical total monitoring of the breeding area $(\beta=1)$ with the classical multistate modelling approach, pre-breeder survival and recruitment parameters were underestimated, but adult survival estimates were the same (Table 2). The difference in cumulative survival until age of first breeding (age 5) by considering the real proportion of nests monitored or unreal full monitoring ($\beta=1$) was $\sim 6 \%$ (0.35 and 0.29 , respectively).

Discussion

Model advantages

The estimation of precise age-dependent recruitment and survival probabilities is fundamental to infer population dynamics and viability (Morris \& Doak 2002; Williams, Nichols \& Conroy 2002; Cooch, Cam \& Caswell 2012; Oro 2013). For a long time, different statistical methodologies based on capture-recapture data have been developed and improved to properly and simultaneously estimate survival and recruitment parameters (e.g. Clobert et al. 1994; Pradel 1996; Pradel \& Lebreton 1999; Schwarz \& Arnason 2000; Kendall \& Nichols 2002; Lebreton et al. 2003; Desprez et al. 2013). Unfortunately, most capture-recapture methods using live recapture data estimate local parameters, i.e. they are not able to deal with permanent emigration, confounded with mortality (but see models including dead recoveries, Burnham 1993;

Barker 1997). Recruitment in unmonitored/unobservable breeding sites represents a special case of "permanent emigration" when breeding dispersal is null. Here we provide a new capture-recapture methodology based on incorporating additional information collected in the field to account for the possibility of recruitment in nonmonitored sites and to correctly estimate demographic parameters and test biological hypotheses simultaneously.

We show here that adult survival for both short and long-lived species is correctly estimated without corrections when the breeding population is only partially monitored and there is no breeding dispersal (simulated data) or occurs in very low proportions (0.04, real data). However, juvenile survival for both short- and long-lived species and recruitment for long-lived species are underestimated. In contrast, when breeding dispersal occurs at low to medium probability $(0.1-0.3)$ juvenile survival is correctly estimated without further corrections but recruitment for both short- and long-lived species and adult survival for long-lived species are underestimated. These biases may cause a substantial error not only in the estimated vital rates but also in the estimated population growth rate, especially when low proportions of breeding individuals are monitored (Fig. 4 and Fig. S4.7).

Numerous long-lived animals (including birds and mammals) are territorial, and breeders exhibit high site fidelity to breeding sites, and even among short-lived species, juveniles disperse in higher proportions than adults (Gaines \& McClenaghan 1980; Greenwood 1980; Greenwood \& Harvey 1982).

Natural populations may cover areas too large to be sampled by capture-recapture or they can include inaccessible sites to researchers. For example, Jenouvrier et al. (2008) used mark-recapture data collected on a subsample of about 30% of the nests in a Scopoli's shearwater colony to estimate survival and recruitment probabilities. This
partial monitoring of individuals breeding in accessible nests has also been used for estimating demographic parameters for other hypogeous seabird species, e.g. storm petrels Hydrobates pelagicus (Sanz-Aguilar et al. 2009). The survival and recruitment estimates obtained from these studies may be underestimated, because the proportion of breeding sites monitored is lower than 50% as we have found here for such a case. In fact, population models for a storm petrel study population predict a colony decline (Sanz-Aguilar et al. 2009), whereas different dynamics (stability or even growth) have been found (Libois et al. 2012; Tenan et al. 2014) suggesting that demographic estimates used in population projections might be underestimated.

The methodological approach presented here could also benefit from additional advantages of multi-event models such as the inclusion of uncertainty in breeder state assignment (Desprez et al. 2013). However, we should note that although the estimate of recruitment probability obtained by the proposed model was unbiased, it applies at a population level and is not suitable for the study of individual lifetime recruitment (Lambrechts, Visser \& Verboven 2000).

Model limitations

The first limitation of the method proposed here is that it requires information on the proportion of monitored nests (β) and the probability of breeding dispersal (δ). However, this type of information can be obtained or estimated by other methods alternative to the individual capture-mark-recapture programs on fixed breeding sites (Williams, Nichols \& Conroy 2002; Thomas et al. 2010). For example, Cannell et al. (2011) combined count at beaches and capture- mark-recapture to estimate the population size of little penguins Eudyptula minor; a distance sampling procedure was used to estimate the number of breeding pairs at the world' largest colony of Scopoli's shearwater (Thomas et al. 2010; Defos du Rau et al. 2015); and here we estimate
population size of shearwaters by capture-recapture of chicks in and outside nests (see details in Appendix S1). Our approach to estimate proportion of monitored nests (β) can be used in other species in which fledglings/juveniles wander far from their nests (e.g. storm petrels), flock together in communal crèches (e.g. slender-billed gulls Chroicocephalus genei) or use communal roosting sites (e.g. Egyptian vultures Neophron percnopterus). Moreover, we believe that most field ecologists can estimate the proportion of monitored nests (β) or can make an informed guess as to how large β is in their study site (e.g. Jenouvrier et al. 2008; Sanz-Aguilar et al. 2009). On the contrary, breeding dispersal (δ) may be more difficult to estimate. Sanz-Aguilar et al. (2011) estimated nest dispersal in Scopoli’s shearwaters using a multi-event approach, although this estimate may be slightly underestimated as only observable nests were considered in the model. Other methods to obtain breeding dispersal estimates, such as radio tracking, could also be used. However, for many species showing high breeding site fidelity this parameter can probably be neglected. A second limitation of our method is that it cannot include uncertainty in β or δ and consequently parameter variances are underestimated. We acknowledge that state-space models in a Bayesian framework would be more adequate to incorporate uncertainty (Gimenez et al. 2007; King 2012) but would limit the use of model information theory to test biological hypotheses on parameter variation. Bayesian model selection is complex, computationally challenging and no consensus has emerged in the literature on a single approach (see discussion in Tenan et al. 2014). On the contrary, the analytical framework we propose here allows researchers using the available tools of model selection in a more user-friendly environment. Model averaging using AICc can be easily carried out for considering uncertainty in model selection (Burnham \& Anderson 2002). Moreover, we show that the parameter robustness of the model can be assessed
by fixing different values of β and/or δ and when uncertainty of β and/or δ is small, model parameters are highly robust (see Appendix S1). Finally, another possible limitation of our approach is that it assumes random movements in breeding dispersal and random recruitment in observable and unobservable sites, which cannot be true in some situations (see for example Igual et al. 2007). However, this assumption may be true for many monitoring schemes (e.g. Fig. 1A) and additional constraints in β modelling (e.g. different β values for groups of individuals born or breeding in different sectors of the breeding area as central vs. peripheral areas, Figs. 1B \& 1C) could be included in the model when information on dispersal processes (e.g. distribution of dispersal distances) is available.

Synthesis and applications

When monitoring a breeding population, animals in unobserved areas are assumed to be dead, an assumption that inevitably leads to underestimation of recruitment and immature survival. This bias is implicitly assumed to be small, and parameters estimated at the monitored areas are taken as a representative of the whole population. However, we show here that this assumption is not always correct and the extent of the bias depends on several features of the study, such as the species' degree of breeding dispersal and the proportion of monitored area. We illustrate how to combine information at the population and individual level to correctly estimate age-dependent survival and recruitment. This approach can be applied to any system in which individuals can breed undetected. A typical case would be either birds or small mammals breeding in artificial nest boxes in which natural breeding sites cannot be monitored (e.g. Pilastro, Tavecchia \& Marin 2003; Cannell et al. 2011). A similar case would be colonial waterbirds or territorial raptors, in which monitoring is conducted only in accessible nests and territories (e.g. Jenouvrier et al. 2008; Sanz-Aguilar et al.

2009; Zabala \& Zuberogoitia 2014). Correct estimates of demographic parameters are essential to predict unbiased population trajectories through population models (Coulson et al. 2001; Williams, Nichols \& Conroy 2002). We recommend the use of the proposed method when data are collected on partially monitored populations of species with moderate to high breeding site fidelity.

Acknowledgements

We would like to thank those people who have helped with fieldwork over the years. Rémi Choquet and an anonymous reviewer provided valuable comments and suggestions to improve the manuscript. Research funds were provided by the Spanish Ministries of Science, Economy and Competitiveness (refs. BOS2003-01960, CGL2006-04325/BOS, CGL2009-08298, CGL2013-42203-R, JCI-2011-09085).

Data Accessibility

- R scripts: uploaded as online supporting information (Appendix S2 \& S3)
- Capture-recapture histories of simulated data and real data on recruitment of Scopoli's shearwater are available at: http://cedai.imedea.uib$\underline{\text { csic.es/geonetwork/srv/es/main.home? uuid=5a8efd41-82e8-49f6-b902-b8efd8ddd917. }}$

References

Ballerini, T., Tavecchia, G., Pezzo, F., Jenouvrier, S. \& Olmastroni, S. (2015) Predicting responses of the Adélie penguin population of Edmonson Point to future sea ice changes in the Ross Sea. Frontiers in Ecology and Evolution, 3, (article 8) 1-11.

Barker, R. J. (1997) Joint modeling of live-recapture, tag-resight, and tag-recovery data. Biometrics, 53, 666-677.

Burnham, K. (1993) A theory for combined analysis of ring recovery and recapture data. Marked Individuals in Bird Population Studies (eds. J.-D. Lebreton \& P. North), pp. 199-213. Birkhauser Verlag, Basel.

Burnham, K.P. \& Anderson, D.R. (2002) Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. Springer, New York.

Cannell, B., Pollock, K., Bradley, S., Wooller, R., Sherwin, W. \& Sinclair, J. (2011) Augmenting mark-recapture with beach counts to estimate the abundance of little penguins on Penguin Island, Western Australia. Wildlife Research, 38, 491-500.

Caswell, H. (2001) Matrix Population Models: Construction, Analysis, and Interpretation, 2nd edn. Sinauer Associates, Sunderland, Massachusetts.

Choquet, R., Lebreton, J., Gimenez, O., Reboulet, A. \& Pradel, R. (2009) U-CARE: Utilities for performing goodness of fit tests and manipulating Capture-REcapture data. Ecography, 32, 1071-1074.

Choquet, R., Rouan, L. \& Pradel, R. (2009) Program E-SURGE: a software application for fitting multievent models. Modeling demographic processes in marked populations (eds. D. L. Thomson, E. G. Cooch \& M.J. Conroy) pp. 845-865. Springer, Berlin.

Clobert, J., Lebreton, J.-D., Allaine, D. \& Gaillard, J. (1994) The estimation of agespecific breeding probabilities from recaptures or resightings in vertebrate populations: II. Longitudinal models. Biometrics, 50, 375-387.

Cooch, E.G., Cam, E. \& Caswell, H. (2012) Incorporating 'recruitment' in matrix projection models: estimation, parameters, and the influence of model structure. Journal of Ornithology, 152, 585-595.

Coulson, T., Maceb, G.M., Hudsonc, E. \& Possinghamd, H. (2001) The use and abuse of population viability analysis. Trends in Ecology \& Evolution, 16, 219-221.

Defos du Rau, P., Bourgeois, K., Thévenet, M., Ruffino, L., Dromzée, S., Ouni, R., Abiadh, A., Estève, R., Durand, J.-P., Anselme, L., Faggio, G., Yahya, J., Rguibi, H., Renda, M., Miladi, B., Hamrouni, H., Alilech, S., Nefla, A., Jaouadi, W., Agrebi, S. \& Renou, S. (2015) Reassessment of the size of the Scopoli's Shearwater population at its main breeding site resulted in a tenfold increase: implications for the species conservation. Journal of Ornithology, 156, 877-892.

Desprez, M., McMahon, C.R., Hindell, M.A., Harcourt, R. \& Gimenez, O. (2013) Known unknowns in an imperfect world: incorporating uncertainty in recruitment estimates using multi-event capture-recapture models. Ecology and evolution, 3, 46584668.

Ernest, S.M. (2003) Life history characteristics of placental nonvolant mammals: ecological archives E084-093. Ecology, 84, 3402-3402.

Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. \& Toigo, C. (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annual review of ecology and systematics, 31, 367-393.

Gaines, M.S. \& McClenaghan, L.R. (1980) Dispersal in small mammals. Annual Review of Ecology and Systematics, 11, 163-196.

Genovart, M., Sanz-Aguilar, A., Fernández-Chacón, A., Igual, J.M., Pradel, R., Forero, M.G. \& Oro, D. (2013) Contrasting effects of climatic variability on the demography of a trans-equatorial migratory seabird. Journal of Animal Ecology, 82, 121-130.

Gimenez, O., Rossi, V., Choquet, R., Dehais, C., Doris, B., Varella, H., Vila, J.-P. \& Pradel, R. (2007) State-space modelling of data on marked individuals. Ecological Modelling, 206, 431-438.

Greenwood, P.J. (1980) Mating systems, philopatry and dispersal in birds and mammals. Animal behaviour, 28, 1140-1162.

Greenwood, P.J. \& Harvey, P.H. (1982) The natal and breeding dispersal of birds. Annual review of ecology and systematics, 13, 1-21.

Igual, J.M., Forero, M.G., Gomez, T. \& Oro, D. (2007) Can an introduced predator trigger an evolutionary trap in a colonial seabird? Biological Conservation, 137, 189196.

Jenouvrier, S., Tavecchia, G., Thibault, J., Choquet, R. \& Bretagnolle, V. (2008) Recruitment processes in long-lived species with delayed maturity: estimating key demographic parameters. Oikos, 117, 620-628.

Kendall, W. L., Nichols, J. D. \& Hines. J. E. (1997). Estimating temporary emigration using capture-recapture data with Pollock's robust design. Ecology, 78, 563578.

Kendall, W.L. \& Nichols, J.D. (2002) Estimating state-transition probabilities for unobservable states using capture-recapture/resighting data. Ecology, 83, 3276-3284.

King, R. (2012) A review of Bayesian state-space modelling of capture-recapturerecovery data. Interface Focus, 2, 190-204.

Lambrechts, M., Visser, M. \& Verboven, N. (2000) Consequences of dispersal for the quantitative study of adaptation in small-scale plots: a case study of an avian island population. Ecography, 23, 525-530.

Lebreton, J.-D., Burnham, K.P., Clobert, J. \& Anderson, D.R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological monographs, 62, 67-118.

Lebreton, J.-D., Hines, J., Pradel, R., Nichols, J. \& Spendelow, J. (2003) Estimation by capture-recapture of recruitment and dispersal over several sites. Oikos, 101, 253264.

Libois, E., Gimenez, O., Oro, D., Mínguez, E., Pradel, R. \& Sanz-Aguilar, A. (2012) Nest boxes: A successful management tool for the conservation of an endangered seabird. Biological Conservation, 155, 39-43.

Morris, W.F. \& Doak, D.F. (2002) Quantitative Conservation Biology. Sinauer Associates Sunderland, Massachusetts.

Oro, D. (2013) Grand challenges in population dynamics. Frontiers in Ecology and Evolution, 1, 1-2.

Payevsky, V. (2006) Mortality rate and population density regulation in the great tit, Parus major L.: a review. Russian Journal of Ecology, 37, 180-187.

Pilastro, A., Tavecchia, G. \& Marin, G. (2003) Long living and reproduction skipping in the fat dormouse. Ecology, 84, 1784-1792.

Pradel, R. (1996) Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics, 52, 703-709.

Pradel, R. (2005) Multievent: an extension of multistate capture-recapture models to uncertain states. Biometrics, 61, 442-447.

Pradel, R. \& Lebreton, J.-D. (1999) Comparison of different approaches to the study of local recruitment of breeders. Bird Study, 46, S74-S81.

Pradel, R. \& Sanz-Aguilar, A. (2012) Modeling trap-awareness and related phenomena in capture-recapture studies. PloS one, 7, e32666.

Sæther, B.-E. \& Bakke, Ø. (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology, 81, 642-653.

Sanz-Aguilar, A., Massa, B., Lo Valvo, F., Oro, D., Minguez, E. \& Tavecchia, G. (2009) Contrasting age-specific recruitment and survival at different spatial scales: a case study with the European storm petrel. Ecography, 32, 637-646.

Sanz-Aguilar, A., Tavecchia, G., Minguez, E., Massa, B., Valvo, F.L., Ballesteros, G.A., Barberá, G.G., Amengual, J.F., Rodriguez, A. \& McMinn, M. (2010) Recapture processes and biological inference in monitoring burrow-nesting seabirds. Journal of Ornithology, 151, 133-146.

Sanz-Aguilar, A., Tavecchia, G., Genovart, M., Igual, J.M., Oro, D., Rouan, L. \& Pradel, R. (2011) Studying the reproductive skipping behavior in long-lived birds by adding nest inspection to individual-based data. Ecological Applications, 21, 555-564.

Schaub, M. \& Vaterlaus-Schlegel, C. (2001) Annual and seasonal variation of survival rates in the garden dormouse (Eliomys quercinus). Journal of Zoology, 255, 8996.

Schwarz, C.J. \& Arnason, A.N. (2000) Estimation of Age-Specific Breeding Probabilities from Capture-Recapture Data. Biometrics, 56, 59-64.

Sergio, F., Tavecchia, G., Blas, J., López, L., Tanferna, A. \& Hiraldo, F. (2011) Variation in age-structured vital rates of a long-lived raptor: Implications for population growth. Basic and Applied Ecology, 12, 107-115.

Servanty, S., Gaillard, J., Ronchi, F., Focardi, S., Baubet, E. \& Gimenez, O. (2011) Influence of harvesting pressure on demographic tactics: implications for wildlife management. Journal of Applied Ecology, 48, 835-843.

Stubben, C. \& Milligan, B. (2007) Estimating and analyzing demographic models using the popbio package in R. Journal of Statistical Software, 22, 1-23.

Tavecchia, G., Pradel, R., Lebreton, J.-D, Biddau, L. \& Mingozzi, T. (2002) Sexbiased survival and breeding dispersal probability in a patchy population of the Rock Sparrow Petronia petronia. Ibis, 144, E79-E87.

Team, Rd.C. (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Tenan, S., Pradel, R., Tavecchia, G., Igual, J.M., Sanz-Aguilar, A., Genovart, M. \& Oro, D. (2014) Hierarchical modelling of population growth rate from individual capture-recapture data. Methods in Ecology and Evolution, 5, 606-614.

Tenan, S., O’Hara, R. B., Hendriks, I., Tavecchia, G. (2014) Bayesian model selection: The steepest mountain to climb. Ecological Modelling. 2014 Jul 10; 283:62-9.

Thomas, L., Buckland, S.T., Rexstad, E.A., Laake, J.L., Strindberg, S., Hedley, S.L., Bishop, J.R., Marques, T.A. \& Burnham, K.P. (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology, 47, 5-14.

Thomson, D. L., Cooch, E. G. \& Conroy M.J. (2009) Modeling demographic processes in marked populations. Springer, Berlin.

Votier, S., Birkhead, T., Oro, D., Trinder, M., Grantham, M., Clark, J., McCleery, R. \& Hatchwell, B. (2008) Recruitment and survival of immature seabirds in relation to oil spills and climate variability. Journal of Animal Ecology, 77, 974-983.

Williams, B., Nichols, J.D. \& Conroy, M.J. (2002) Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making. Academic Press, London.

Yoccoz, N.G., Nichols, J.D. \& Boulinier, T. (2001) Monitoring of biological diversity in space and time. Trends in Ecology \& Evolution, 16, 446-453.

Zabala, J. \& Zuberogoitia, I. (2014) Individual quality explains variation in reproductive success better than territory quality in a long-lived territorial raptor. PloS one, 9, e90254.

Zabel, R.W. \& Levin, P.S. (2002) Simple assumptions on age composition lead to erroneous conclusions on the nature of density dependence in age-structured populations. Oecologia, 133, 349-355.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Estimation of the annual proportion of nests where breeding adults can be captured (β) and probabilities of nest dispersal (α, ω).

Appendix S2. Example of r code for data simulation.

Appendix S3. Population models.

Appendix S4. Additional tables and figures.

Table 1. Modelling of survival and recruitment probabilities of Scopoli's shearwaters at Pantaleu Islet. Notation: np: number of parameters; Dev: relative deviance; AICc: Akaike information criterion corrected for sample size; \triangle AICc: the AICc difference between the current model and the one with the lowest AICc value; AICw: Akaike's weight. Model notation: PB: pre-breeder; B: breeder; "=" means no differences between stages considered; "/" means differences; numbers indicate the age classes considered. Note that all models considered temporal recapture probabilities. Models with the lowest AICc are in bold

Model	Survival	Recruitment	np	Dev	AICc	$\triangle \mathrm{AICc}$	AICw
s1	PB/ B(5,6,7 ${ }^{\text {a }}$)	5,6,7,8,9,10 11	21	768.17	810.82	2.99	
s2	$\mathrm{PB} / \mathrm{B}(5,6=7 \geq 8)$	$5,6,7,8,9,10 \geq 11$	20	769.25	809.85	2.02	
s3	PB/ B(5,6 ≥ 7)	$5,6,7,8,9,10 \geq 11$	20	768.40	809.00	1.17	
s4	$\mathrm{PB} / \mathrm{B}(5=6=7 \geq 8)$	$5,6,7,8,9,10 \geq 11$	19	775.06	813.60	5.77	
s5	$\mathrm{PB} / \mathrm{B}(5=6 \geq 7)$	$5,6,7,8,9,10 \geq 11$	19	772.26	810.79	2.97	
s6	PB/B(5 $\mathbf{6}_{\text {) }}$	5,6,7,8,9,10 ${ }^{\text {l }} 1$	19	769.29	807.83	0.00	
s7	PB/B	5,6,7,8,9,10 ${ }^{\text {l }} 1$	18	776.13	812.62	4.79	
s8	$\mathrm{PB}=\mathrm{B}$	5,6,7,8,9,10 11	17	776.95	811.38	3.55	
r1		5,6,7,8,9,10 ${ }^{11}$	19	769.29	807.83	5.23	
r2	$\mathrm{PB} / \mathrm{B}(5 \geq 6)$	$5,6,7,8,9 \geq 10$	18	770.18	806.67	4.07	
r3	$\mathrm{PB} / \mathrm{B}(5 \geq 6)$	$5,6,7,8 \geq 9$	17	770.29	804.72	2.13	
r4	PB/ $\mathrm{B}(5 \geq 6)$	$5,6,7 \geq 8$	16	770.31	802.69	0.10	
r5	PB/B(5 $\mathbf{6}_{\text {) }}$	5,6 ≥ 7	15	15.00	802.59	0.00	
r6	PB/ $\mathrm{B}(5 \geq 6)$	$5 \geq 6$	14	778.93	807.23	4.64	
C1	PB/B(5 $\mathrm{Cl}^{\text {) }}$	5,6 ≥ 7	15	772.51	802.8	0.16	0.30

C2	PB/B(5 6)	$\mathbf{5 , 6 , 7 \geq 8}$	$\mathbf{1 6}$	$\mathbf{7 7 0 . 3 0}$	$\mathbf{8 0 2 . 6 9}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 3 3}$
C 3	$\mathrm{~PB} / \mathrm{B}(5,6 \geq 7)$	$5,6 \geq 7$	16	771.57	803.87	1.18	0.18
C 4	$\mathrm{~PB} / \mathrm{B}(5,6 \geq 7)$	$5,6,7 \geq 8$	17	769.40	803.83	1.14	0.19

Parameter	Estimates (SE)	Estimates (SE)
	β correction	$\beta=1$
$\phi_{\text {PB }}$	$0.81(0.02)$	$0.78(0.03)$
$\phi_{\text {в }}$ age 5	$0.18(0.17)$	$0.18(0.17)$
$\phi_{\text {в }}$ age 6	$0.74(0.08)$	$0.73(0.08)$
$\phi_{\text {в }}$ age ≥ 7	$0.80(0.04)$	$0.79(0.04)$
π age 5	$0.03(0.02)$	$0.03(0.01)$
π age 6	$0.10(0.03)$	$0.08(0.03)$
π age 7	$0.23(0.08)$	$0.20(0.07)$
π age ≥ 8	$0.32(0.11)$	$0.28(0.11)$

Table 2. Model-averaged parameter estimates (and SE) of consensual multi-event models including the correction β (Table 1) and considering $\beta=1$. Notation: ϕ : survival probabilities; π : recruitment probabilities; PB: pre-breeder; B: breeder
A)

B)

C)

Fig. 1. In many studies, the sampled individuals (black) represent only a part of the entire breeding population. In the schematic examples above the monitored nests (A), sector (B) or area (C) include 50% of the entire breeding population.

Fig. 2. Schematic representation of the states considered and the probabilities associated with between-states transitions. Notation: $\mathrm{PB}=$ pre-breeder, $\mathrm{B}=$ first-time breeder, FTBo=first-time breeder in an observable nest, $\mathrm{FTBu}=$ first-time breeder in an unobservable nest, $\mathrm{EBo}=$ experienced breeder in an observable nest, $\mathrm{EBu}=$ experienced breeder in an unobservable nest, $\Phi=$ survival probability, $\pi=$ recruitment probability, $\beta=$ proportion of observable nests, α probability of moving into an unobservable nest, ω probability of moving into an observable nest. The state 'dead' could be reached from any of the states above and is not represented.

Fig. 3. Estimates (and $95 \% \mathrm{CI}$) obtained by multistate (A, C) and multi-event (B, D) capture-recapture models of pre-breeder survival, breeder survival (noted by Pb and B respectively) and recruitment probabilities for the simulated data sets for long-lived (A, B) and short-lived (C, D) species under different scenarios of proportions of observable nests in the population (β). Dotted lines indicate the true value of the parameter used to generate the simulated capture histories.

Fig. 4. Estimates (and SE) of population growth rate (λ) for long-lived (A) and shortlived species (B) using the demographic parameters estimated by multistate models when the proportion of the breeding area monitored (β) is not included in the model. The lambda that will result for the true demographic parameters considered when simulating the data sets is indicated with a dotted line.

