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Summary 20 

1. In evolutionary and ecological studies, demographic parameters are commonly 21 

derived from detailed information collected on a limited number of individuals or in a 22 

confined sector of the breeding area. This partial monitoring is expected to 23 

underestimate survival and recruitment processes because individuals marked in a 24 

monitored location may move to or recruit in an unobservable site.  25 

2. We formulate a multi-event capture–recapture model using E-SURGE software 26 

which incorporates additional information on breeding dispersal and the proportion of 27 

monitored sites to obtain unbiased estimates of survival and recruitment rates. Using 28 

simulated data we assessed the biases in recruitment, survival and population growth 29 

rate when monitoring 10% to 90% of the whole population in a short and a long-lived 30 

species with low breeding dispersal. Finally, we illustrate the approach using real data 31 

from a long-term monitoring program of a colony of Scopoli’s shearwaters Calonectris 32 

diomedea. 33 

3. We found that demographic parameters estimated without considering the 34 

proportion of the area monitored were generally underestimated. These biases caused a 35 

substantial error in the estimated population growth rate, especially when a low 36 

proportion of breeding individuals were monitored.  37 

4. The proposed capture–recapture model successfully corrected for partial 38 

monitoring and provided robust demographic estimates. 39 

5. Synthesis and applications. In many cases, animal breeding populations can only 40 

be monitored partially. Consequently, recruitment and immature survival are 41 

underestimated, but the extent of these biases depends on the proportion of the area that 42 

remains undetected and the degree of breeding dispersal. We present a new method to 43 

obtain robust and unbiased measures of survival and recruitment processes from 44 
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capture–recapture data. The method can be applied to any monitored population 45 

regardless of the type of nests (e.g. artificial or natural) or breeding system (e.g. colonial 46 

or territorial animals) and it only relies on an estimate of the proportion of the 47 

monitored area. The unbiased estimates obtained by this method can be used to improve 48 

the reliability of predictions of demographic population models for species’ 49 

conservation and management. 50 

 51 

Key-words: Calonectris diomedea, Scopoli’s shearwater, demography, capture–52 

recapture, multi-event, experimental design, vital rates, dispersal, population modelling, 53 

partial monitoring 54 

 55 

Introduction 56 

Population ecologists use mathematical models of animal populations to describe the 57 

current population status and forecast future trajectories (Caswell 2001; Morris & Doak 58 

2002). Population models require precise, robust and unbiased estimates of 59 

demographic parameters (Morris & Doak 2002; Williams, Nichols & Conroy 2002; 60 

Zabel & Levin 2002), which in most ecological studies are estimated by monitoring 61 

only a portion of the population (Fig. 1) (Yoccoz, Nichols & Boulinier 2001). Partial 62 

monitoring is inevitable because, in addition to problems inherent to species distribution 63 

and monitoring effort, animals may recruit in inaccessible/unobservable sites. A 64 

common case, for example, is monitoring programs conducted at artificial breeding sites 65 

(e.g. nest boxes), in which individuals breeding in natural places remain undetected (see 66 

examples in Tavecchia et al. 2002; Pilastro, Tavecchia & Marin 2003; Cannell et al. 67 

2011). Similarly individuals may breed in inaccessible sectors of the breeding areas 68 

(Jenouvrier et al. 2008; Sanz-Aguilar et al. 2010; Fig. 1).  69 
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Capture–recapture techniques provide an analytical approach to obtain robust estimates 70 

of many demographic parameters from detailed life-history data of marked animals 71 

(Lebreton et al. 1992; Williams, Nichols & Conroy 2002; Thomson, Cooch & Conroy 72 

2009). The appeal of capture–recapture techniques is that detection failures can be 73 

incorporated into the model and demographic parameters can be estimated together with 74 

detection probabilities. Detection failures can result from imperfect detection or a 75 

temporary emigration from the study area, such as delayed recruitment or intermittent 76 

breeding (Jenouvrier et al. 2008; Sanz-Aguilar et al. 2011). Capture–recapture models 77 

with unobservable states/sites (‘ghost’ states/sites) can be used to incorporate temporary 78 

movements and they have been applied for the study of recruitment processes and 79 

reproductive skipping (e.g. Jenouvrier et al. 2008; Kendall, Nichols & Hines 1997; 80 

Sanz-Aguilar et al. 2011). A limitation of capture–recapture models, however, is that 81 

permanent, as opposed to temporary, emigration is generally confounded with mortality 82 

(unless information on dead recoveries or auxiliary sightings are available, Burnham 83 

1993; Barker 1997). Thus, animals that recruit and permanently breed into unobservable 84 

areas are assumed to be dead and parameters refer to animals in monitored sites only 85 

(e.g. local survival, Lebreton et al. 1992). 86 

Parameters derived from the monitored areas/nests are then typically assumed to be 87 

representative of the whole population. However, Lambrechts, Visser & Verboven 88 

(2000) pointed out the risks associated with monitoring a limited area or number of 89 

breeding places when studying recruitment. Indeed, individuals born in monitored nests 90 

will remain undetected if they recruit in unobservable locations, negatively biasing the 91 

measure of lifetime recruitment and individual fitness (Lambrechts, Visser & Verboven 92 

2000). The problem of underestimating recruitment is not confined to evolutionary 93 

studies. Population models require non-biased demographic estimates for obtaining 94 
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robust projections and reliable conservation diagnoses. In many animals, adult dispersal 95 

distances between breeding seasons are relatively short or even non-existent, but 96 

juveniles typically perform natal dispersal, i.e. they depart permanently from their natal 97 

site and/or area looking for their first breeding site (Gaines & McClenaghan 1980; 98 

Greenwood 1980; Greenwood & Harvey 1982). Consequently, in addition to 99 

recruitment, immature survival derived locally may also be underestimated when 100 

breeders tend to be faithful to their breeding site (see for example Ballerini et al. 2015). 101 

This bias may be important in ecological and conservation studies of short-lived species 102 

(Sæther & Bakke 2000) and in species with deferred breeding in which the pre-103 

breeders’ survival and recruitment probabilities are often responsible for the observed 104 

population fluctuations (Gaillard et al. 2000; Votier et al. 2008; Sergio et al. 2011; 105 

Servanty et al. 2011) and may play an important role in future population dynamics 106 

(Sergio et al. 2011). 107 

Here we propose a method to obtain unbiased estimates of recruitment and survival in 108 

partially monitored populations; a very common situation in natural populations. This 109 

analytical approach allows the estimation of immature survival and age-dependent 110 

recruitment probabilities taking into account the recruitment of those animals that breed 111 

in unobservable locations. In this respect, our approach corrects the biases reported by 112 

Lambrechts, Visser & Verboven (2000) and provides unbiased estimates of recruitment 113 

processes. The method joins classical capture–recapture models based on individual 114 

encounter histories with additional information on breeding dispersal and the proportion 115 

of the monitored population in a multi-event framework (Pradel 2005). We validate our 116 

modelling approach and explore the consequences of estimating demographic 117 

parameters through partial monitoring of breeding sites using simulated data on two 118 

hypothetical species: a short-lived species breeding in their first year of life, and a long-119 
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lived species with deferred breeding. Finally, we illustrate our approach using a long-120 

term data set from a monitored population of Scopoli’s shearwaters Calonectris 121 

diomedea. As occur in many other shearwaters and petrels, the hypogeous nesting habit 122 

of the species makes it difficult to locate and access nests, and consequently only a 123 

portion of the population was monitored. This monitoring scheme is expected to 124 

underestimate immature survival and recruitment probability as some new breeders born 125 

in the colony may recruit in unobservable or inaccessible nests, leading to incomplete 126 

records of age-related recruitment processes. Our modelling approach successfully 127 

estimates vital rates in the presence of incomplete monitoring of breeding sites, which 128 

would otherwise be underestimated by classical capture–recapture methods. We show 129 

that population viability analyses, highly relevant in conservation biology and for 130 

species management, predict biased population trajectories when the demographic 131 

parameters are estimated without the proposed correction for partial monitoring.  132 

Materials and methods 133 

Estimating demographic parameters in the presence of uncertainty   134 

When only a portion of the breeding area is monitored, marked individuals can recruit 135 

in unobservable or inaccessible breeding places. Newly developed multi-event models 136 

(Pradel 2005) distinguish what can be observed in the field, i.e. the events coded in the 137 

individual encounter history, from the underlying individual states (Pradel 2005). This 138 

allows for the possibility that individuals recruit at unobservable breeding locations. For 139 

the sake of simplicity, we denote locations in which breeding animals can be seen or 140 

caught as ‘observable nests’ and those in which animals breed undetected as 141 

‘unobservable nests’. We consider six biological states in which an animal can be at a 142 

given time: pre-breeder (PB), first-time breeder in an observable nest (FTBo), first-time 143 

breeder in an unobservable nest (FTBu), experienced breeder in an observable nest 144 
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(EBo), experienced breeder in an unobservable nest (EBu) and dead (D; Fig. 2). Note 145 

that an intermediate state (first-time breeder, noted ‘B’) was included to model 146 

recruitment, independently from where the recruitment occurs (observable/unobservable 147 

nests; Fig. 2). This intermediate state is necessary to model and estimate separately the 148 

age-dependent recruitment. What we observed, i.e. the events, are simply the marking at 149 

birth (event coded ‘1’) and the following recaptures as a breeder (event coded ‘2’). The 150 

event for unobserved individuals on a particular occasion is coded as ‘0’. We describe 151 

the probability associated with the state-dependent observations using the following 152 

probabilities: 153 

ϕi,j
s
= the probability of surviving in state s for an individual of class j between time i 154 

and i+1. Note that j denotes a general grouping factor (e.g. sex or age). 155 

πi,j
PB-B

= the recruitment probability for an individual of class j, i.e. the probability of 156 

moving from a pre-breeding state to a breeding state between time i and i+1. 157 

βi= the probability, conditional to π to recruit into an observable nest between time i 158 

and i+1. We assume recruitment to occur randomly, thus this probability is 159 

equal to the proportion of observable nests in the study area. 160 

δi,j= the probability of changing nests for an individual of class j after a breeding 161 

attempt between time i and i+1; assumed to be random and independent of 162 

observability status.   163 

pi,j
s
= the probability of observing an individual of class j, in state s at time i.  164 

The multi-event model can be built using the above quantities to describe the 165 

probability of being in a particular state or moving between states. The first vector in 166 

multi-event models should contain the initial state probabilities, corresponding to the 167 

probabilities that an encounter history starts from a given state. Here the vector is 168 
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degenerated because all individuals were captured for the first time as PB (i.e. marked at 169 

birth) so the probability was 1 for the PB state (vector 1). 170 

  0   0    0   0  1IS

EBu    EBoFTBu         FTBo      PB     


  vector 1 171 

The multi-event model uses a series of matrices with departure states in rows and arrival 172 

states in columns to describe the conditional processes considered (Pradel 2005; 173 

Choquet, Rouan & Pradel 2009). For the sake of simplicity, subscripts of the parameters 174 

are omitted, but note that each parameter can be modelled as a function of time, class 175 

and/or state. The first matrix considered (matrix 1) contains the state-dependent survival 176 

(ϕ).  177 
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The second matrix (matrix 2) corresponds to the recruitment probabilities (π) into an 179 

intermediate first-breeding state (B). This transition is conditional on survival 180 

probabilities and should thus be considered after matrix 1.  181 
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The third matrix (matrix 3) includes the additional information collected by population 183 

monitoring (see below) and corrects for partial monitoring and breeding dispersal 184 

probability. In particular we include the probability that a first-time breeder recruits in 185 

an observable nest, which corresponds to the proportion of observable nests in the study 186 
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area (β), and the breeding dispersal probability, δ (i.e. the probability of changing nest 187 

after the year of recruitment). Assuming random breeding dispersal, the probability to 188 

move to an observable nest depends on the proportion of observable nests in the study 189 

area (β). Consequently, we combined β and δ parameters and we distinguished the 190 

probability  of dispersal into an unobservable nest as  = δ(1-β) and the probability ω 191 

of dispersal into an observable nest as ω = δβ.  Note that the quantities β,  and ω are 192 

fixed (i.e. not estimated by the model). 193 
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The product of the three previous matrices defined the Markovian process between the 195 

states. The last matrix considered is the events matrix (matrix 4), corresponding to the 196 

resighting or recapture probabilities (p). Resighting or recapture probability of 197 

individuals breeding in unobservable nests is zero. We consider that pre-breeders (PB) 198 

have an initial capture probability of 1 and their resighting or recapture probability is 199 

fixed at zero (i.e. only breeders are resighted or recaptured). 200 
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A test to assess the goodness-of-fit (GOF) of multi-event models is not available at 202 

present. As an approximation, we assessed the GOF of the Arnason-Schwarz model 203 

(state- and time-dependent) using program U-CARE 2.3.2 (Choquet et al. 2009).  204 
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Model validation and consequences of imperfect monitoring on derived population 205 

parameters  206 

When β is wrongly assumed to be 1 (i.e. all nests are observable) we expect immature 207 

survival and recruitment processes to be negatively biased. However, the importance of 208 

this bias may depend on the value of β and the importance of breeding dispersal 209 

processes in the studied species.  210 

To investigate these points, we generated data considering two sets of parameters, one 211 

typical of a short-lived species (pre-breeder survival: 0.20; adult survival: 0.40; full 212 

recruitment at age 1; fecundity: 3 females produced per breeding female; see examples 213 

in small mammals and passerines in Schaub & Vaterlaus-Schlegel 2001; Ernest 2003; 214 

Payevsky 2006) and one of a long-lived species (pre-breeder survival: 0.80; adult 215 

survival: 0.9; first reproduction at age 5; progressive recruitment: 0.5; and fecundity: 0.3 216 

females per breeding female; see examples in large mammals and seabirds in Sæther & 217 

Bakke 2000; Ernest 2003; Jenouvrier et al. 2008). All the scenarios assumed a recapture 218 

probability of 1 to consider an optimal situation in which all observable nests are 219 

monitored exhaustively. The first set of simulated data sets considered a breeding site 220 

fidelity of 1 (i.e. δ=0) and 10 increasing values of β (from 0.1 to 1; see Appendix S2 in 221 

Supporting Information). Additionally, to investigate the effect of breeding dispersal on 222 

parameter estimation, we considered nine additional scenarios for each of the two 223 

hypothetical species: combining β values of 0.25, 0.5 and 0.75 with values of breeding 224 

dispersal δ of 0.1, 0.2 and 0.3 (see Appendix S2). For each set of parameters we 225 

simulated 1000 capture–recapture histories. 226 

For each of these 38 simulated data sets, we ran: i) a classical multistate capture–227 

recapture model, which did not take into account recruitment into unobservable sites, ii) 228 

a multistate model with an unobservable state (i.e. ghost site) but no supplemental data 229 
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and iii) the new multi-event model described above.  Models were built and fit to the 230 

data using E-SURGE 1.6.3 (Choquet, Rouan & Pradel 2009). 231 

In a second step, to investigate the demographic consequences of not accounting for 232 

recruitment into unobservable nests, we used the estimates obtained by classical 233 

multistate modelling and their respective standard errors (SE) to calculate the expected 234 

stochastic population growth rate (λ) through an age- and stage-structured population 235 

model (see Appendix S3) (Caswell 2001; Morris & Doak 2002; Cooch, Cam & Caswell 236 

2012). Demographic analyses were carried out with the package Popbio in software R 237 

(Team 2005; Stubben & Milligan 2007) (Appendix S3). The variance of survival and 238 

recruitment parameters estimated from capture–recapture was incorporated into the 239 

model by randomly selecting parameter values from a beta-distribution (Morris & Doak 240 

2002). We ran 10 000 stochastic population model simulations and calculated the mean 241 

stochastic population rates and their SE (Appendix S3).  242 

Recruitment and immature survival of Scopoli’s shearwater  243 

To illustrate the modelling approach with real data, we used field data from a long-term 244 

monitoring program of a colony of Scopoli’s shearwaters in a small islet off Mallorca, 245 

Balearic archipelago, Spain. Shearwaters breed in burrows, mainly located under 246 

boulders and vegetation, where a single egg is laid in May and incubated by both 247 

parents until June. Newborns leave the colony in October for their first trans-equatorial 248 

migration and come back to breed at 4–7 years old (Jenouvrier et al. 2008). Each year 249 

we monitored about 160 accessible nests. Every year a small number of new accessible 250 

nests is found and added to the monitoring scheme. Similarly some nests are lost every 251 

year due to vegetation cover or the occasional erosion of the rocky slopes, forcing 252 

individuals to change nests (Sanz-Aguilar et al. 2011). We used data on 1298 253 

individuals ringed as chicks (event ‘1’) since 2001 and their recaptures as breeding 254 
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adults in the monitored nests until 2014 (event ‘2’). Survival probability was modelled 255 

following previous results of the same population (Sanz-Aguilar et al. 2011; Pradel & 256 

Sanz-Aguilar 2012; Genovart et al. 2013; Tenan et al. 2014). In particular, we 257 

considered a constant survival parameter, no age effects in pre-breeder survival, a 258 

minimum age at first reproduction of 5 years and a time-dependent recapture probability 259 

of breeders. Models were built and fit to the data using E-SURGE 1.6.3 (Choquet, 260 

Rouan & Pradel 2009). Additional information was used to obtain a measure of β (see 261 

Appendix S1). In particular, we obtained an estimate of the annual proportion of 262 

monitored nests, β, using a two-session capture–recapture protocol on marked 263 

fledglings (mean β =0.585, Table S1.1, Appendix S1). In addition, Sanz-Aguilar et al. 264 

(2011) estimated breeding dispersal probability in our population, δ, as 0.04. This 265 

estimate was used to calculate the annual α and ω parameters of the third matrix 266 

described above (Table S1.2, Appendix S1). 267 

Model selection was based on Akaike’s Information Criterion adjusted for the effective 268 

sample size, AICc (Burnham & Anderson 2002). During model selection we first 269 

modelled the effect of age (from 5 to age 8+) on survival of breeders and subsequently 270 

the effect of age on recruitment probability (from 5 to age 11+). We built final models 271 

by combining the retained structures of survival and recruitment parameters (models 272 

differing ≤ 2 AICc points). For each final model j, we calculated the Akaike weight, wj, 273 

as an index of its relative plausibility (Burnham & Anderson 2002). Estimates were 274 

obtained by model averaging, where final models contributed to the final estimate 275 

according to their wj (Burnham & Anderson 2002). In order to study the robustness of 276 

parameter estimates taking into account parameter uncertainty of the proportion of 277 

monitored nests, β, and breeding dispersal probabilities, δ, we ran once again those final 278 

models considering nine combinations of the mean value and lower and upper 95% 279 
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confidence interval of β and δ (Table S1.1–4, Appendix S1) and we calculated model-280 

averaged estimates for each combination.  281 

Finally, we ran again the final models but considering the hypothetical full monitoring 282 

of the breeding population (β=1) to obtain the estimates of parameters that will be 283 

obtained without corrections of β.  284 

Results 285 

Simulated data, capture–recapture and population models  286 

Pre-breeder survival was underestimated for both the short-lived and long-lived 287 

simulated data sets without breeding dispersal (=0) when the possibility of recruitment 288 

in unobservable nests was not considered in the analyses (Fig. 3A & 3C). Recruitment 289 

probabilities were correctly estimated for short-lived species (Fig. 3C) but 290 

underestimated for long-lived species when β≤0.5 (Fig. 3A). In contrast, breeder 291 

survival was correctly estimated for all simulated data sets (Fig. 3A & 3C). In multistate 292 

models, considering an unobservable site (i.e. ghost site), but in which  was not fixed, 293 

only survival of breeders was estimated correctly (results not shown).When β value 294 

used in simulations was fixed in the multi-event model, all parameters were correctly 295 

estimated (Fig. 3B & 3D). The population growth rate calculated assuming β=1 was 296 

negatively biased by its effects on immature survival and recruitment estimates. This 297 

effect was more pronounced for the short-lived than for the long-lived species, and 298 

under small values of β (Fig. 4).  299 

In long-lived and short-lived simulated data sets with partial monitoring (β) of 0.25, 0.5 300 

and 0.75 and low to moderate dispersal values (0<≤0.3), pre-breeder survival was 301 

correctly estimated using the classical multistate model (assuming β=1) (Fig. S4.2 & 302 

S4.5 respectively, Appendix S4). Recruitment probabilities were underestimated, 303 

especially under low values of β and high values of δ (Fig. S4.1 & S4.4, Appendix S4). 304 
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Breeder survival was correctly estimated for short-lived species but underestimated for 305 

long-lived species (Fig. S4.3 & S4.6, Appendix S4). Multistate models considering an 306 

unobservable site provided better recruitment estimates than classical multistate models 307 

but they showed very large parameter uncertainty, especially for short-lived species 308 

(Fig. S4.1–S4.6, Appendix S4) with additional problems of parameter identifiability 309 

(Appendix S4). By fixing the correct β,  and ω values used in data simulations, the 310 

multi-event models correctly estimated all parameters (Fig. S4.1–S4.6, Appendix S4).  311 

Despite contrasting results on parameter estimates with those obtained with =0, the 312 

population growth rate calculated assuming β=1 was similarly negatively biased for 313 

both short-lived and long-lived species, especially under small values of β (Fig. S4.7, 314 

Appendix S4).  315 

Real case study: the Scopoli’s shearwater 316 

The GOF test indicated that the general model assuming time- and state-dependent 317 

parameters explained the data adequately (χ
2
 =11.732, d.f.=11, P=0.384). 318 

We began model selection considering the mean values of β and δ (Tables S1.1 and 319 

S1.2, Appendix 1) and eliminating non-significant effects from the general structure of 320 

the survival parameters (model s1, Table 1), which considered differences between pre-321 

breeders and breeders aged 5, 6, 7 and ≥8 and differences in recruitment probabilities 322 

between individuals aged 5 to 10 and ≥11. The model with the lowest AICc value 323 

indicates differences in survival between breeders aged 5 and ≥6 (model s6, Table 1), 324 

although a model including survival differences among breeders aged 5, 6 and ≥7 was 325 

also highly supported (ΔAICc=1.17, model s3, Table 1). We selected the survival 326 

structure of model s6 to model recruitment probabilities (Table 1). The retained models 327 

(ΔAICc=0.10, Table 1) included recruitment differences for birds aged 5, 6 and ≥7 328 

(model r5, Table 1) and aged 5, 6, 7 and ≥8 (model r6, Table 1). Finally, we used these 329 
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retained structures (models s3, s6, r4 and r5) to build the final models (models C1–C4, 330 

Table 1) and obtain the model-averaged estimates of survival and recruitment 331 

probabilities (Table 2). We ran again models C1–C4 fixing different combinations of β, 332 

 and ω parameters (considering mean values and lower and upper 95% confidence 333 

intervals of β and δ; Table S1.5, Appendix 1). All models showed similar estimates of 334 

survival and recruitment (Table S1.5, Appendix 1) to those obtained when using only 335 

the mean values (Table 2), confirming the robustness of parameter estimates. In our 336 

case study of Scopoli’s shearwaters, by considering a hypothetical total monitoring of 337 

the breeding area (β=1) with the classical multistate modelling approach, pre-breeder 338 

survival and recruitment parameters were underestimated, but adult survival estimates 339 

were the same (Table 2). The difference in cumulative survival until age of first 340 

breeding (age 5) by considering the real proportion of nests monitored or unreal full 341 

monitoring (β=1) was ~6% (0.35 and 0.29, respectively). 342 

Discussion 343 

Model advantages  344 

The estimation of precise age-dependent recruitment and survival probabilities is 345 

fundamental to infer population dynamics and viability (Morris & Doak 2002; 346 

Williams, Nichols & Conroy 2002; Cooch, Cam & Caswell 2012; Oro 2013). For a long 347 

time, different statistical methodologies based on capture–recapture data have been 348 

developed and improved to properly and simultaneously estimate survival and 349 

recruitment parameters (e.g. Clobert et al. 1994; Pradel 1996; Pradel & Lebreton 1999; 350 

Schwarz & Arnason 2000; Kendall & Nichols 2002; Lebreton et al. 2003; Desprez et al. 351 

2013). Unfortunately, most capture–recapture methods using live recapture data 352 

estimate local parameters, i.e. they are not able to deal with permanent emigration, 353 

confounded with mortality (but see models including dead recoveries, Burnham 1993; 354 
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Barker 1997). Recruitment in unmonitored/unobservable breeding sites represents a 355 

special case of “permanent emigration” when breeding dispersal is null. Here we 356 

provide a new capture–recapture methodology based on incorporating additional 357 

information collected in the field to account for the possibility of recruitment in non-358 

monitored sites and to correctly estimate demographic parameters and test biological 359 

hypotheses simultaneously.  360 

We show here that adult survival for both short and long-lived species is correctly 361 

estimated without corrections when the breeding population is only partially monitored 362 

and there is no breeding dispersal (simulated data) or occurs in very low proportions 363 

(0.04, real data). However, juvenile survival for both short- and long-lived species and 364 

recruitment for long-lived species are underestimated. In contrast, when breeding 365 

dispersal occurs at low to medium probability (0.1–0.3) juvenile survival is correctly 366 

estimated without further corrections but recruitment for both short- and long-lived 367 

species and adult survival for long-lived species are underestimated. These biases may 368 

cause a substantial error not only in the estimated vital rates but also in the estimated 369 

population growth rate, especially when low proportions of breeding individuals are 370 

monitored (Fig. 4 and Fig. S4.7).  371 

Numerous long-lived animals (including birds and mammals) are territorial, and 372 

breeders exhibit high site fidelity to breeding sites, and even among short-lived species, 373 

juveniles disperse in higher proportions than adults (Gaines & McClenaghan 1980; 374 

Greenwood 1980; Greenwood & Harvey 1982).  375 

Natural populations may cover areas too large to be sampled by capture–recapture or 376 

they can include inaccessible sites to researchers. For example, Jenouvrier et al. (2008) 377 

used mark–recapture data collected on a subsample of about 30% of the nests in a 378 

Scopoli’s shearwater colony to estimate survival and recruitment probabilities. This 379 
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partial monitoring of individuals breeding in accessible nests has also been used for 380 

estimating demographic parameters for other hypogeous seabird species, e.g. storm 381 

petrels Hydrobates pelagicus (Sanz-Aguilar et al. 2009). The survival and recruitment 382 

estimates obtained from these studies may be underestimated, because the proportion of 383 

breeding sites monitored is lower than 50% as we have found here for such a case. In 384 

fact, population models for a storm petrel study population predict a colony decline 385 

(Sanz-Aguilar et al. 2009), whereas different dynamics (stability or even growth) have 386 

been found (Libois et al. 2012; Tenan et al. 2014) suggesting that demographic 387 

estimates used in population projections might be underestimated.  388 

The methodological approach presented here could also benefit from additional 389 

advantages of multi-event models such as the inclusion of uncertainty in breeder state 390 

assignment (Desprez et al. 2013). However, we should note that although the estimate 391 

of recruitment probability obtained by the proposed model was unbiased, it applies at a 392 

population level and is not suitable for the study of individual lifetime recruitment 393 

(Lambrechts, Visser & Verboven 2000).  394 

Model limitations  395 

The first limitation of the method proposed here is that it requires information on the 396 

proportion of monitored nests (β) and the probability of breeding dispersal (δ). 397 

However, this type of information can be obtained or estimated by other methods 398 

alternative to the individual capture–mark–recapture programs on fixed breeding sites 399 

(Williams, Nichols & Conroy 2002; Thomas et al. 2010). For example, Cannell et al. 400 

(2011) combined count at beaches and capture– mark–recapture to estimate the 401 

population size of little penguins Eudyptula minor; a distance sampling procedure was 402 

used to estimate the number of breeding pairs at the world’ largest colony of Scopoli’s 403 

shearwater (Thomas et al. 2010; Defos du Rau et al. 2015); and here we estimate 404 
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population size of shearwaters by capture–recapture of chicks in and outside nests (see 405 

details in Appendix S1). Our approach to estimate proportion of monitored nests (can 406 

be used in other species in which fledglings/juveniles wander far from their nests (e.g. 407 

storm petrels), flock together in communal crèches (e.g. slender-billed gulls 408 

Chroicocephalus genei) or use communal roosting sites (e.g. Egyptian vultures 409 

Neophron percnopterus). Moreover, we believe that most field ecologists can estimate 410 

the proportion of monitored nests (β) or can make an informed guess as to how large β 411 

is in their study site (e.g. Jenouvrier et al. 2008; Sanz-Aguilar et al. 2009). On the 412 

contrary, breeding dispersal (δ) may be more difficult to estimate. Sanz-Aguilar et al. 413 

(2011) estimated nest dispersal in Scopoli’s shearwaters using a multi-event approach, 414 

although this estimate may be slightly underestimated as only observable nests were 415 

considered in the model. Other methods to obtain breeding dispersal estimates, such as 416 

radio tracking, could also be used. However, for many species showing high breeding 417 

site fidelity this parameter can probably be neglected. A second limitation of our 418 

method is that it cannot include uncertainty in β or δ and consequently parameter 419 

variances are underestimated. We acknowledge that state–space models in a Bayesian 420 

framework would be more adequate to incorporate uncertainty (Gimenez et al. 2007; 421 

King 2012) but would limit the use of model information theory to test biological 422 

hypotheses on parameter variation. Bayesian model selection is complex, 423 

computationally challenging and no consensus has emerged in the literature on a single 424 

approach (see discussion in Tenan et al. 2014). On the contrary, the analytical 425 

framework we propose here allows researchers using the available tools of model 426 

selection in a more user-friendly environment. Model averaging using AICc can be 427 

easily carried out for considering uncertainty in model selection (Burnham & Anderson 428 

2002). Moreover, we show that the parameter robustness of the model can be assessed 429 
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by fixing different values of β and/or δ and when uncertainty of β and/or δ is small, 430 

model parameters are highly robust (see Appendix S1). Finally, another possible 431 

limitation of our approach is that it assumes random movements in breeding dispersal 432 

and random recruitment in observable and unobservable sites, which cannot be true in 433 

some situations (see for example Igual et al. 2007). However, this assumption may be 434 

true for many monitoring schemes (e.g. Fig. 1A) and additional constraints in β 435 

modelling (e.g. different β values for groups of individuals born or breeding in different 436 

sectors of the breeding area as central vs. peripheral areas, Figs. 1B & 1C) could be 437 

included in the model when information on dispersal processes (e.g. distribution of 438 

dispersal distances) is available. 439 

Synthesis and applications 440 

When monitoring a breeding population, animals in unobserved areas are assumed to be 441 

dead, an assumption that inevitably leads to underestimation of recruitment and 442 

immature survival. This bias is implicitly assumed to be small, and parameters 443 

estimated at the monitored areas are taken as a representative of the whole population. 444 

However, we show here that this assumption is not always correct and the extent of the 445 

bias depends on several features of the study, such as the species’ degree of breeding 446 

dispersal and the proportion of monitored area. We illustrate how to combine 447 

information at the population and individual level to correctly estimate age-dependent 448 

survival and recruitment. This approach can be applied to any system in which 449 

individuals can breed undetected. A typical case would be either birds or small 450 

mammals breeding in artificial nest boxes in which natural breeding sites cannot be 451 

monitored (e.g. Pilastro, Tavecchia & Marin 2003; Cannell et al. 2011). A similar case 452 

would be colonial waterbirds or territorial raptors, in which monitoring is conducted 453 

only in accessible nests and territories (e.g. Jenouvrier et al. 2008; Sanz-Aguilar et al. 454 
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2009; Zabala & Zuberogoitia 2014). Correct estimates of demographic parameters are 455 

essential to predict unbiased population trajectories through population models 456 

(Coulson et al. 2001; Williams, Nichols & Conroy 2002). We recommend the use of the 457 

proposed method when data are collected on partially monitored populations of species 458 

with moderate to high breeding site fidelity. 459 
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Table 1. Modelling of survival and recruitment probabilities of Scopoli’s shearwaters at 636 

Pantaleu Islet. Notation: np: number of parameters; Dev: relative deviance; AICc: 637 

Akaike information criterion corrected for sample size; ΔAICc: the AICc difference 638 

between the current model and the one with the lowest AICc value; AICw: Akaike’s 639 

weight. Model notation: PB: pre-breeder; B: breeder; “=” means no differences between 640 

stages considered; “/” means differences; numbers indicate the age classes considered. 641 

Note that all models considered temporal recapture probabilities. Models with the 642 

lowest AICc are in bold 643 

Model Survival Recruitment np Dev AICc ΔAICc AICw 

s1 PB/ B(5,6,7≥8) 5,6,7,8,9,10≥11 21 768.17 810.82 2.99  

s2 PB/ B(5,6=7≥8) 5,6,7,8,9,10≥11 20 769.25 809.85 2.02  

s3 PB/ B(5,6 ≥7) 5,6,7,8,9,10≥11 20 768.40 809.00 1.17  

s4 PB/ B(5=6=7≥8) 5,6,7,8,9,10≥11 19 775.06 813.60 5.77  

s5 PB/ B(5=6≥7) 5,6,7,8,9,10≥11 19 772.26 810.79 2.97  

s6 PB/ B(5≥6) 5,6,7,8,9,10≥11 19 769.29 807.83 0.00  

s7 PB/ B 5,6,7,8,9,10≥11 18 776.13 812.62 4.79  

s8 PB=B 5,6,7,8,9,10≥11 17 776.95 811.38 3.55   

r1 PB/ B(5≥6) 5,6,7,8,9,10≥11 19 769.29 807.83 5.23  

r2 PB/ B(5≥6) 5,6,7,8,9≥10 18 770.18 806.67 4.07  

r3 PB/ B(5≥6) 5,6,7,8≥9 17 770.29 804.72 2.13  

r4 PB/ B(5≥6) 5,6,7≥8 16 770.31 802.69 0.10  

r5 PB/ B(5≥6) 5,6≥7 15 15.00 802.59 0.00  

r6 PB/ B(5≥6) 5≥6 14 778.93 807.23 4.64   

C1 PB/ B(5≥6) 5,6≥7 15 772.51 802.8 0.16 0.30 
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C2 PB/ B(5≥6) 5,6,7≥8 16 770.30 802.69 0.00 0.33 

C3 PB/ B(5,6≥7) 5,6≥7 16 771.57 803.87 1.18 0.18 

C4 PB/ B(5,6≥7) 5,6,7≥8 17 769.40 803.83 1.14 0.19 

644 
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Table 2. Model-averaged parameter estimates (and SE) of consensual multi-event 645 

models including the correction β (Table 1) and considering β=1. Notation: ϕ: survival 646 

probabilities; π: recruitment probabilities; PB: pre-breeder; B: breeder 647 

 648 

Parameter Estimates (SE) 

β correction 

Estimates (SE) 

β=1 

ϕ PB  0.81 (0.02) 0.78 (0.03) 

ϕ B age 5  0.18 (0.17) 0.18 (0.17) 

ϕ B age 6 0.74 (0.08) 0.73 (0.08) 

ϕ B age ≥7 0.80 (0.04) 0.79 (0.04) 

π age 5 0.03 (0.02) 0.03 (0.01) 

π age 6 0.10 (0.03) 0.08 (0.03) 

π age 7 0.23 (0.08) 0.20 (0.07) 

π age ≥8 0.32 (0.11) 0.28 (0.11) 

649 
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 650 

 651 

Fig. 1. In many studies, the sampled individuals (black) represent only a part of the 652 

entire breeding population. In the schematic examples above the monitored nests (A), 653 

sector (B) or area (C) include 50% of the entire breeding population. 654 

  655 

A) B) C)
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  656 

Fig. 2. Schematic representation of the states considered and the probabilities associated 657 

with between-states transitions. Notation: PB= pre-breeder, B= first-time breeder, 658 

FTBo=first-time breeder in an observable nest, FTBu = first-time breeder in an 659 

unobservable nest, EBo=experienced breeder in an observable nest, EBu= experienced 660 

breeder in an unobservable nest, Φ=survival probability, π=recruitment probability, 661 

β=proportion of observable nests,  probability of moving into an unobservable nest, ω 662 

probability of moving into an observable nest. The state ‘dead’ could be reached from 663 

any of the states above and is not represented.664 
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 665 
Fig. 3. Estimates (and 95% CI) obtained by multistate (A, C) and multi-event (B, D) capture–recapture models of pre-breeder survival, breeder 666 

survival (noted by Pb and B respectively) and recruitment probabilities for the simulated data sets for long-lived (A, B) and short-lived (C, D) 667 

species under different scenarios of proportions of observable nests in the population (β). Dotted lines indicate the true value of the parameter 668 

used to generate the simulated capture histories.669 
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 670 

Fig. 4. Estimates (and SE) of population growth rate () for long-lived (A) and short-671 

lived species (B) using the demographic parameters estimated by multistate models 672 

when the proportion of the breeding area monitored (β) is not included in the model. 673 

The lambda that will result for the true demographic parameters considered when 674 

simulating the data sets is indicated with a dotted line. 675 
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