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Exploring and yet Failing Less:  

The Role of Exploitation and Human Capital to Foster Learning from Exploration 

 

 

Abstract 

Exploration is both a risky activity and a key ingredient in the strategy of firms that strive for 

radical innovations. In this paper we analyse how firms’ investment in exploration activities 

affects their exposure to innovation failure. Our baseline results point to an inverted U-shaped 

relation: while investment in exploratory activities initially increases the rate of failure in 

innovation, firms that overcome an experience threshold in exploration exhibit decreasing rates of 

innovation failure. We also show that firm’s commitments to product and process development 

and the availability of human capital act as relevant moderators: they contribute to speed the 

organisational learning process enhanced by exploration and result in lowering the probability of 

innovation failure. We investigate these issues drawing on a sample of 2,954 Spanish 

manufacturing companies for the period 2008-2010. 
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INTRODUCTION 

Exploration is a key ingredient in the strategy of firms that strive for radical innovations. As 

disruptive innovations in products, services or business models entail the promise of large 

revenue opportunities and contribute to build resources that are difficult to imitate by 

competitors, exploration strategies become fundamental for building a firm’s sustained 

competitive advantage.  

However, exploration also increases the exposure of firms to failure. While firms need to explore 

in order to build and retain a competitive edge, they also need to learn how to manage the greater 

uncertainty and risk involved in highly explorative innovation activities (Edmondson, 2011). This 

is not an easy balance. Firms want to minimise operational-based instances of failures and curve 

down failures to a minimum (Desai, 2010). At the same time, firms might be willing to tolerate 

some degree of failure so long as it provides valuable new knowledge and learning opportunities 

for their innovation strategies (Leonard-Barton, 1995; Edmondson, 2011).  

While there is a huge and well-established literature examining the returns to basic research and 

development on innovation performance (Mansfield, 1980; Freeman, 1982; Rosenberg, 1990), 

and an increasing literature on the learning opportunities from failure (Haunschild and Sullivan, 

2002; Madsen & Desai, 2010), there is much less research about the relationship between firms’ 

exploration activities and innovation failure. This paper contributes to the literature by 

investigating the following two issues. First, we investigate whether, and to what extent, firms 

learn from exploratory research by succeeding to reduce the probability of experiencing 

innovation failure. And second, we investigate whether the firm’s commitments to product and 
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process development and the availability of human capital contribute to speed the organisational 

learning process from exploration with regards to lowering innovation failure.  

   

CONCEPTUAL BACKGROUND AND HYPOTHESES 

Exploration as a buffer to myopic learning  

According to the behavioural theories of the firm, organisations learn through experience and 

adaptive processes. Organisational learning is an adaptive process, embedded in routines and 

procedures, that changes the knowledge base of the organisation in response to its interaction 

with the environment (Cyert and March, 1963; Nelson and Winter, 1982; Levitt and March, 

1988). This adaptive learning process often entails its own limits for generating learning 

opportunities, as it gives pre-eminence to the effectiveness of the learning process, prioritising 

attention to the short run and experimentation in the near neighbourhood of current experience 

(Levinthal and March, 1993).  

An overemphasis on the immediate performance from learning processes can interfere with 

learning strategies oriented to pushing the boundaries of search towards the long run or into new 

territories. As argued by Levinthal and March (1993), organisational learning processes are often 

myopic because of their tendency to ignore the long run, disregard distant search and overlook 

the lessons that can be gained from failure. This is largely due to the fact that the returns from 

exploitation, that is, the refinement and extension of existing competences and technologies, are 

generally positive, proximate and predictable. Thus, firms tend to give priority to the 

achievement of reliable performance via exploitation learning strategies, at the expense of actions 
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oriented to the search for new ideas or markets that have less certain outcomes, involve longer 

time horizons and involve more diffuse effects (March, 1991).      

Moreover, organisational learning processes often fail to correct for the myopic basis from 

experiential learning. Short-term myopia accentuates the learning pressures towards exploitation 

rather than exploration. It tends to favour the use and development of things already known in 

order to gain further efficiency and reliability – i.e. improving the returns from exploitation - as 

opposed to the pursuit of new knowledge and things that might come to be known – i.e. 

embracing an exploration strategy (Levinthal and March, 1993). This characteristic of adaptive 

learning processes can potentially be self-destructive as it endangers the long-term survival of the 

organization (March, 1991).   

Nevertheless, firms may deliberately try to counterbalance the biases towards myopic learning 

process by committing to continuous exploration activities. Sustaining a certain level of 

exploration militates against the traps of myopic learning, acting as a safeguard, or a buffer, to 

myopia. Exploration contributes to build and compromise capabilities outside current 

competencies and niches, and it favours the appreciation of risk-taking and the awareness of 

learning opportunities from failure. While exploitation is necessary to guarantee survival in the 

short run, as it contributes to improve average performance, exploration is essential to secure 

long-term survival, as it allows for deviation from average and the potential realisation of a 

position of primacy and leadership among competitors (March, 1991; Levinthal and March, 

1993).   

Innovation failure: good and bad  
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Since innovation failures refer to the abandonment, interruption and major delays of innovation 

projects conducted by organizations, it is reasonable to expect that firms aim to minimize these 

instances as much as they possibly can. There is however an increasing awareness in the business 

and management literature to further problematize the analysis of failure, by acknowledging that 

not all failure instances are necessarily bad for an organization.    

Leonard-Barton (1995) and Edmonson (2011) have suggested the appropriateness of taking into 

account different types of failures. Edmonson (2011) proposes three types of failures: 

preventable, complexity-related and intelligent. Preventable failures are associated with deviance 

to rules, inattention or lack of abilities when conducting routine or predictable operations. In this 

sense, failures within this category are considered to be ‘bad’ as they should be avoided as a 

result of operational-based learning. Complexity-related failures refer to organisational failures 

due to the uncertainty associated with the systemic complexity of tasks and procedures implicated 

in certain forms of innovation activities. This type of failures, however undesirable, is almost 

unavoidable and inherent to the complexity of the tasks. Nevertheless, the organization should 

have the mechanisms in place to identify and act upon these failures at early stages, before they 

scale up into major disruptions. And finally, intelligent failures are those associated to deliberate 

actions towards experimentation and exploration of unknown territories. Insofar as these 

instances of failure provide valuable opportunities to gain new knowledge that can help an 

organization leap ahead of the competition and ensure its future growth and survival, they can be 

considered as ‘good’ failures.  

Given that exploration involves moving into unknown and distant search spaces, it is reasonable 

to expect a particularly high prevalence of failure due to the inherent uncertainty of outcomes 

associated to experimentation. Accordingly, we would expect that firms that engage in 
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exploration activities will exhibit a larger probability of failure experience. While these instances 

of failure can potentially provide an organization with a range of learning opportunities to 

capitalize from in their searching and experimentation processes, this learning cannot be taken for 

granted, and firms may succumb to an overload of exploration and to the inherent uncertainties 

involved.  

However, exploration also involves programmed procedures and routines; experimentation is far 

from an unstructured activity (Nelson and Winter, 1982). In this sense, firms are expected to 

organise their exploration activities and set the conditions to potentially learn from instances of 

both success and failure. Learning from programmed exploration to curve down failures can 

manifest in different ways. On the one hand, sustained levels of exploration within the 

organisation contribute to learning from failures. Sustained efforts on exploration contribute to 

develop long-run intelligence, monitoring and surveillance capacities that enable firms to 

identify, analyse and act upon both preventable and complexity-related failures (March, 1991; 

Edmonson, 2011). On the other hand, the accumulation of exploration experience contributes to 

minimize ‘preventable’ failures associated with the routine tasks involved in exploration and 

experimentation activities themselves. Operational-based learning can lower down the risks of 

failure, provided that a sufficient scale of experience in exploration activities is accumulated 

(Desai, 2010). However, those failures that are inherently associated to experimentation 

(‘intelligent failures’) are likely to be more resilient all through the exploration activities, and be 

particularly prevalent at earlier stages of the exploration learning process, when firms might be 

willing to explore different routes of action at the conception phase.   

According to the discussion above, we would expect a curvilinear relationship between 

exploration and the probability of experiencing failure: where failure increases with exploration 
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up to a point beyond which operational-based learning and accumulated intelligence from 

exploration contributes to lower down the probability of failure.   

Hypothesis 1: Exploration is expected to have a curvilinear effect, taking an inverted U-shape, 

on the probability to experience innovation failure. 

 

Fastening learning from exploration: the role of exploitation and human capital 

In the previous section we have argued that organisations can learn from their exploration 

activities by lowering the occurrence of innovation failures. However, learning from exploration 

is unlikely to be a straightforward process. As many studies on organizational learning have 

pointed out, effective and faster learning demands some pre-conditions that should be satisfied by 

the organization (Edmonson, 2011; Gino and Pisano, 2011).  

Two critical pre-conditions are particularly relevant in the context of exploration and 

experimentation: the capacity of firms to balance exploration and exploitation activities, and the 

availability of highly research-skilled human resources. We discuss below how these two 

contingent factors might influence the capacity of the firm to learn from exploration in order to 

curve down innovation failures. 

Balancing exploration and exploitation 

Firms often find it hard to conduct both exploration and exploitation activities, and even harder 

still to realize the benefits of the potential complementarities between the exploration and 

exploitation. In the first place, this is so because these two activities represent an important trade-

off for the companies. While, firms might acknowledge that exploration and exploitation are 
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critical to guarantee the organization survival, the two activities compete for limited physical and 

human resources (March, 1991), as well as for the attention of the organisation’s decision makers 

(Ocasio, 1997). As discussed above, the different time horizons and degrees of uncertainty 

involved in exploration and exploitation, biases firms towards exploitation at the expense of 

exploration.   

However, the trade-offs between exploration and exploitation should not be regarded as 

insurmountable. Recent research suggests that firms that develop ambidextrous capabilities, in 

terms of simultaneously exploiting existing competencies and exploring new opportunities, are 

expected to exhibit superior economic performance (Raisch et al., 2009). Also, there is evidence 

showing that research and development activities may complement each other with regards to the 

firm’s achievement of higher productivity (Barge-Gil and Lopez, 2013), as well as evidence 

demonstrating that firms can design organizational structures that enable employees to pursue 

both types of activities (Gibson and Birkinshaw, 2004).  

A fundamental reason underlying the rationale for the potential complementarities between 

exploration and exploitation rests on the potential benefits for innovation from a continuous 

dialogue between experimentation and prototyping (Leonard-Barton, 1992; 1995). This logic 

highlights that organisations can potentially benefit from a two-way flow of information and 

knowledge between exploration and exploitation.  

From exploration to exploitation, by improving the efficiency of downstream research activities 

and prototyping on the basis of insights gained by an ex-ante understanding of the innovation 

process (Nelson, 1982; David et al., 1992). In this respect, exploration can provide advances in 

fundamental understanding that can contribute to lowering the risks of applied developments by 
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flagging promising directions for downstream research and by contributing to develop the 

necessary tools for more rapid and efficient (product and process) development (Pisano, 2006). 

This path can be synthesised by the idea of overcoming the downsides of a trial and error learning 

process from downstream activities, benefitting instead from a more ex-ante, upstream learning 

process gained through experimentation that contributes to reduce the risks of failure along the 

development pipeline.          

On the other hand, gains can run in the opposite direction as well, from exploitation to 

exploration. As shown by Leonard-Barton (1995), prototyping can be seen as an essential 

practice to elicit critical information and provide feedback to the experimentation units. By 

conducting rapid prototyping cycles, firms can identify features that do not work as expected in 

the lab, feeding reactions to product (or process) concept designers before major failures might 

ensue further downstream along the pipeline (Leonard-Barton, 1995). Moreover, by collecting 

information at close to market stages of product development, organizations are likely to identify 

when the returns from given strategies are reaching a point of exhaustion or decreasing returns, 

thus helping to alert about the need of a change in exploration avenues or making a leap to newer 

competencies or a focus on new technological paths (Ahuja and Katila, 2004; Mudambi and 

Swift, 2014).  

Drawing on the above discussion about the potential complementarities between exploration and 

exploitation, we would expect that organizations that conduct a critical level of development or 

exploitation activities, should exhibit a more effective and faster learning process in their 

exploration activities. Therefore, we put forward the following hypothesis: 
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Hypothesis 2: The degree of exploitation activities conducted by the firm negatively moderates 

the relationship between exploration and innovation failure. That is, for a given level of 

exploration, higher levels of exploitation reduce the probability of innovation failure. 

Availability of highly research-skilled human resources 

A critical pre-condition particularly relevant in the context of exploration and experimentation 

activities, is the availability of highly skilled human resources. Highly skilled employees are 

expected to equip the organisation’s research teams with an adaptable, responsive and pro-active 

workforce. The essential role of highly skilled researchers and technicians in the organizational 

learning process associated to exploration lies on the following three potential contributions.   

First, employees with higher education degrees and research experience are particularly well 

suited to set in motion procedures for the systematic detection and analysis of success and 

failures. Learning from exploration activities involve developing capabilities for the early 

detection of failures before they mushroom into disaster, and also capabilities to analyse and gain 

adequate interpretations from experimentation and potential breakdowns and errors. Early 

detection of failures is crucial not only because it contributes to save money, avoiding the 

deployment of additional resources into unsuccessful research projects downstream into the 

development pipeline; but also because it creates a favourable climate for risk-taking in 

experimentation, as employees gain confidence that their monitoring processes will prevent any 

scaling up of negative effects from inevitable failures.     

Besides detection, both success and failures must also be properly analysed in order to adequately 

understand their root causes and contribute to effective organisational learning from exploration. 

However, analysis of success and failure is cognitively challenging for an organisation. 
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Accumulated experience can often be a poor teacher, and may involve making wrong inferences 

from mixed evidence, particularly in the face of complex activities such as exploration (Levinthal 

and March, 1993).  

Moreover, learning from exploration can be also cognitively challenging because too often 

success experiences make organizations less reflective, as success episodes are commonly 

interpreted as evidence that existing strategies and practices work properly and require no 

change, thus limiting the opportunities for a systematic and effective learning from exploration 

activities (Gino and Pisano, 2011; Madsen and Desai, 2010). Similarly, when confronted with 

failures, individuals tend to favour evidence that supports their existing beliefs rather than 

alternative explanations, contributing to unintentionally masking the deep causes of failure 

(Edmonson, 2011).  

Research trained employees are likely to possess analytical skills, command competencies to 

conduct systematic inquiry, and display a high tolerance for causal ambiguity. For this reasons, 

employees with a higher education or a postdoctoral degree, are likely to be in a position to face 

the cognitive challenges associated with detection and analysis of success and failures from 

exploration activities, in a faster and more efficient way than employees without such formal 

training. Therefore, organizations equipped with employees who possess formal research training 

should be expected to exhibit a more effective and faster learning from exploration activities.  

Second, individuals with formal research training are likely to be positively predisposed to 

experimentation and feel attracted to risk-taking in exploration activities. Besides cognitive 

competencies linked to the detection and analysis of success and failures from exploration 

activities, these highly qualified employees are often particularly willing to engage in new 
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exploratory avenues. They acknowledge that experimentation is necessary to push the boundaries 

of current understanding and knowledge within the organization. These individuals are highly 

intrinsically motivated to conduct research as they tend to set aspiration levels above current 

performance, engaging in both local and distant search (Levinthal and March, 1993; Garcia-

Quevedo et al., 2012).  

Additionally, employees with formal research training also tend to engage in exploratory and 

experimental research as a learned mode of interaction with the extended community of 

researchers in the private and public sectors. Being active in exploration activities help them 

plugging into the enlarged epistemic community of researchers, of which they are often an 

integral part (Rosenberg, 1990).  

Third, employees with formal research training also contribute to create a favourable climate for 

experimentation, as they bring into the organization a culture of tolerance to, and acceptance of, 

failure. They contribute to creating a climate that does not blame for failure, but on the contrary 

acknowledge that failure is an inherent and an unavoidable component of experimentation and 

exploration.  

Highly skilled employees display a positive disposition to experimentation as they perceive it as 

an opportunity to enhance understanding, even in the presence of failure. That is, even though 

they acknowledge that further exploration and experimentation increases the chances of 

experiencing failures, they perceive these instances of failure as learning opportunities, as 

potentially providing valuable new knowledge (Edmonson, 2011). 

Moreover, this type of employees contributes to form a working climate where the emotionally 

charged implications of identifying and admitting failure are attenuated. Analysis of the results of 

12 
 



exploration can be emotionally challenging as failure analysis often implies the 

acknowledgement of responsibilities by the executing teams. Admitting failure can be 

emotionally unpleasant as it may harm self-esteem and/or imply some forms of penalisation from 

the organisations’ managers. However, individuals with a formal training in research are often 

prepared to recognise that identification and admission of failure is praiseworthy if taken as an 

opportunity for learning (Edmonson, 2011).  

Drawing on the above discussion, we would expect that organizations that have a critical mass of 

formally research trained employees in their exploration activities, should exhibit a more 

effective and faster learning process in their exploration activities. Therefore, we put forward the 

following hypothesis: 

Hypothesis 3: The degree of highly skilled employees in research activities negatively 

moderates the relationship between exploration and innovation failure. Specifically, for a 

given level of exploration, higher levels of human capital reduce the probability of innovation 

failure.  

 

DATA AND METHODS 

Our analysis is based on data stemming from the Spanish Technological Innovation Panel 

(PITEC), which is jointly managed by the Spanish National Statistics Institute (INE), the Spanish 

Foundation for Science and Technology (FECYT) and the Foundation for Technical Innovation 
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(COTEC). PITEC is a Community Innovation Survey (CIS)-type, firm-level dataset that results 

from subsequent waves covering a three-year period each.* 

As discussed in the theoretical section, our main focus is on firms that experience innovation 

failures. Firms with positive investment in innovation can actually experience different rates of 

failure with respect to non-investors. Specifically, whereas the former can experience a failure 

along the whole innovation path (i.e. from the origin of the innovative idea to its development), 

the possibility that non investing firms report a failure in innovation is limited to abandonments 

in the early conception phases. In other terms, the failure experience is potentially more 

complete, and consequentially broader, for firms that actively engage in innovation. Table 1 

shows the proportion of manufacturing companies (from PITEC for year 2010) reporting a failure 

in an innovation project distinguishing between positive and zero-investors. The table clearly 

shows a much higher probability of failure for companies that are actively engaged in innovation 

(the difference between the two probabilities is statistically significant at the 1% confidence 

level). 

[INSERT TABLE 1 ABOUT HERE] 

 Given the focus of our analysis, we restrict the sample to manufacturing firms that may have 

potentially encountered a complete and wider range of innovation failures.  Specifically, we keep 

only those companies that are actually engaged in innovation. In other terms, those firms that 

report a positive expenditure in innovation activities. Furthermore, we concentrate our 

investigation on the period 2008-2010. We do this by aggregating information from three 

different PITEC survey’s waves. Indeed, some of the relevant questions contained in the 2010 

* For a review on innovation surveys, see Mairesse and Mohnen (2010). 
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wave of PITEC survey refer to the period 2008-2010 (e.g. rate of failure in innovation projects) 

while other questions refer to 2010 year only (e.g. employment, R&D spending, etc.). For 

consistency, we use the preceding two waves of the PITEC survey (i.e. the 2009 and 2008 survey 

waves) and complement information for the 2010 edition of the survey. In this way, we are able 

to build a full set of variables referring to the period 2008-2010. Concentrating our analysis on 

this period allows us to provide updated evidence, still focusing on a time-span in which the 

likely (and largely unobservable) concurring effect of the recent economic crisis can be deemed 

as stable. The resulting sample contains full information for 2,954 manufacturing firms. 

Our interest is in estimating the factors that influence the event of a failure in innovation through 

the use of the following logit model: 

ܮܫܣܨܱܰܰܫ)ܲ = 1| ܺ,ܼ) = Ȧ(ȾᇱX୧ + ɀᇱZ୧), 
where   

 

Λ(z) = ez /(1+ ez ) is a logistic function, Xi is the vector of our key explanatory variables 

and Zi is the vector of firm-level controls.  

Our main dependent variable is INNOFAIL: a dummy that takes value 1 when the firm faced the 

event of a failure in innovation in the period 2008-2010, i.e. whether the firm have reported to 

have abandoned an innovation project either at the conception or development phase. 

As for the key explanatory variables, we build upon previous studies distinguishing between 

exploratory and exploitative innovative activities (Czarnitzki et al., 2009; Czarnitzki et al., 2011: 

Barge-Gil and Lopéz, 2013). PITEC data allow us to distinguish the amount of investment in the 

different components of R&D: basic research, applied research and development. Taking 

advantage from the information provided, we create two variables: EXPLORATION and 
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EXPLOITATION. EXPLORATION is obtained by averaging, over the period 2008-2010, the sum 

of the expenditures in basic and applied research. The average sum is divided by the average 

number of employees in the same period. Finally, to reduce the skewness of the distribution, we 

apply a logarithmic transformation (adding +1 to avoid dropping the zeros). Similarly, 

EXPLOITATION is the log transformed ratio between the 2008-2010 average expenditure in 

development activities and the average number of employees in the same period. To capture the 

firm’s human capital we use a dummy (HUMAN CAPITAL) that equals 1 in case the firm is in 

top tercile (i.e. top 33%) of the distribution of the R&D personnel with a university degree 

(Bachelor, Master or PhD). 

Hypothesis 1 in the theoretical section predicts an inverted U-shaped relationship between 

exploration activity and the probability to experience innovation failure. To capture this non-

linear effect we include in our econometric specification the term EXPLORATION2.  

We test for Hypothesis 2 interacting EXPLOITATION with a series of dummies that reflect the 

three classes of engagement in exploratory activities. This allows us to better capture whether 

EXPLOITATION moderates the effect of EXPLORATION for high or low values of this latter. 

Two alternative specifications are employed. First, we define three dummy variables: 

EXPLORATION_0-4, EXPLORATION_4-7 and EXPLORATION_7-max. The first one takes on 

value 1 when EXPLORATION ranges between 0 and 4, the second equals 1 when 

EXPLORATION is between 4 and 7, the third captures firms with values of EXPLORATION 

higher than 7. The dummy variable referring to central values of EXPLORATION 

(EXPLORATION_4-7) constitutes the main reference term as this contains the values of the 

turning point in the inverted U-shaped relationship between exploration activity and innovation 

failure. The key idea is that by interacting the two dummies EXPLORATION_0-4 and 
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EXPLORATION_7-max with the continuous variable EXPLOITATION we will be able to single 

out any complementary contribution of EXPLOITATION in moderating the effect of exploratory 

activities on the probability to experience an innovation failure. As robustness check, we also 

make use of five dummy variables instead of three (i.e. EXPLORATION_0, EXPLORATION_1-4, 

EXPLORATION_4-7, EXPLORATION_7-8.5, EXPLORATION_8.5-MAX). These capture five 

classes of EXPLORATION values: 0, from 1 to 4, from 4 to 7, from 7 to 8.5 and higher than 8.5, 

respectively. In line with the previous specification, we keep the same variable as reference term 

(i.e. EXPLORATION_4-7) and we interact the set of dummies with the continuous variable 

EXPLOITATION. 

Finally, Hypothesis 3 is tested by using interaction terms between the EXPLORATION (in its 

linear and quadratic form) and HUMAN CAPITAL. 

Omitted variable bias is reduced by including a set of controls in the econometric specification. 

First of all, with a set of dummies we control for the hampering factors that in the period 2008-

2010 may have affected the firm’s innovation activities and, as a consequence, the likelihood to 

encounter a failure. Given our focus on firms engaged in innovation we consider revealed barriers 

to innovation: that is, obstacles that firms experience along the innovation path (D’Este et al., 

2012). As in recent contributions we consider both financial and non-financial barriers (e.g. 

Blanchard et al., 2013; D’Este et al., 2012, 2014). COSTBAR captures whether the firm faced at 

least a highly relevant problem with respect to: innovation costs, internal or external funding to 

innovation. KNOWBAR reflects whether the firm experienced at least a high barrier related to 

knowledge. Specifically, we consider obstacles associated to: skilled personnel, information on 

technology, information on markets and availability of suitable innovation partners. We finally 

consider the potential effect on innovation failures exerted by serious obstacles due to dominated 

17 
 



market (MKTDOMBAR) and uncertain demand (MKTUNCBAR). Despite the internal R&D 

investment of the firm is already captured by EXPLORATION and EXPLOITATION, we control 

for different forms of engagement in innovation that may be particularly relevant for SMEs and 

non-R&D intensive industries (e.g. Rammer et al., 2009; Sterlacchini, 1999). To this aim, we 

employ OTHEREXP. This is the log transformed 2008-2010 average sum (adding +1 to avoid 

dropping the zeros) of the expenditures per employee in: external R&D; machinery, equipment 

and software; external knowledge; training; market introduction of innovations, design and other 

preparations. To further capture the complex nature of the firm’s innovation profile, we also 

control for the resort to the open innovation mode (e.g. Chesbrough, 2003; Laursen and Salter, 

2006). Specifically, we include in our econometric specification a dummy (EXTKNOW) that 

reflects whether the firm has acquired highly relevant information from an external source of 

knowledge. Obviously, the likelihood to fail in innovation might be also related to the extent to 

which the firm carry out cutting-edge and risky innovation activities. For this reason we include a 

dummy (RADICALINNO) that captures whether the firm, in the considered period, introduced a 

radical innovation. Another relevant characteristic that we include among the controls is the (log 

transformed) firm’s age (AGE); this latter may be related to the propensity to introduce disruptive 

and risky innovations, as well as to face higher obstacles to innovate (e.g. Schneider and 

Veugelers, 2008). We also consider a set of characteristics that may influence innovation 

resources, incentives and, in turn, the likelihood to conduct innovation activities that lead to a 

failure. First, we consider the group affiliation and the engagement in export with two dummies 

(GROUP and EXPORT). Second, we include a variable related to firm size measured as the 

natural logarithm of the average number of employees in the period 2008-2010 (plus 1) (SIZE). 

Finally, we include a set of variables to control for the effect of industry characteristics. These are 

2-digit industry dummies based on the NACE rev.2 classification.  
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Table 2 presents descriptive statistics of the variables used in this study; Table 3 reports the 

correlation matrix of our variables. In general, correlation across the independent variables is 

low, suggesting the absence of any relevant multi-collinearity problems. 

[INSERT TABLE 2, TABLE 3 ABOUT HERE] 

 

RESULTS 

Results emerging from our econometric analysis are reported in Tables 4 and 5. Our baseline 

model considers EXPLORATION and EXPLOITAION as linear terms (Table 4, Model I).  Both 

terms positively affects the probability to experience an innovation failure (i.e. to abandon an 

unsuccessful innovation project). Investing in R&D, both in an exploratory and exploitative way, 

increases the chances that some innovation projects are going to reveal unsuccessful. Similarly, a 

higher level of human capital increases the probability of innovation failure, denoting the risk-

taking and experimentation orientation of R&D personnel with a university degree. We also 

notice the relevance of many of the controls we employed in our econometric specifications. As 

expected, firms tend to experience a higher probability of failure when they engage in radical 

innovation. A higher failure rate is associated also to knowledge and market barriers, while cost 

barriers are not significantly affecting the probability to abandon an innovation project. Adopting 

open innovation modes -i.e. engaging in external information sourcing- increases the probability 

to face a failure along the innovation path. This may be related to the exploratory and, thus, risky 

nature of a external knowledge sourcing. Finally, being affiliated to a group increases the chance 

of failure. Group affiliates, benefiting from intra-group economies of scale and the possibility to 

share the risk among the group members, embark in more uncertain innovation activities. 
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Interestingly enough, once we control for the above set of firm-level characteristics, age and size 

of the companies do not affect the probability of abandoning an innovation project. 

[INSERT TABLE 4 ABOUT HERE] 

Table 4 provides also support to our first hypothesis (Table 4, Model II). Exploration has an 

inverted U-shape effect on the probability to face a failure in innovation.  Despite the initial 

increase in the rate of innovation failure, boosting exploration engenders a learning process that 

reduces the risk of unsuccessful innovation projects. Capacity to analyse and act upon previously 

abandoned exploratory activities, acquisition of monitoring and intelligence capacities and 

operational-based learning (March, 1991; Desai, 2010; Edmonson, 2011) help explain this result. 

Building on model II in Table 4, Figure 1 depicts the curvilinear relationship between the value 

of EXPLORATION and the predicted probability of experiencing innovation failure.  

[INSERT FIGURE 1 ABOUT HERE] 

Our second hypothesis set out in the theoretical section concerns the moderating effect of 

exploitation activity on the relationship between exploration and innovation failure. Specifically, 

we test whether EXPLOITATION moderates EXPLORATION and leads to a decrease in the 

probability of failure. Models III  and IV in Table 5 suggest that this is actually the case under 

specific circumstances: for particularly high levels of EXPLORATION (i.e. EXPLORATION_7-

MAX or EXPLORATION_8.5-MAX equal 1) an increase in the investment in EXPLOITATION 

reduces the probability to face a failure. It is important to recall that the reference category for the 

dummies proxying for EXPLORATION is the central value of EXPLORATION (i.e. the 

maximum value of the inverted U-shaped relationship between exploration and innovation 

failure, see Figure 1). Thus, in Table 5 we can interpret the interaction between EXPLOITATION 
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and the dummies variables defined for EXPLORATION as measuring the moderating effect of 

exploitation activity on the relationship between EXPLORATION and INNOFAIL for values of 

EXPLORATION below and above central values (i.e. the turning point in Figure 1). Our results 

show that investment in exploitation activity does not contribute in lowering (or increasing) the 

rate of innovation failure for levels of exploration below the central values. On the contrary, 

exploitation activity plays a complementary role for high (Model III) and very high (Model IV) 

levels of investment in exploration and contributes to lower the probability to experience 

innovation failure. 

[INSERT TABLE 5 ABOUT HERE] 

Our third hypothesis pertains to the analysis of the moderating effect of human capital in the 

relationship between exploration and innovation failure. Coefficients of the interactions between 

HUMAN CAPITAL and EXPLORATION (in its linear and quadratic form), are reported in Table 

5, Model V. Further insights come from the graphical representation (Figure 2) of this 

moderation effect. Although a high level of human capital in the R&D department initially 

increases the risk of abandonment, it also helps fasten and anticipate the learning and reach, when 

combined with a high engagement in exploratory activities, a lower rate of failure. Again, this 

finds support in our theoretical argumentation. Trained R&D employees, although more oriented 

towards risk-taking and challenging projects, are also endowed with skills, experience and a 

positive attitude towards learning from failures that enhance the capacity to efficiently analyse 

success and failures in exploratory activities. 

[INSERT FIGURE 2 ABOUT HERE] 

CONCLUSIONS 
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This paper provides preliminary evidence on how firms’ investment in exploration activities 

increases the exposure of firms to innovation failure and, for high levels of investment in 

exploration activities, helps them in reducing the probability to fail. This result descends from the 

recognition that firms need to reach a difficult balance between two contrasting effects. On the 

one side, firms need to explore in order to build and retain a competitive edge. This can be done 

by reducing operational-based instances of failures and curve down failures to a minimum. On 

the other side, firms also need to learn how to manage the greater uncertainty and risk involved in 

highly explorative innovation activities. Regarding this, companies might be willing to tolerate 

some degree of failure so long as it provides valuable new knowledge and learning opportunities 

for their innovation strategies. 

Taking advantage of a comprehensive dataset containing information on the activities carried out 

by 2,954 Spanish companies, we find evidence of a curvilinear relationship between exploration 

and innovation failure. In particular, we find support of an inverted U-shaped relationship 

between investment in exploration activity and the probability to experience innovation failure. 

That is, while exploration increases the chances of experiencing failure due to the intrinsic risks 

associated to experimentation, there are learning economies from exploration activities that 

contribute to curve down the probability of failure once an experience threshold is overcome. We 

argue that these learning economies are likely to be associated to operational-based learning that 

helps to reduce both preventable and complexity-related failures.  

Furthermore, we find support for at least two important moderating effects in the relationship 

between exploration and innovation failure. In particular, we show that firm’s commitments to 

product and process development and the availability of human capital contribute to speed the 

organisational learning process from exploration with regards to lowering innovation failure. 
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These findings are relevant to point out that the learning economies from exploration are 

contingent on the attainment of an adequate balance between exploration and exploitation 

activities, and on the availability of highly skilled employees in the organisation’s research teams. 

The paper has limitations that open up avenues for future research. First, our definition of 

innovation failure forces us to measure it as a binary variable only (whether the focal firm 

abandoned an innovation project or not in the period of reference). Providing a measure of the 

intensity of innovation failure at the firm level would allow us to enrich the analysis in terms of 

the relative importance of innovation failure for firms that experience it at different degrees. 

Second, a further limitation of the approach pursued in this paper is that it relies on data from one 

country only, i.e. Spanish manufacturing companies. Future works should extend our analysis to 

a wider range of countries in order to generalise the results obtained. Finally, although the 

analysis in this paper tries to control for some effects that might hide omitted variable bias, the 

absence of a longitudinal data format and, more importantly, of a pure experimental setting to 

allow a conclusive analysis suggests caution when interpreting the results in a causal way. 

Future work should try to address all the points mentioned above to extend our results. In spite of 

these limitations, we believe that the insights gained from our study will serve as a guide and 

foundation for future work aimed at investigating the important role of exploration strategies for 

lowering innovation failure and, eventually, for building a firm’s sustained competitive 

advantage. 
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Table 1: Probability of failure in R&D projects: innovators vs non innovators 

 
Zero Investors Positive Investors Pearson Chi squared 

% Failure 12.18% 31.20% 
240.4727 [1] ***  

Observations 1962 3154 
Notes: degrees of freedom are in brackets. The sample refers to all manufacturing companies contained in the 2010 
edition of PITEC. All investment in innovation activities are considered. 
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Table 2 Descriptive Statistics (n=2954) 

Variable Mean S.D. Min Max 

INNOFAIL 0.315 0.464 0 1 

EXPLORATION 4.805 3.63 0 11.05 

EXPLOITATION 5.427 3.5 0 11.654 

HUMAN CAPITAL  0.328 0.469 0 1 

COSTBAR 0.167 0.373 0 1 

KNOWBAR 0.009 0.095 0 1 

MKTDOMBAR 0.202 0.401 0 1 

MKTUNCBAR 0.275 0.446 0 1 

OTHEREXP 6.319 2.407 0 12.885 

EXTKNOW 1.35 1.609 0 10 

RADICALINNO 0.487 0.499 0 1 

AGE 3.289 0.59 1.386 5.17 

GROUP 0.465 0.498 0 1 

EXPORT 0.898 0.302 0 1 

SIZE 4.31 1.301 0.287 9.158 
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Table 3 Correlation Matrix 

  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

(1) INNOFAIL 1 
             

(2) EXPLORATION 0.13 1 
            

(3) EXPLOITATION 0.09 0.08 1 
           

(4) HUMAN CAPITAL  0.15 0.26 0.3 1 
          

(5) COSTBAR -0.03 0.01 -0.002 -0.07 1 
         

(6) KNOWBAR 0.03 -0.02 0.01 0.001 0.09 1 
        

(7) MKTDOMBAR 0.06 0.04 0.02 -0.001 0.1 0.06 1 
       

(8) MKTUNCBAR 0.06 0.03 0.01 -0.008 0.13 0.09 0.36 1 
      

(9) OTHEREXP 0.03 0.04 0.09 0.15 -0.01 0.002 0.05 0.04 1 
     

(10) EXTKNOW 0.09 0.1 0.12 0.16 0.06 -0.003 0.1 0.09 0.16 1 
    

(11) RADICALINNO 0.11 0.15 0.18 0.16 -0.01 0.006 -0.05 -0.002 0.13 0.08 1 
   

(12) AGE 0.05 -0.005 -0.03 0.08 -0.08 -0.01 -0.0006 0.006 -0.07 0.0009 0.0004 1 
  

(13) GROUP 0.09 0.0182 0.0209 0.32 -0.14 -0.02 -0.08 -0.06 0.04 0.01 0.03 0.07 1 
 

(14) EXPORT 0.04 0.0667 0.0788 0.12 -0.05 -0.003 0.0018 -0.02 -0.009 0.02 0.03 0.13 0.1 1 

(15) SIZE 0.09 -0.031 -0.03 0.42 -0.15 -0.04 -0.09 -0.07 -0.028 0.03 0.04 0.32 0.53 0.18 
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Table 4 Innovation failures determinants: baseline results 

Dep.var.:INNOFAIL  I II 
EXPLORATION 0.0565*** 0.2002*** 

 
[0.0127] [0.0509] 

EXPLOITATION 0.0436*** 0.0384*** 

 
[0.0135] [0.0137] 

HUMAN CAPITAL  0.2217** 0.3110*** 

 
[0.1117] [0.1167] 

EXPLORATION2 
 

-0.0180*** 

  
[0.0062] 

EXPLOITATION2 
  

   COSTBAR -0.181 -0.1822 

 
[0.1182] [0.1182] 

KNOWBAR 0.8401** 0.8547** 

 
[0.4124] [0.4134] 

MKTDOMBAR 0.2567** 0.2565** 

 
[0.1088] [0.1087] 

MKTUNCBAR 0.2182** 0.2099** 

 
[0.0986] [0.0986] 

OTHEREXP -0.0057 0.0026 

 
[0.0178] [0.0182] 

EXTKNOW 0.0600** 0.0622** 

 
[0.0254] [0.0253] 

RADICALINNO 0.3838*** 0.3891*** 

 
[0.0860] [0.0860] 

AGE 0.082 0.0757 

 
[0.0746] [0.0747] 

GROUP 0.1670* 0.1818* 

 
[0.0995] [0.0996] 

EXPORT 0.101 0.1134 

 
[0.1475] [0.1481] 

SIZE 0.0962** 0.0543 

 
[0.0459] [0.0482] 

Sector Dummies Included Included 
Constant -2.4399*** -2.3850*** 
  [0.3442] [0.3440] 

N 2954 2954 
Log-likelihood -1737.3026 -1733.0622 

McFadden’s Pseudo R2 0.057 0.0593 
Ȥ2 187.1325***(35) 195.0951***(36) 

Notes: Robust standard errors are in parentheses. * p<0.10, ** p<0.05, *** p<0.01 Degrees of freedom of the 
Wald Ȥ2 test are reported in parenthesis 
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Table 5 Innovation failures determinants: moderation effects 

Dep Var: INNOFAIL  III IV V 
EXPLORATION 0.0503** 0.0539** 0.1163* 

 
[0.0224] [0.0229] [0.0641] 

EXPLOITATION 0.0680*** 0.0683*** 0.0388*** 

 
[0.0182] [0.0182] [0.0138] 

HUMAN CAPITAL  0.2610** 0.2641** 0.1631 

 
[0.1146] [0.1156] [0.2000] 

EXPLORATION_0-4*EXPLOITATION -0.032 
 

 

 
[0.0246] 

 
 

EXPLORATION_7-MAX*EXPLOITATION  -0.0312* 
 

 

 
[0.0169] 

 
 

EXPLORATION_0*EXPLOITATION 
 

-0.0296  

  
[0.0253]  

EXPLORATION_1-4*EXPLOITATION 
 

-0.0368  

  
[0.0683]  

EXPLORATION_7-8.5*EXPLOITATION 
 

-0.0238  

  
[0.0176]  

EXPLORATION_8.5-MAX*EXPLOITATION  
 

-0.0512**  

  
[0.0226]  

EXPLORATION2 
  

-0.0076 

   
[0.0080] 

EXPLORATION*HUMAN CAPITAL  
  

0.2157** 

   
[0.1007] 

EXPLORATION2*HUMAN CAPITAL  
  

-0.0250** 

   
[0.0115] 

COSTBAR -0.1809 -0.1846 -0.1954* 

 
[0.1181] [0.1183] [0.1183] 

KNOWBAR 0.8432** 0.8406** 0.8545** 

 
[0.4143] [0.4125] [0.4102] 

MKTDOMBAR 0.2527** 0.2522** 0.2510** 

 
[0.1086] [0.1087] [0.1087] 

MKTUNCBAR 0.2169** 0.2138** 0.2098** 

 
[0.0984] [0.0985] [0.0988] 

OTHEREXP -0.0044 -0.0021 0.002 

 
[0.0181] [0.0182] [0.0182] 

EXTKNOW 0.0602** 0.0609** 0.0622** 

 
[0.0254] [0.0254] [0.0253] 

RADICALINNO 0.3876*** 0.3887*** 0.3870*** 

 
[0.0863] [0.0862] [0.0861] 

AGE 0.0808 0.0748 0.0748 

 
[0.0746] [0.0746] [0.0749] 

GROUP 0.1757* 0.1749* 0.1792* 

 
[0.0996] [0.0996] [0.0998] 

EXPORT 0.1111 0.107 0.1266 

 
[0.1480] [0.1482] [0.1479] 

SIZE 0.0752 0.0721 0.054 

 
[0.0472] [0.0480] [0.0484] 

Sector dummies Included Included Included 
_cons -2.3630*** -2.3624*** -2.3447*** 
  [0.3624] [0.3638] [0.3473] 
N 2954 2954 2954 
Log-likelihood -1735.2851 -1734.3319 -1730.6831 
MdFadden’s Pseudo R2 0.0581 0.0587 0.0606 
Ȥ2 192.36***(37) 193.55***(39) 202.7***(38) 

Notes: Robust standard errors are in parentheses. * p<0.10, ** p<0.05, *** p<0.01. Degrees of freedom of the 
Wald Ȥ2 test are reported in parenthesis 
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Figure 1 Curvilinear effect of exploration on the probability of facing an innovation failure 
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Figure 2 Moderation effect of human capital on exploration 
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