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Abstract
In this study, we analyze the determinants of biomedical scientists? participation in various types of activities and
outputs related to medical innovation. More specifically, we argue that scientists occupying brokerage positions among
their contacts will in a more favorable position to deliver medical innovation outcomes, compared to scientists embedded
in more dense networks. However, we also theorize that beyond a threshold, the coordination costs of brokerage may
surpass its potential benefits. In addition to that, we study the influence of two individual-level attributes as potential
determinants of the participation in medical innovation activities: cognitive breadth and perceived beneficiary impact. We
situate our analysis within the context of the Spanish biomedical research framework, where we analyze a sample of
1,292 biomedical scientists.  
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CONNECTIONS MATTER: HOW PERSONAL NETWORK STRUCTURE INFLUENCES 

BIOMEDICAL SCIENTISTS’ ENGAGEMENT IN MEDICAL INNOVATION  

 

 

 

Abstract 

A  significant  body  of  literature  from  multiple  fields  has  explored  how  the  position  and the 

composition of personal social networks can influence creativity and other performance-related outputs. 

However, there  is  little  agreement  on  the  underlying  mechanism  through  which  this  network 

advantage  is gained. In this sense, research dealing with structural relationships and their impact 

indicates that both structural holes and dense networks bear a potential to generate positive effects. 

These effects, however, operate through differentiated mechanisms.  In  this  study,  we  attempt  to  

shed  light  on  the  discussion between  personal network characteristics and  innovation  performance,  

with  a  particular  focus  on medical  innovation activities. Our sample comprises 1,309 biomedical 

scientists in Spain. Through a social  capital  perspective,  we  explore  the  relationship  between  their  

structural  holes, their network range  and  their participation  in  medical  innovation  activities.  Our  

results  show  that  there  is  an  inverted  U-shape relationship  between  scientists’  ego-network  

brokerage  scores  and  their  participation  in  medical innovation  activities.  This  study  also  identifies  

two  individual-level  variables  that  exert  a  significant impact on the participation in medical 

innovation, namely cognitive breadth and perceived beneficiary impact. 

Keywords: personal networks, medical innovation, social capital, knowledge creation 
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INTRODUCTION AND RESEARCH CONTEXT 

An increasing amount of research in the fields of sociology and management has centered on 

whether and how the position of actors in a social network influences their creativity and innovation 

(Baer, 2010; Burt, 2004; Obstfeld, 2005; Wu, Chang, & Chen, 2008). These studies have provided 

robust evidence about the existence of a strong relationship between network structure and innovation 

performance. However, the question about the particular characteristics of network structures that are 

most conducive to innovation remains an open debate. This issue is of particular importance in the 

context of biomedical research, where initiatives to foster translational research and cooperation 

between biomedical communities have become central ingredients of the policy agenda to foster medical 

innovation. 

The question of how to accelerate the diffusion of research findings into clinical practice has become 

an important issue among academics, practitioners and public policy actors. The concern stems from the 

fact that few of the most promising biomedical discoveries effectively result in direct and tangible 

impacts on human health (Contopoulos-Ioannidis, Ntzani, & Ioannidis, 2003). For instance, the length of 

time from a basic discovery to approval of a new drug averages around 13 years and the failure rate 

exceeds 95% (Collins, 2011); or as pointed out by Wheling (2010), from 1991 to 2000 only 11% of 

drugs delivered to humans for the first time were successfully registered, with success rates varying 

dramatically among therapeutic areas. Additionally, this literature has highlighted the difficult transit 

from basic scientific findings to different types of medical innovation, such as drug development or new 

medical treatments. 

In order to increase the health benefits of investing in biomedical science, a discussion around the 

concept of translational research has consistently proliferated among leading scholars from the 

biomedical research community (Duyk, 2003; Marincola, 2003; Zerhouni, 2007). There is substantial 
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agreement on the idea that the essential objectives of translational research should involve interventions 

to improve human health through the rapid progression of basic scientific knowledge to patient benefit. 

The rhetoric and terminology of translational research has permeated the policy agenda of the majority 

of public and private funding agencies worldwide. For instance the US National Institute of Health 

(NIH) made translational research a strategic priority by releasing in 2003 the Roadmap for Clinical 

Research (Zerhouni, 2003). In Europe, initiatives in this direction have been also presented (European 

Science Foundation, 2012).  

Even though “translational research means different things to different people” (Woolf, 2008, p. 

471), and the past few years have witnessed a flourish of theoretical models adopting a terminology to 

conceptualize the different steps through which biomedical knowledge moves forward from the “bench 

to the bedside”, there are some common foundations about what is generally understood by translational 

research that provide the grounds for the following working definition. Translational research refers to a 

mode of research based on the dialogue and cooperation among multiple actors - basic scientists, clinical 

scientists, medical practitioners and patients, among others – that elicits a bi-directional flow of 

knowledge with the objective to improve healthcare. This two-way flow of knowledge involves feeding 

basic scientists with questions for research based on clinical practice, and facilitating the transfer of new 

theories of disease pathways into clinical practice (Marincola, 2003; Rey-Rocha & Martín-Sempere, 

2012).  

In this paper we propose two contentions. First, the critical role played by “brokers” or “connectors” 

as a particularly salient issue in the translational research model. As pointed out by Hobin et al. (2012), a 

successful translational research environment demands a structure that promotes interaction between 

different people trained across different disciplines and working in different contexts. For instance, an 

effective communication between those who are specialized in fundamental biology and those who have 
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experience in clinical methods becomes essential to move knowledge forward through the translational 

research pipeline. However, moving and spreading new knowledge in the biomedical context is 

particularly challenging since it involves an effective communication and interaction between many 

different professional groups. Evidence suggests the presence of strong social boundaries between each 

of the multiple professional communities involved in biomedical research and healthcare (Ferlie, 

Fitzgerald, Wood, & Hawkins, 2005; Gittelman, 2013). These distinct communities are reflected in 

different professional roles, identities and traditional work practices. Therefore, a major challenge for 

translational research is to bring together contrasting scientific paradigms based on the basic and applied 

logics of biomedical research. Our first contention is that those researchers who are capable to liaise and 

coordinate a diverse range of actors contributing to the biomedical research process, should be more 

likely to develop new medical technologies and innovations in healthcare.  

Second, in addition to the structure of their personal research networks, the scientists’ involvement 

in medical innovations is likely to be a function of certain individual-level attributes. Participation in 

translational research activities and outputs are a good expression of the scientists’ capacity to identify 

clinical needs (Hobin et al., 2012) and to successfully exploit routes to move fundamental knowledge 

into clinical applications. This implies an explicit focus on the micro-level, individual abilities and 

motivations of scientists towards research. More specifically we contend that the scientists’ 

heterogeneity in terms of their cognitive breadth and their perceived impact on beneficiaries may explain 

differences in the scientists’ likelihood to develop medical technologies and be involved in innovations 

associated to the delivery of healthcare.  

Extant literature of innovation in the biomedical context has taken explicit account of the critical 

importance of knowledge brokers to overcome collaboration barriers and bridge translational gaps 

(Currie & White, 2012; Lomas, 2007). However, research has not addressed empirically so far the 
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question of which is the most effective structural pattern of collaborations at the micro-level to facilitate 

biomedical scientists’ identification and exploitation of potential opportunities for innovation. We 

propose to look at this process through a social capital perspective since biomedical scientists can 

widely differ in their personal network structures and content. We expect different types of personal 

networks to be linked to the degree of involvement in medical innovation outputs. As a way to explore 

this relationship, we account for different types forms of ego-network structures drawing insights from 

social capital and social network literatures. Our ultimate goal is to go one step further in the 

understanding of the role of interactions and knowledge flows between biomedical actors as enablers of 

medical innovation. 

The paper is structured as follows. In the following section, we begin by discussing the importance 

of considering the ego-centric structural position as an antecedent for the scientists’ engagement in 

medical innovation. Afterwards, we acknowledge the relevance of cognitive skills and perceived impact 

of beneficiaries as potential antecedents of translational research. Then, we contextualize our research 

and present the results. The last section ends by discussing the main theoretical and empirical findings 

from our study.   

THEORY AND HYPOTHESES 

Personal network structure, network composition and medical innovation 

A significant body of literature from multiple fields has explored how the position occupied by 

individuals in a social network can influence creativity and other performance-related outputs. A social 

network can be defined as a set of actors and the relations that connect the actors (Kilduff & Tsai, 2003). 

An ego-centric approach to social networks defines the structure of each individual network in terms of 

lack of connectivity between the contacts in the network. Research from the fields of management and 
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innovation have used ego-centric social network approaches to evidence that certain network positions 

partly explains a range of individual-level outcomes such as job performance (Sparrowe, Liden, Wayne, 

& Kraimer, 2001), innovation (Obstfeld, 2005; Wu, Chang, & Chen, 2008) or creativity in organizations 

(Baer, 2010; Burt, 2004; Perry-Smith, 2006). Scholars studying the processes explaining the creation of 

knowledge have also emphasized the role of particular network structures in facilitating knowledge 

creation (McFadyen & Cannella, 2004; McFadyen, Semadeni, & Cannella, 2009).   

Although research has demonstrated the importance of the structural position in the network for 

innovative-related outputs, there is less agreement on the underlying mechanism through which this 

structural advantage is gained. In this sense, research dealing with structural relationships and their 

impact indicates that two opposite network structures - structural holes and dense networks - both bear a 

potential to generate positive effects on innovation. These effects, however, operate through 

differentiated mechanisms in each case. On the one side, Burt (1995) suggested that the greater benefits 

from a structural position are obtained through spanning structural holes. When a focal individual (ego) 

is connected to two individuals (alters) that are not connected between themselves, a structural hole 

exists. In the research network literature, an individual holding this network position is known as a 

‘broker’ (Burt, 1995; Fernandez & Gould, 1994). Positive returns to brokerage positions are well 

documented (e.g.: Cross & Cummings, 2004; Lee, 2010; Soda, Usai, & Zaheer, 2004), and are 

commonly attributed to a privileged access to novel information and a greater control over its use. 

Having an egocentric network rich in structural holes provides access to more diverse, potentially novel 

information (Burt, 2004; Zhou, Shin, Brass, Choi, & Zhang, 2009). The underlying rationale is that 

alters that are not connected among themselves belong to different social and/or professional circles. 

This brokerage position enables the focal individual to gain access to heterogeneous perspectives and 

non-redundant knowledge. There is also a control advantage derived from occupying a brokerage 
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position. Since actors in a brokerage position provide the only connection between two other actors, any 

flow of information or knowledge between these two actors necessarily passes through the broker (Burt, 

1995; Lee, 2010). Controlling the flow of information between disconnected others may allow the focal 

actor to determine how this information will be used and which actors will be included or excluded in a 

brokered exchange (Rider, 2009).  

On the other side, it has been argued that cohesive network structures, in which actors are 

densely linked to each other, are desirable for a number of reasons. First, networks formed by closely 

tied actors facilitate the emergence of mutual trust, common norms and a collective sense of reciprocity 

that, in turn, smooth the flow of knowledge among the members in the network and favor the creation of 

novel knowledge (Coleman, 1994). Because actors in dense networks are more able to rely on norms 

and sanctions against opportunism (Zaheer & Bell, 2005), misbehavior is less likely to arise and 

coordination costs in the network are reduced. Dense networks can also increase actors’ engagement in 

putting into practice the potential knowledge accessed through the network because it is easier to gain 

the cooperation of network members towards a common interest (Obstfeld, 2005; Phelps, Heidl, & 

Wadhwa, 2012). Some scholars have found that network density increases knowledge sharing and 

knowledge creation among network contacts (Morrison, 2002; Reagans & McEvily, 2003). Dense 

networks also appear to have positive influences on creativity. For instance, Amabile, Barsade, Mueller, 

& Staw (2005) suggest that closed networks promote positive affect between the network members, and 

this predicts higher levels of creative-related outcomes. From an ego-network perspective, dense 

networks are characterized by the existence of close triads between ego-networks’ direct contacts. When 

two ego’s contacts share a tie between them, a closed triad exists. Hence, dense ego-networks are 

measured as the existence of closed triads between ego and alters (Burt, 2004).  
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The theoretical discussion raised above has important implications for modeling the impact of 

specific ego-network structures on the participation of biomedical scientists in activities and outputs 

related to medical innovation. We expect that ego-networks rich in structural holes are particularly 

important predictors of the scientists’ engagement in medical innovation. The rationale for this claim is 

that actors with the capacity to mediate between disparate communities may be in a more advantageous 

position to identify, locate and mobilize the resources and capabilities needed to get involved in medical 

innovation.  

Holding an ego-network rich in structural holes reflect a mediating role between actors located in 

disparate communities. That means that the range of knowledge and resources available for the focal 

scientist will be comparatively higher compared to scientists embedded in dense networks (Rotolo & 

Messeni, Petruzzelli, 2012), who will tend to rely on more homogeneous knowledge. Linkages to 

weakly connected actors means a greater exposure to different approaches, outlooks and interests, 

allowing the focal scientist to frame their research problems from a broader perspective and to align 

these problems to the reality of human disease and the needs of health care professionals from different 

social groups. Thus, keeping a sparse collaborative network makes additional cognitive material 

available for the focal scientist, increasing the recombining knowledge possibilities and the subsequent 

materialization in the development of novel therapeutic solutions. 

We expect, however, that our predicted relationship between ego-network brokerage and the 

degree of participation in medical innovation is not lineal. Empirical evidence on ego-network research 

shows, for instance, that the benefits of weak ties for creativity-related outcomes is limited, and that 

there is an optimal level, rather than a maximum level, of weak ties where outcomes are maximized 

(Baer, 2010; A. McFadyen & Cannella, 2004; Zhou et al., 2009). Similar effects may be expected for the 

case of biomedical scientists occupying brokerage positions. Spanning structural holes entails costs for 
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the broker in terms of time, energy and cognitive resources needed to cultivate and maintain these ties. 

Disconnected alters tend to belong to different social and professional circles (Burt, 1995) and be 

dissimilar among them in terms of cognitive frames and norms of conduct. Hence, the necessary egos’ 

cognitive efforts to simultaneously communicate with alters may be higher compared to scientists 

embedded in more dense networks. Further, ego’s capability to process and benefit from the diversity of 

knowledge and resources coming from the network is limited (Cyert & March, 1963; Ocasio, 1997; 

Simon, 1955). When the diversity of information accessible through the network is too large, individuals 

may experience information overload, which makes more difficult to make sense of it (Weick, Sutcliffe, 

& Obstfeld, 2005; Zhou et al., 2009) and therefore use it to identify and exploit opportunities for 

medical innovation.  

While the current debate on translational research has provided insights into the critical role of 

brokers for the mobilization of basic knowledge into medical innovation, this literature has not 

empirically assessed this relationship. Furthermore, the potential costs of brokerage positions have not 

been considered, thus implicitly assuming positive, linear relations between brokerage positions and 

medical innovation outcomes. However, costs associated to brokerage positions are likely to operate in 

our context of analysis. For instance, basic scientists spanning structural holes between clinical 

researchers and patients’ representatives need to be responsive to the distinct interests of both 

communities (Ferlie, Fitzgerald, Wood, & Hawkins, 2005). This requires the investment of a significant 

amount of cognitive resources and attention to achieve the innovation performance benefits associated to 

brokerage positions. Lacking common ground may limit the potential benefits from this structural 

position.  
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Thus, we can expect that an adequate balance between the benefits and the costs of brokerage 

will be obtained at intermediate levels of ego-network brokerage and therefore, the participation in 

medical innovation activities will be higher at that point.   

Hypothesis 1: Ego-network brokerage will have an inverted u-shaped relationship with 

scientists’ degree of participation in medical innovation activities, which will be maximized at 

intermediate levels of brokerage. 

An alternative, yet similar mechanism through which literature has captured the diversity of 

knowledge available for the focal actors refers to the network range (Fleming, Mingo, & Chen, 2007; 

Reagans & McEvily, 2003). In contrast with the brokerage view, this perspective does not explicitly 

consider the structural properties of the network. Rather, it is the diversity of different actors what 

determines the potential information benefits of the set of contacts established by the focal scientist. 

Following a similar logic as for brokerage, we argue that the extent to which biomedical scientists’ 

networks contains ties crossing different professional boundaries will be in a better position to 

participate in different medical innovation activities. For instance, basic scientists having close ties with 

medical practitioners and clinical scientists may be more aware of the importance of undertaking field 

work and be more receptive to the specific needs of the medical community (Morgan et al., 2011). As 

suggested by Reagans & McEvily (2003), actors surrounded by an heterogeneous professional network 

are more likely to develop alternative interpretations of problems and consider them from multiple 

perspectives.  

As for the case of brokerage, cognitive costs may operate for those actors counting with ties from 

a large set of different communities. People connected from others from multiple professional or social 

communities should develop a capacity to understand and integrate multiple bodies of knowledge and 
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perspectives. Great cognitive efforts are thus needed to maintain the network and benefit from the 

available knowledge, compared to scientists whose network contacts belong to one or few different 

professional categories. Therefore, we expect that: 

Hypothesis 2: Ego-network range will have an inverted u-shaped relationship with scientists’ 

degree of participation in medical innovation activities, which will be maximized at intermediate 

levels of range. 

Individual determinants of biomedical scientists’ participation in medical innovation 

Some prior work on translational research has focused on the individual factors that are 

particularly critical for the adoption of translational-research practices among biomedical scientists. For 

instance, research has noted that it is important to count with an interdisciplinary educational 

background (Feldman, 2008; Rubio et al., 2010). Research also suggests that there is a significant 

motivational factor behind the scientists’ engagement in medical innovation activities. The desire to 

“make a difference” by ultimately improving human health may fuel the scientists’ interests in searching 

for effective ways to make a positive impact. Testing basic models into clinical reality, for instance, may 

be viewed as a way to channel this interest (Hobin et al., 2012). These ideas led us to question the 

relevance of two blocks of individual-level features potentially related to the scientists’ engagement in 

various forms of medical innovation.  

Breadth of cognitive skills. An important challenge to bridge the gap between basic research and 

clinical practice is directly related to the biomedical scientists’ skills and academic background. In the 

past, basic biomedical scientists were only assumed to develop research skills aimed to make their mark 

and gain reputation in their scientific field. However, the adoption of a translational research logic to the 

organization of medical research suggests that an adequate combination of basic and clinical skills is 
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essential to maximize the scientists’ participation in medical innovation activities. For instance, Hobin 

et al. (2012) indicate that there are three skills that biomedical scientists must learn to succeed when 

engaging in research projects with an explicit translational component. The first one is the ability to 

define a health need with the same precision as a basic science hypothesis. The second is about 

understanding how to develop inexpensive and robust assays applicable to humans. And the third skill is 

related to the conceptualization of a pathway to regulatory approval or clinical adoption. Although some 

specific training programs are increasingly covering these issues, basic research programs are normally 

focused on the specialization of one (or few) research topics. It is well documented that narrowly 

defined training trajectories represent a barrier that complicates a smooth translation of basic knowledge 

into clinical practice (Cochrane et al, 2007). Other scholars have suggested that to cross the gap from lab 

bench to patient bedside, biomedical scientists should receive specific training in research methodology 

including clinical trial design and medical statistics (Homer-Vanniasinkam & Tsui, 2012; Kurpinski, 

Johnson, Kumar, Desai, & Li, 2014). Similar arguments apply for biomedical scientists performing 

biomedical research at the clinical side of the translational research continuum. It is increasingly 

acknowledged that clinical research and clinical practice should be fully based on empirical evidence 

(Ioannidis, 2004). This means that clinical scientists should be able to prioritize, for instance, those 

biological problems with a greater potential impact for clinical practice. Or they should be able to 

recognize when sufficient evidence has been accumulated for an intervention to be translated into a 

clinical guideline or a new treatment (Kelley et al., 2012; Ferlie et al., 2005). However, most training 

programs in biomedicine are still grounded on a strict separation between academia and health care 

(Borstein et al, 2011), which perpetuates the existing silos between theory and practice. 

Taken together, the above arguments support the prediction that those scientists who have acquired a 

broader set of basic and clinical skills will be more capable to bridge the gap between basic research and 



13 

 

clinical practice, and as a consequence they will be more susceptible to engage in a broader range of 

medical innovation activities, compared to peers with a narrower set of basic and clinical skills. This 

gives rise to the following hypothesis: 

Hypothesis 3: Breadth of cognitive skills will have a positive relationship with the scientists’ 

degree of participation in medical innovation activities. 

Perceived impact on beneficiaries. Social psychology scholars have conceptualized perceived 

impact on beneficiaries as the degree to which individuals are aware that their own actions have the 

potential to improve the welfare of others (Grant, 2008; Grant, 2007). Individuals reporting higher levels 

of perceived impact on beneficiaries are particularly conscious about the direct connection between their 

behavior and the outcome they can exert in other people or groups. It has been documented that the 

higher the perceived impact on beneficiaries, the greater the individual’s engagement in actions and 

behaviors aimed to channel this perception into explicit outcomes (Aknin, Dunn, Whillans, Grant, & 

Norton, 2013). Thus, high levels of perceived impact on beneficiaries has been theorized to result in 

greater persistence and dedication (Grant, 2008), particularly towards those activities through which the 

action-result relation becomes more straightforward.  

In our context, we expect that a higher perception of exerting a positive impact on patients and 

clinical practitioners will directly influence the scientists’ engagement in actions and outcomes related to 

improvements on existing therapeutic treatments and discovery of new ones.  One of the main tenets of 

the translational research debate lays on the idea that biomedical researchers should be more aware 

about patients and clinical needs (Marincola, 2011). This may lead to the generation of biomedical 

knowledge and research results with a greater potential to be translated into practice. Biomedical 

scientists may conceive their participation in medical innovation as a form to connect their research 
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activities to patients and clinical staff needs, and thus may devote greater efforts to bridge the gap 

between basic understanding and healthcare delivery. For example, clinical guidelines have emerged as 

critical tools for improving healthcare practices, and represent a tool to strengthen connections between 

scientists, clinical practitioners and patients (Nigam, 2013). We contend that scientists particularly 

aware of the influence they exert on patients through their work will be more likely to embark in the 

identification of opportunities for translational research as well as in the exploitation of such 

opportunities in various forms, such as in the design of clinical trials or the delivery of clinical 

guidelines. This idea is partially suggested by previous findings from the biomedical research 

community. In 2011, the Federation of American Societies for Experimental Biology (FASEB) 

conducted a survey addressed to basic and clinical scientists whose main objective was to explore the 

benefits for scientists to engage in translational research activities. Results from 1,770 collected 

responses showed that nearly three-quarters of the respondents initially decided to participate in 

translational research activities because they were motivated to exert a direct and positive impact on a 

particular disease or condition. Similarly, more than half of the respondents reported that they pursued to 

exert an impact on human health in general through their research activities (Hobin et al., 2012). This 

supports the idea that the greater the scientists’ perception of impact on patients and clinical 

practitioners, the higher their capacity to identify and exploit potential opportunities to participate in 

medical innovation. Thus, we propose the following hypothesis:    

Hypothesis 4: Perceived impact on patients and clinical staff will have a positive relationship 

with the scientists’ degree of participation in medical innovation activities.  
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METHODS 

Research context  

We situate our analysis within the biomedical research field in Spain. In the course of the last 

decade, the Spanish Government has launched a number of public policy initiatives and programs aimed 

to promote translational and cooperative research across different biomedical fields. A representative 

step towards this aim was the creation of the Spanish Biomedical Research Networking Centers 

(henceforth, CIBERs). In 2006, the Spanish Ministry of Health undertook an initiative to reorganize 

biomedical research in Spain as a mean to foster excellence in biomedical research as well as to improve 

the quality, value and effectiveness of the healthcare services delivered to the general population. A 

crucial part of the CIBER program was the development of a formal network structure to promote 

research cooperation among professional groups working on similar biomedical research areas, lending 

greater weigh to hospitals and clinical research groups. Thus, applicant biomedical groups could be 

placed at universities, public research organizations, hospitals, clinics and biomedical research 

foundations in Spain. Participant groups were selected through open calls, each call focused on a 

specific range of pathologies or diseases of strategic interest to the Spanish National Health System. The 

acceptance of research groups in the program was subjected to an evaluation process based on each 

groups’ previous research excellence and contributions to healthcare. The selected groups were 

organized around nine biomedical research networks, each one related to a particular biomedical 

research area: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Diabetes and Metabolic 

Associated Diseases (CIBER-DEM), Epidemiology and Public Health (CIBER-ESP), Hepatic and 

Digestive Diseases (CIBER-EHD), Obesity and Nutrition (CIBER-OBN), Mental Health (CIBER-

SAM), Neurodegenerative Diseases (CIBER-NED), Rare Diseases (CIBER-ER) and Respiratory 

Diseases (CIBER-ES).  
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Sample 

 The CIBER program provides us with a unique opportunity to study the collaborative networks 

of biomedical scientists, as well as their main individual characteristics and their degree of participation 

in a variety of translational research activities and outputs. Our research population comprised all 

biomedical scientists and technicians of every research group belonging to each of the nine CIBER 

networks. We contacted CIBER’ Scientific Directors to obtain explicit support for our research and 

collected e-mail addresses and complete names of scientists and technicians included in all CIBER 

networks. To develop the survey questionnaire, we conducted a number of interviews with Scientific 

Directors, research groups’ principal investigators and biomedical scientists between June 2012 and 

March 2013. An extensive list of activities and outputs related to translational research was obtained 

from biomedical literature and validated through the interview process. The questionnaire was organized 

in multiple sections, with a particular focus on the structure and content of the scientists’ personal 

network. The questionnaire also asked for the involvement of scientists in a range of medical innovation 

activities. Attitudinal and motivational questions were also included in the questionnaire, together with a 

series of questions on respondents’ socio-demographic aspects, such as age, gender or educational level. 

In April 2013, the questionnaire was distributed to 4,758 biomedical scientists and technicians from all 

nine CIBER networks. In collaboration with the CIBER Scientific Managers, all scientists were 

encouraged to participate in a study aimed to explore the relationship between the scientists’ 

collaboration network, their individual characteristics and their participation in medical innovation 

activities and outputs. 1,309 scientists responded the questionnaire, meaning an overall response rate of 

27.5%, which is fairly similar to other surveys on academic scientists (Perkmann et al., 2013). The 

distribution of our sample is as follows: 31,9% of our respondents were affiliated to a University, 35,3% 

to a hospital, 28,9% to a public research institution and 4% were affiliated to private research bodies and 
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other similar institutions. Regarding their role in the research group, 10,4% of our respondents are 

principal investigators of their research groups, 53,8% are post-doctoral scientists, 18,2% are pre-

doctoral scientists and 14,2% are technicians or similar positions. Response rates across CIBER are 

fairly evenly distributed (see details in the Appendix). 

We conducted a number of analyses to test for non-response bias. First, we compared response 

rates in terms of the institutional affiliation, the hierarchical position in the research group and the size 

of the group (archival analysis). Though we found significant differences in some aspects, the overall 

distribution of response rates is fairly homogeneous (see Table in the Appendix). Furthermore, we 

performed a wave analysis to check whether responses differ with regards of the date respondents 

completed the questionnaire. This study complements the archival analysis, since the response patterns 

of late respondents may be considered as a proxy for the response patterns of non-respondents 

(Rogelberg & Stanton, 2007). Our sample was classified into early respondents (45.8%) and late 

respondents (54.2%). We conducted an ANOVA-analysis of the differences in means for the two groups 

for a sample of actual survey variables (participation in medical innovation activities, ego-network size). 

The hypotheses of differences in the means are all rejected, suggesting that our data does not suffer from 

major problems of non-response bias. 

Variables 

Dependent Variable: Degree of participation in medical innovation  

To capture the scientists’ degree of participation in different types of medical innovation, we conducted 

a review of the literature on translational research from the most representative biomedical journals. 

This allowed us to identify a set of breakthroughs representing a diversity of outputs and achievements 

through which biomedical knowledge moves forward and backward through different stages of the 

research pipeline. These breakthroughs include the discovery or invention stage, often associated with 
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basic research on the root cause of diseases, and generally epitomized by the identification of a new 

molecular target for the discovery of new drugs or diagnostic devices (product discovery). Another 

breakthrough in the research pipeline is the translation of basic findings and discoveries from the lab 

into specific human clinical research, such as clinical trials and observational studies (product 

development). A critical challenge is the transit from new medical compounds or devices into clinical 

practice, for instance, through the development of evidence-based clinical guidelines that allow the 

incorporation of research discoveries into day-to-day clinical practice and delivery of healthcare 

(clinical guidelines). Biomedical scientists have proposed similar conceptualizations of the main 

achievements through the research pipeline (Westfall, Mold, & Fagnan, 2007; Dougherty, 2008; Khoury 

et al., 2007; Sung et al., 2003). While dominantly based on a linear approach from ‘the bench to the 

bedside’, they provide a foundation to address the variety of indicators associated to medical innovation.  

We end up with a list of 14 items reflecting this variety of medical innovations, which were further 

validated by biomedical scientists interviewed during the pilot phase of the survey. The full list is shown 

in Table 1 below, as well as a sample of academic references supporting the association between each 

category of items and the delivery of medical innovations. We asked respondents to report whether they 

have been engaged in each activity, and how often. Specifically, respondents were asked: please 

indicate how frequently you obtained the following research results derived from your research 

activities during the year 2012. They were offered a drop-down menu where they could choose any 

number between 0 to 10 times, or more than 10 times. We conducted a principal components analysis 

(PCA), finding that 11 of our innovation-related outputs grouped into 4 factors. Following varimax 

rotation, results showed that Factor 1 explained 22% of the total variance in the items, comprising 

outputs related to invention and commercialization (product generation: invention and 

commercialization). Factor 2 accounted for 16% of the variance in the items (drug development). Factor 
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3 explained 13% of variance, grouping outcomes associated with the development of guidelines for 

clinical practitioners and patients (clinical guidelines). Factor 4 accounted for 10% of the total variance 

in the items and groups all items related to the development of diagnostic devices and prevention-related 

activities (diagnostics and prevention)1.  

Table 1. Grouping medical innovation items into categories. 

Medical Innovation 
Categories (Factors) 

Items  Key references 

Product Generation (invention 
and commercialization) 

Patent applications for new drugs 
Licenses granted from patents 
Participation in spin-offs 

(Ding et at., 2011; 
Morgan et al., 2011) 

New Drug Development   Clinical trials phase I, II or II for new drug development 
Clinical trials phase IV for new drug development 
Clinical trials phase IV for new diagnostic techniques2 

(Duyk, 2003; 
Khoury et al., 2007; 
Westfall, et al. , 
2007) 

Clinical Guidelines Clinical guidelines for health practitioners 
Clinical guidelines for patients  

(Cochrane et al., 
2007; Dougherty D, 
2008) 

Diagnostics and  prevention  Patent application for new diagnostic mechanisms 
Clinical trials phase I, II or II for new diagnostic mechanisms 
Prevention guidelines for the general population  

(Drolet & Lorenzi, 
2011; Khoury et al, 
2007) 

 

Table 2 shows the rate of scientists that have participated at least once in a particular type of medical 

innovation category, according to the institution they are affiliated. The results reported in Table 2 

reflect that the most widespread medical innovation is the development of clinical guidelines. About 

23% of scientists had participated in the development of clinical guidelines during the year 2012. 

Activities related to diagnostics and prevention were the least frequent form of medical innovation. Only 

a 10% of scientists have been involved in such type of activities. A deeper analysis of the results reflects 

that there are significant differences in the level of involvement in medical innovation categories across 

respondents’ affiliation. Scientists affiliated to hospitals and clinics have participated more frequently in 

all range of medical innovation categories, except for the ‘invention and commercialization’ category. 

                                                           

1
 Details of the PCA analysis can be found on Annex 1 

2 We kept this item because factor analysis results indicated a high correlation between this item and the other two items included in the category ”new drug 
development” 
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Table 2: Involvement of scientists in the four medical innovation categories according to 
institutional affiliation*.  

 Product Generation 
(Invention and 

commercialization) 

New drug 
development 

Clinical 
guidelines 

Diagnostics and 
prevention 

Total 
cases 

University 19.2 7.5 11.7 8.8 386 
Hospital  12.0 41.4 47.8 12.5 409 
PRO 15.5 8.8 9.4 10.3 341 
Other organizations 15.2 8.8 12.0 7.2 125 
Total 15.5 19.0 22.8 10.2 1261 
* % of scientists engaged at least once over the year 2012 in any of the items included in each of the four medical innovation categories 

 

We developed an indicator to assess the degree of participation in different forms of medical innovation. 

To do so, we coded scientists from 0 to 3. If scientists reported no participation in any of the four 

categories defined below, we coded 0 (56.3% of our sample). If they had engaged at least once in one 

category, we coded 1 (25.3%). Similarly, if they had participated at least once in two of the defined 

categories, we coded 2 (14.2%). Finally, if they had participated at least once in three or in all four 

categories, we coded 3 (4.2%).  

Independent Variables: 

Ego-network brokerage.  We used an ego-centric network approach (e.g.: Baer, 2010; Smith, Collins, & 

Clark, 2005) to capture each scientist’ network of critical contacts.  Our survey allowed each respondent 

(ego) to list the names of up to ten contacts (alters) from outside their research group whom they 

considered critical for the advancement of their research activities. Specifically, we invited each scientist 

to “write down the names of those persons (up to ten) from outside your research group that are 

particularly important for the advancement of your research activities”. This question was chosen 

because we were particularly interested in capturing the network of contacts that were important for 

each scientist’ research purposes. In response to this name-generator question, respondents provided an 

average number of 3.57 unique contacts outside their research group. Then the survey asked respondents 
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for information on each alter-alter relationships (Burt, 1992; Podolny & Baron, 1997). Although ego-

network data is based on individual perceptions, it has been shown that measures from ego-network data 

are highly correlated with measures collected from whole-network data (Everett & Borgatti, 2005) as 

well as from data collected from both members of the dyadic relationship (Battilana & Casciaro, 2013). 

Building on previous literature, we calculated ego-network brokerage by counting the number of 

structural holes for each ego-network (Everett & Borgatti, 2005). That is, the absence of alter-alter ties 

between each ego-network contact. This sum was then divided by the total number of possible alter-alter 

ties, n (n – 1) / 2. The maximum brokerage score occurs when there are no connections between alters in 

the scientist personal network (ego-network). For each individual, this ratio ranged from 0 to 1, with low 

values reflecting few structural holes and high values reflecting many structural holes and therefore, a 

higher score on ego-network brokerage. Since the ratio of structural holes is sensitive to ego-network 

size, we controlled for the effect of size in our regression model. 

Ego-network range. After listing their contacts, our respondents were asked specific questions about 

each one, following standard ego-centric network surveys (e.g.: Cross & Sproull, 2004). To obtain a 

measure of ego-network range, respondents were asked to classify each of their contacts into one of the 

following categories: 1=basic scientists, 2=clinical scientists, 3=medical  practitioners or patient 

representatives, 4=public administration, industry and other groups. These categories were selected 

based on theory and interviews from medical scientists. The ego-network range measure was 

constructed to capture the breadth of knowledge and perspectives that scientists can obtain through their 

different contacts’ groups. Following previous approaches (e.g.: Smith, Collins, & Clark, 2005), we 

measured ego-network range as the number of different categories to which respondents reported to 

have at least one link.  
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Breadth of cognitive skills. Our literature review indicated that key barriers to the participation of 

biomedical scientists in medical innovations were directly related to the (lack of) specific skills and the 

highly specialized academic training of scientists (Arar & Nandamudi, 2012; Coller, 2008). We 

identified a pool of biomedical-related skills and abilities that were critical for an effective two-way 

transit between the “bench and the bedside3”. These skills were completed and validated with 

preliminary interviews with biomedical scientists. Finally, we included in the questionnaire a list of nine 

skills and specific abilities: development of clinical trials, clinical guidelines, state of the technology, 

clinical pharmacology, biostatistics, molecular biology; experimental methods, animal experimentation 

and studies with control groups. To elicit how many of those skills were possessed by the respondents, 

the following question was asked: “Have you received, through your career, specific training on one or 

more of the following activities?”. We pointed that this training could have been received in the form of 

face-to-face lectures, on-line courses or any other mode. We operationalized the variable as a direct 

count of the number of different skills indicated by each respondent.  

Perceived impact on beneficiaries. To capture the perceived impact of scientists’ research results into 

societal agents from a clinical context, we used a seven-point Likert scale adapted from the beneficiary 

impact scale proposed by Grant (2008). Since all our respondents were involved in biomedical research, 

we explicitly consider the perceived impact of their research activities on three different collectivities: 

patients, clinical practitioners and vulnerable social groups. Specifically, our question asked: “Please, 

indicate the extent to which the following collectivities benefit more directly from the results obtained 

from your research activities”. We averaged the responses to the three items to create a composite 

indicator of the perceived clinical impact of the research activities (Cronbach’s Alpha = 0, 78). 

                                                           

3 Journals considered for the literature review include: Journal of the American Medical Association (JAMA), Nature 
Medicine, Translational Research, Journal of Translational Medicine, British Medical Journal and Clinical and Translational 
Science (among others).    
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Control variables. Several factors that are outside the scope of our hypotheses could influence the 

respondents’ degree of participation in medical innovation. We controlled for these factors in the 

statistical analysis. We accounted for control variables at the individual level and at the research group 

level. To control for the effect of accumulated learning and experience in the propensity to engage in TR 

activities, we controlled for the age of the respondents (Age).  Similarly, we also used a dummy variable 

to account for those respondents who have a PhD, taking value of 1 if the respondent reported to have a 

PhD degree, zero otherwise (PhD). Additionally, we controlled for the scientist’ gender (Sex). Given 

that the number of contacts may affect the number of structural holes to which each respondent can 

access we effectively controlled for the size of each scientist’ ego-network. We included a dummy 

variable which was coded 1 for those respondents having a large ego-network (more than 4 contacts 

reported by the respondent). Selecting this threshold allowed us to capture the top 30% of our 

respondents having larger personal networks. Respondents with 4 or less contacts were coded 0 (Ego-

network external size).  In addition, we defined nine dummy variables to control for the scientific field 

of each respondent, leaving CIBER-BBN as the default group (CIBER). Depending on the type of 

institution where each respondent belongs there may be few or many opportunities to engage in medical 

innovation activities. Accordingly, we controlled for that by including 4 dummies reflecting the type of 

institution of the respondent. Specifically, the type of institution can be university, hospital/clinic, public 

research organization and other type of institution (the latter being the reference category in the 

econometric analysis). We resorted to the CIBERs’ scientific reports to retrieve information about the 

number of scientists working in each research group (Group size). Finally, we controlled for the 

previous technological performance of the research group. To do so, we obtained data from PATSTAT 

on the number of patents applications submitted by each research group’ principal investigator during 

the period 1998 – 2010 (Group tech. performance). 
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RESULTS 

Descriptive analyses and correlations 

Table 3 provides the descriptive statistics and correlations for the variables used in the model.  The 

average ego-network brokerage score was 0.63 (SD=0.33). For the purpose of this study, we are 

particularly interested in the heterogeneity of the respondents’ ego-network structure. The histogram 

displayed below (Figure 1) shows that biomedical scientists’ exhibit significant variability in terms of 

their ego-network structure, reflected as their brokerage scores. We observe that the proportion of cases 

at the extremes of the score-range distribution is particularly high. The high frequency of 1’s indicates 

that, for a significant proportion of scientists, none of the egos’ contacts are connected among them, 

while the high number of 0’s corresponds to those egos whose contacts are all connected among them.  

Figure 1: Histogram of ego-network brokerage scores 
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Table 3: Descriptives and Correlations 

 

 
Variable Mean S.D. Min Max 1 2 3 4 5 6 7 8 9 10 11 12 

1 Medical innovation     0.662     0.871     0.000     3.000 1.000 
           

2 Ego-network brokerage     0.466     0.400     0.000     1.000 0.084* 1.000 
          

3 Ego-network range     1.387     0.916     0.000     4.000 0.184*** 0.566*** 1.000 
         

4 Cognitive breadth     2.711     1.882     0.000     9.000 0.213*** 0.085** 0.169*** 1.000 
        

5 Perceived beneficiaries     4.437     1.455     1.000     7.000 0.266*** -0.012 0.147*** 0.181*** 1.000 
       

6 Age    41.894    10.651    23.000    78.000 0.291*** 0.151*** 0.211*** 0.107*** 0.072* 1.000 
      

7 Gender     0.531     0.499     0.000     1.000 -0.224*** -0.043 -0.029 -0.057* 0.003 -0.268*** 1.000 
     

8 PhD     0.628     0.484     0.000     1.000 0.134*** 0.181*** 0.215*** 0.192*** -0.010 0.426*** -0.112*** 1.000 
    

9 Ego-network size     1.548     2.313     0.000     5.000 0.124*** 0.403*** 0.538*** 0.155*** 0.108*** 0.135*** -0.025 0.137*** 1.000 
   

10 Organization type     2.163     0.973     1.000     4.000 -0.059 -0.045 -0.037 -0.002 0.035 -0.085** 0.050† -0.098*** -0.013 1.000 
  

11 Group size    18.248    10.457     2.000    79.000 -0.038 -0.069* -0.087** -0.131*** -0.031 -0.206*** -0.011 -0.096** -0.031 -0.104*** 1.000 
 

12 Group’s tech. Perf.     1.002     2.248     0.000    21.000 -0.028 0.007 -0.008 -0.087** -0.112*** -0.086** -0.030 -0.004 0.024 -0.038 0.123*** 1.000 

 
10% (p<0.10); *5% (p<0.05); **1% (p<0.01); ***0.1% (p<0.001).  
 

Illustrating the ego-networks of two scientists from our sample is useful to visualize how their 

personal network structures differ and, therefore, how different are the potential sources of information 

they can tap into when facing a research problem. To do so, we selected two respondents from the same 

CIBER network (CIBER-NED: neurodegenerative diseases) and with the same external network size 

(six alters). Despite the identical size of their external networks, they exhibit a significant difference in 

their brokerage score. The scientist on the left side (Ego 1) reported that only two of the mentioned 

alters (alters 1 and 6) were connected among them, while all other alters do not known each other. That 

implies that the only connection between alters is provided through their mutual relations with the ego. 

As outlined above, disconnected contacts are more likely to operate with different ideas and practices. It 

is this broader exposure to variation that provides the ego an opportunity to develop different ways of 

looking at medical problems and access to a diverse range of resources and knowledge. The ego-

network brokerage score for this respondent is comparatively high: 0.933 (one reported connection 

among alters, over fifteen possible). In contrast, the second scientist reported to have a much more 
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densely connected network. The closure benefits of ego-networks are related to more efficient 

coordination of alters as trust is more easily elicited in this case. However, it is likely that much of the 

information and resources accessible through these contacts will be redundant, since it will be much 

more homogeneous compared to the previous case. In this case, the brokerage score is comparatively 

low: 0.267 (eleven reported connections among alters, over fifteen possible). 

 Figure 2: Graphical representation of two ego-network structures 

Ego 1                    Ego 2 

 

 

 

 

 

 

 

 

Econometric analysis and results 

Given that our dependent variable takes non-negative integer values (ranging between 0 and 3), 

standard regression techniques, such as OLS, are not fully appropriate for modelling this type of 

variables. To accommodate the bounded and ordered nature of our dependent variable, we conducted an 

Ordered Logit model. Results are reported in Table 44. Model 1 only includes the control variables. 

Model 2 and Model 3 shows the linear and quadratic effects of ego-network brokerage and ego-network 

                                                           

4 OLS regression results can be found in the Appendix 
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range, respectively. In Model 4 we simultaneously added the effects of brokerage and range. As some of 

the researchers reported having zero or only 1 relevant contact, they cannot play any type of brokerage 

role by definition. In these cases, recognizing that the absence of contacts is qualitatively different from 

a zero score for brokerage, we have included a dummy variable (i.e. Dummy Ext. Contacts < 2), to 

indicate that a score of zero for this individuals reflects having less than two critical external contacts. 

Additionally, we replicated the Ordered Logit regressions including only those researchers (i.e. 823 

observations) who report at least two critical external contacts (Models 5 to 8).    

In Hypothesis 1 we predicted a quadratic (inverted U-shaped) relationship between the ego-

network brokerage score and the involvement in medical innovation. The coefficient for the ego-

network brokerage is positive and significant, while the coefficient for the ego-network brokerage 

squared is negative and significant in all our specified models (Models 2, 4, 6 and 8). Figure 3 shows the 

quadratic association between ego-network brokerage score and the degree of participation in medical 

innovation. The shape of the relationship is consistent with the hypothesis. Thus, Hypothesis 1 was 

supported. In Hypothesis 2, we aimed to explore the effects of network composition on the scientists’ 

propensity to engage in medical innovation activities. Specifically, we proposed that ego-network range 

would show a quadratic (inverted U-shaped) effect on the involvement of scientists in medical 

innovation activities such that the participation in medical innovation would be higher for those 

scientists with intermediate levels of ego-network range. Although the direct effect of network range on 

medical innovation was statistically significant for the full sample (Model 3), we did not find evidence 

for curvilinear effects. 

Hypothesis 3 predicted that the breadth of cognitive skills was positively associated to the 

involvement in medical innovation. The coefficient is always positive and significant, which provides 

support for hypothesis 3. Hypothesis 4, which proposed that scientists’ perceived impact on patients and 
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clinical practitioners would be positively related to their involvement in medical innovation, was also 

supported. The coefficient is positive and significant in all our specifications. Among the control 

variables, we found that scientists working at hospital settings are more likely to participate in medical 

innovation. Further, we found that age and sex also play a significant role in predicting the scientists’ 

participation in medical innovation activities. 

Figure 3: Ego-network brokerage and engagement in medical innovation 
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Table 4. Results for Ordered Logit. Complete sample and Restricted sample 
   

 
Complete sample Restricted sample 

Predictor variables Model 1 Model 2 Model 3 Model 4 Model  5 Model 6 Model 7 Model 8 

         Ego-network brokerage 
 

1.103** 
 

0.979** 
 

1.144** 
 

1.048** 
 

 
(0.47) 

 
(0.47) 

 
(0.47) 

 
(0.47) 

Ego-network brokerage2 
 

-0.917** 
 

-0.836* 
 

-0.937** 
 

-0.875** 

  
(0.45) 

 
(0.45) 

 
(0.45) 

 
(0.45) 

Ego- network range 
  

0.164** 0.125** 
  

0.133 0.097 

   
(0.07) (0.06) 

  
(0.10) (0.07) 

Ego-network range2 
  

-0.027 
   

-0.010 
 

   
(0.04) 

   
(0.06) 

 Cognitive breadth 
 

0.078*** 0.075*** 0.075*** 
 

0.091*** 0.087*** 0.088*** 
 

 
(0.02) (0.02) (0.02) 

 
(0.03) (0.03) (0.03) 

Perceived beneficiaries 
 

0.188*** 0.181*** 0.183*** 
 

0.207*** 0.195*** 0.201*** 

  
(0.03) (0.03) (0.03) 

 
(0.03) (0.03) (0.03) 

Control variables         
         
Age 0.021*** 0.021*** 0.021*** 0.021*** 0.022*** 0.021*** 0.021*** 0.021*** 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Female -0.361*** -0.376*** -0.386*** -0.387*** -0.374*** -0.394*** -0.404*** -0.405*** 

 
(0.08) (0.08) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09) 

PhD 0.092 0.092 0.084 0.086 -0.000 -0.013 -0.019 -0.018 

 
(0.09) (0.09) (0.09) (0.09) (0.10) (0.11) (0.11) (0.11) 

Large ego-network 0.195** 0.025 0.041 -0.035 0.194** 0.013 0.040 -0.032 

 
(0.08) (0.09) (0.09) (0.10) (0.08) (0.09) (0.09) (0.10) 

Institution type (Dummies) Included Included Included Included Included Included Included Included 

 
        

Group size 0.004 0.006 0.006 0.006 0.005 0.007 0.006 0.007 

 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

CIBER (Dummies) Included Included Included Included Included Included Included Included 

 
        

Group’s tech. perfor. 0.037** 0.044*** 0.044*** 0.044*** 0.033* 0.036** 0.036* 0.036** 

 
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

Ego-network size <2 -0.143 0.081 0.084 0.184  
   

 
(0.09) (0.13) (0.13) (0.13)  

   cut 1/ Constant 1.446*** 2.585*** 2.357*** 2.690*** 1.325*** 2.503*** 2.232*** 2.565*** 

 
(0.23) (0.29) (0.27) (0.29) (0.27) (0.32) (0.30) (0.32) 

cut2 / Constant 2.353*** 3.533*** 3.304*** 3.640*** 2.258*** 3.486*** 3.212*** 3.549*** 

 
(0.24) (0.29) (0.27) (0.30) (0.27) (0.33) (0.31) (0.33) 

cut 3/ Constant 3.309*** 4.538*** 4.306*** 4.648*** 3.150*** 4.435*** 4.158*** 4.501*** 

 
(0.25) (0.30) (0.28) (0.31) (0.29) (0.33) (0.31) (0.34) 

Observations 1118 1111 1111 1111 823 820 820 820 
Pseudo-R2 0.110 0.140 0.140 0.142 0.100 0.133 0.132 0.134 
* p < 0.1, **  p < 0.05, ***  p < 0.01 
Notes: 1) Standard error in parentheses 
            2) In Model 3 and Model 7 the variable “range” was mean-centered to avoid correlation problems between the linear and the squared terms. 
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CONCLUSIONS AND IMPLICATIONS 

 Our study aimed to theoretically and empirically analyze the medical scientists’ personal network 

structure, network composition and individual attributes that are particularly conducive to their 

participation in a range of medical innovation activities. The majority of the discussion around the 

relevance of translational research and innovation in healthcare has emphasized the importance of 

promoting collaborative links between biomedical agents belonging to different communities of 

practice, but much less has been discussed around the potential costs associated with the development 

and maintenance of brokerage positions. Moreover; most of the existing studies in the field remain 

purely prescriptive, with little empirical evidence. Combined with the fact that medical scientists also 

differ in their capacity and willingness to establish effective research networks, this suggest room to a 

deeper analysis on the consequences of occupying brokerage positions in the medical context.    

 Thus, this study elucidates the theoretical link between ego-network structure, ego-network 

composition and participation in medical innovation activities. It investigates what types of personal 

networks are most conducive to innovation in biomedicine. While existing social capital research 

generally recognizes that innovation is a socially embedded endeavor, significant gaps remain in 

understanding whether there is an optimum level of personal network brokerage in which scientists’ 

engagement in medical innovation is maximized. Our results show that there is an inverted U-shape 

relationship between scientists’ ego-network brokerage scores and their participation in innovation. We 

see this as a reflection of the theorized trade-off between sparse and dense personal networks. On the 

one hand, results support the logic that the information and control advantages associated with 

brokerage positions (Burt, 1995, 2004) operate to facilitate scientists’ participation in various forms of 

medical innovation activities. From a normative perspective, our results suggest that scientist devoting 

more time and efforts in cultivating and maintaining a sparse network of contacts and interactions 
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outside their formal research group would be in an advantageous position to deliver higher levels of 

medical innovation. On the other hand, our data confirmed that potential brokerage benefits do not come 

without a cost. Beyond a threshold, costs of building and maintaining a sparse network may surpass its 

potential benefits and ultimately be detrimental for the scientists’ participation in medical innovation 

activities. These costs might be reflected in the form of higher coordination needs or a decreasing trust 

among network members, which may difficult the flow of knowledge around the network or cognitive 

costs related to the utilization of disparate pockets of knowledge. Further, actors connecting disparate 

others are subjected to different sets of role expectations, which may be sometimes in conflict (Soda & 

Zaheer, 2012). Therefore, our results show that both facets of brokerage’s potential actually operate in 

the medical context, indicating that the most effective  personal network structure lays at an intermediate 

level between a dense network (where most of the contacts know each other) and a sparse network 

(where most of the contacts do not known each other). We also added to our analysis the influence of 

ego-network range as a proxy to capture the scientists’ ego-network diversity. The underlying logic is 

that the capacity to access to a pool of diverse bodies of knowledge through their professional network 

contacts facilitates the participation in medical innovation. Evidence indicated that the larger the 

different categories in the ego-network, the higher the scientist’ propensity to engage in medical 

innovation. Contrary to ego-network brokerage, the potential benefits of having a diverse ego-network 

does not show decreasing returns.  

 This study also identifies two individual-level variables that exert a significant impact on the 

participation in medical innovation, namely cognitive breadth and perceived beneficiary impact. We 

presented a pool of skills associated with basic biomedical and clinical research. Those scientists who 

reported to have a wider knowledge about the proposed skills were more likely to participate in 

innovation. This suggests the need to formalize and promote translational research studies and courses 
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as a way to facilitate communication and integration between biomedical agents. These findings provide 

empirical evidence to recent claims from the biomedical community (e.g.: Kurpinski et al., 2014; Rubio 

et al., 2010), which have suggested that bridging the gap from lab bench to patient bedside requires a 

unique set of skills that are not typically offered by traditional degree programs.  Finally, we found that 

scientists that are particularly aware of the positive impact they exert over patients and clinical 

practitioners are more prone to engage in different forms of medical innovation. These results seem to 

be aligned with previous findings reported in organizational behavior and social psychology literature, 

which have highlighted that when individuals perceive that their actions have an impact on beneficiaries, 

they are likely to engage in the pursuit of making a positive difference in these beneficiaries’ lives 

(Grant, 2007). Our results indicate that biomedical scientists may conceive the engagement in 

innovation activities as a way to channel such interest. Therefore, this suggests that developing and 

implementing mechanisms to increase the scientists’ awareness of their direct impact on patients and 

clinical staff might enable scientists to participate more frequently in medical innovation activities.   

To sum up, our use of the social capital discussion between dense and sparse networks is 

valuable in addressing the increasing interest among the medical community on the importance of 

knowledge brokers. Through this analysis, we have proposed a personal network perspective to examine 

the mechanisms through which different network structures and compositions may lead to different 

levels of medical innovation, and we offered a theoretical framework to deeply explore the interactions 

between different actors in the biomedical context. By adopting an individual perspective, we also bring 

onto our study two potential individual-level antecedents to explain differences in medical innovation 

engagement: cognitive breadth and perceived beneficiary impact.   
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APPENDIX 

Table A1: Response rate by CIBER 

 Population surveyed Nº of completed 
returned questionnaires Response rate (%) 

CIBER – BBN 872 238 27.3 
CIBER – DEM 331 96 29.0 
CIBER – EHD 459 154 33.6* 
CIBER – ER 517 177 34.2* 
CIBER – ES 439 159 36.2* 
CIBER – ESP 610 107 17.5* 
CIBER – NED 750 186 24.8 
CIBER – OBN 303 71 23.4 
CIBER – SAM 477 121 25.4 
Total 4758 1309 27.5 
 
Note: * indicates significant statistical difference in response rates (p < 0.05). Statistical significance was 
calculated by comparing the relative frequency with which the surveyed scientists are classified into the 
categories of non-respondents and respondents (using a Chi-square test).   
 
 
Table A2: PCA analyses of medical innovation outputs (Varimax rotation). 
 

 

Product 
generation 

Drug  
development 

Clinical 
guidelines 

Diagnostics/ 
prevention 

Patent applications for new drugs of therapeutic substances 0,763 0,055 -0,035 0,059 

Licenses granted from patents 0,729 0,090 0,003 -0,053 

Participation in spin-off companies 0,733 -0,001 -0,012 0,088 

Clinical trials phases I, II, III , new drugs or therapeutic substances 0,188 0,620 0,363 -0,079 

Clinical trials phase IV, new drugs or therapeutic substances 0,155 0,818 0,204 -0,046 

Clinical trials phase IV, new diagnostic techniques -0,120 0,730 -0,222 0,219 

Development of guidelines for healthcare professionals -0,048 0,204 0,772 0,237 

Development of guidelines for patients -0,025 0,018 0,811 0,067 

Patent applications for new diagnostic techniques 0,216 -0,051 0,128 0,764 

Clinical trials phases I, II, III,  new diagnostic techniques -0,062 0,276 -0,026 0,693 

Development of guidelines for the general population -0,041 -0,166 0,395 0,632 
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Table A3. Results for OLS regression. Complete sample and Restricted sample 
 
 Complete Sample Restricted Sample 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Predictor variables       
Ego-network brokerage  0.763**   0.777**  
  (0.31)   (0.31)  
Ego-network brokerage2  -0.666**   -0.664**  
  (0.29)   (0.29)  
Ego-network range   0.081**   0.062 
   (0.04)   (0.06) 
Ego-network range2   0.005   0.012 
   (0.03)   (0.05) 
Cognitive breadth  0.055*** 0.053***  0.064*** 0.062*** 
  (0.01) (0.01)  (0.02) (0.02) 
Perceived beneficiaries  0.103*** 0.100***  0.121*** 0.115*** 
  (0.02) (0.02)  (0.02) (0.02) 
Control variables       
Age 0.014*** 0.014*** 0.014*** 0.016*** 0.015*** 0.014*** 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
Female -0.248*** -0.245*** -0.248*** -0.256*** -0.253*** -0.256*** 
 (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) 
PhD 0.031 0.026 0.020 -0.028 -0.034 -0.039 
 (0.06) (0.06) (0.06) (0.07) (0.07) (0.07) 
Large ego-network 0.129** 0.014 0.025 0.127** 0.003 0.022 
 (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) 
Hospital 0.568*** 0.476*** 0.469*** 0.621*** 0.516*** 0.508*** 
 (0.06) (0.07) (0.07) (0.08) (0.08) (0.08) 
Public Res. Org. 0.084 0.070 0.066 0.127 0.113 0.107 
 (0.06) (0.06) (0.06) (0.08) (0.07) (0.07) 
Private Res .Org. -0.005 -0.037 -0.042 0.035 -0.001 -0.006 
 (0.09) (0.07) (0.07) (0.10) (0.09) (0.09) 
Group size 0.003 0.004* 0.004* 0.003 0.005* 0.004 
 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
CIBER (Dummies) 0.000 0.000 0.000 0.000 0.000 0.000 
 (.) (.) (.) (.) (.) (.) 
Group’s tech. perfor. 0.024** 0.027** 0.027** 0.024* 0.025* 0.025* 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 
Ego-network size <2  -0.071 0.068 0.034    
 (0.06) (0.07) (0.07)    
Constant -0.202 -0.824*** -0.686*** -0.193 -0.870*** -0.712*** 
 (0.15) (0.17) (0.16) (0.18) (0.20) (0.19) 
Observations 1118 1111 1111 823 820 820 
R2 0.222 0.268 0.267 0.207 0.265 0.262 

 


