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Abstract

In this paper we discuss some main image processing techniques in order to propose a classification based
upon the output these methods provide. Because despite a particular image analysis technique can be su-
pervised or unsupervised, and can allow or not the existence of fuzzy information at some stage, each
technique has been usually designed to focus on a specific objective, and their outputs are in fact different
according to each objective. Thus, they are in fact different methods. But due to the essential relation-
ship between them they are quite often confused. In particular, this paper pursues a clarification of the
differences between image segmentation and edge detection, among other image processing techniques.
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graphs.

1. Introduction

Image analysis or image processing has become a
scientific hot topic during the last decades, partic-
ularly because of the increasing amount of relevant
information being stored in this format. Image anal-
ysis has a wide range of applications in different ar-

eas as remote sensing, image and data storage for
transmission in business applications, medical imag-
ing, acoustic imaging and security, among many
other fields. Digital image processing techniques
are being increasingly demanded through all areas
of science and industry.

Many different techniques are considered “image
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processing” or “image analysis” techniques. Usu-
ally, each technique is appropriate for some a small
range of tasks or for a specific problem.

For example, machine learning algorithms used
in image analysis help in finding solutions to many
problems in speech recognition 1, robotics 2 and vi-
sion 3. Computer vision uses image processing al-
gorithms to extract significant information automat-
ically from images. A number of algorithms are
available to analyze images and recognize objects in
them, and depending on the delivered output and the
manner in which the images were encoded, specific
learning methodologies are needed 4.

Another well-known example is image segmen-
tation. Image segmentation methods try to simplify
an image into something of easier analysis. Usu-
ally the image is transformed into segments or re-
gions. These regions are supposed to be connected
and represent a set of homogeneous pixels. Never-
theless, it is not clear when certain techniques should
be considered as image segmentation methods, and
such a situation also applies to other image process-
ing techniques. It is quite common to classify two
methods in the same group of techniques even if the
output and the information they provide are very dif-
ferent. This is the case, for example, of edge detec-
tion methods 5, clustering image 6 and image thresh-
olding algorithms 7, all of them classified as “image
segmentation procedures” despite the obvious dif-
ferences in their outputs.

There is a significant difference between im-
age classification methods, edge detection methods,
image segmentation methods and hierarchical im-
age segmentation methods. Particularly, besides the
strong relationship between them, all these meth-
ods address different problems, and produce differ-
ent outputs. However, those different methods are
not always clearly differentiated in the literature, and
sometimes even confused. This paper poses a crit-
ical view on some of these techniques in order to
show the conceptual differences between them. De-
pending on how a particular algorithm detects ob-
jects in an image and shows the output, the method
might be understood as either performing classifi-
cation, detection, segmentation or hierarchical seg-
mentation.

Hence, the main objective of this paper is to
present a classification of a set of widely used im-
age processing algorithms, attending to the prob-
lems they face, the learning scheme they are based
on, and the representational framework they utilize.
Some new image analysis concepts and methods are
also provided.

In order to understand the remainder paper, the
following notation is adopted. The image we con-
sider is being modeled as a two-dimensional func-
tion, where x and y are the coordinates in a plane,
and f (x,y) represents each pixel by a fixed num-
ber of measurable attributes 8. Formally, an image
can be defined as I = { f (x,y);x = 1, . . . ,n and y =
1, . . .m} which can be represented computationally
in:

• Binary ≡ f (x,y) ∈ {0,1}.
• Gray ≡ f (x,y) ∈ {0, . . . ,255}.
• RGB ≡ f (x,y) ∈ {0, . . . ,255}3.

A binary image is represented as a matrix allow-
ing two possible values for each cell, two-tone col-
ors (usually 0 refers to black and 1 to white). Sim-
ilarly, a grey scale image may be defined as a two
dimensional function f (x,y) where the amplitude of
f at any pair of coordinates (x,y) refers to the inten-
sity (gray level) of the image at that point. Instead, a
color image is defined by a combination of individ-
ual 2D images. For instance, the RGB color system
represents a color image in three components (red,
green and blue). That is, it has an array of three ma-
trices of equal size where the intensity of color of a
pixel compound is represented by the three colors 8.

Figures 1, 2 and 3 show a binary image, a
grayscale image and RGB image, respectively.

The remainder of this paper is organized as fol-
lows: a review on image classification is presented
in Section 2. Section 3 is devoted to fuzzy im-
age classification. Some edge detection techniques
are shown in Section 4, which is extended to fuzzy
edge detection in Section 5. Image segmentation and
some methods addressing this problem are analyzed
in Section 6. Section 7 pays attention to hierarchical
image segmentation. In Section 8 fuzzy image seg-
mentation is addressed. Finally, some conclusions
are shed.
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Fig. 1. Binary image.

Fig. 2. Gray level image.

Fig. 3. RGB image 9.

2. Image classification

Classification techniques have been widely used in
image processing to extract information from im-
ages by assigning each pixel to a class. Therefore,
two types of outputs can be obtained at the end of an
image classification procedure. The first kind of out-
put is a thematic map where pixels are accompanied
by a label for identification with a class. The second
kind of output is a table summarizing the number of
image pixels belonging to each class. Furthermore,
both supervised and unsupervised learning schemes
are applied for this image classification task 10. Next
we provide an overview of these methods.

2.1. Supervised classification

Supervised classification is one of the most used
techniques for image analysis, in which the super-
visor provides information to the system about the
categories present in each pattern in the training set.

Neural networks 11, genetic algorithms 12, sup-
port vector machines 13, bayesian networks 14, max-

imum likelihood classification 15 or minimum dis-
tance classification 16 are some techniques for su-
pervised classification. Depending on certain fac-
tors such as data source, spatial resolution, available
classification software, desired output type and oth-
ers, it is more appropriate to use one of them to pro-
cess a given image.

Supervised classification procedures are essen-
tial analytical tools for extracting quantitative infor-
mation from images. According to Richards and Jia
4, the basic steps to implement these techniques are
the following:

• Decide the classes to be identified in the image.
• Choose representative pixels of each class which

will form the training data.
• Estimate the parameters of the algorithm classifier

using the training data.
• Categorize all the remaining pixels in the image

with the classifier in each of regions desired.
• Summarize the classification results in tables or

display the segmented image.
• Evaluate the accuracy of the final model using a

test data set.

A variety of classification techniques such as
those mentioned above have been used in image
analysis. In addition, some of those methods have
been jointly used (e.g., neural networks 17,18, genetic
algorithm with multilevel thresholds 19 or some vari-
ant of support vector machines 20).

In general, supervised classification provides
good results if representative pixels of each class are
chosen for the training data 4. Next, we pay attention
to methods for unsupervised classification.

2.2. Unsupervised classification, clustering

Unsupervised classification techniques are intended
to identify groups of individuals having common
characteristics from the observation of several vari-
ables for each individual. In this sense, the main
goal is to find regularities in the input data, because
unlike supervised classification techniques, there is
no supervisor to provide existing classes. The pro-
cedure tries to find groups of patterns, focussing in
those that occur more frequently in the input data 21.



C. Guada et al.

According to Nilsson 22, unsupervised classifica-
tion consists of two stages to find patterns:

• Form a partition R of the set Ξ of unlabeled train-
ing patterns. The partition separates Ξ into mutu-
ally exclusive and exhaustive subsets R known as
clusters.

• Design a classifier based on the labels assigned to
the training patterns by the partition.

Clustering 23 is perhaps the most extended
method of unsupervised classification for image pro-
cessing, which obtains groups or clusters in the input
image.

Particularly, cluster analysis looks for patterns
in images, gathering pixels within natural groups
that make sense in the context studied 21. The aim
is that the proposed clustering has to be somehow
optimal in the sense that observations in a cluster
have to be similar, and in turn be dissimilar to those
of other clusters. In this way, we try to maximize
the homogeneity of objects within the clusters while
the heterogeneity between aggregates is maximized.
In principle, the number of groups to form and the
groups themselves is unknown 24.

A standard cluster analysis creates groups that
are as homogeneous as possible, and in turn the dif-
ference between the various groups is as large as
possible. The analysis consist on the main follow-
ing steps:

• First, we need to measure the similarity and dis-
similarity between two separate objects (similar-
ity measures the closeness of objects, so closer
values suggest more homogeneity).

• Next, similarity and dissimilarity between clus-
ters is measured so that the difference between
groups become larger and thus group observations
become as close as possible.

In this manner, the analysis can be divided into
these two basic steps, and in both steps we can be
use correlation measures or any distance 25 as sim-
ilarity measure. Some similarity and dissimilarity
measures for quantitative features are shown in 26.

Correlation measurements refer to the measure-
ment of similarity between two objects in a symmet-
ric matrix. If the objects tend to be more similar, the

correlations are high. Conversely, if the objects tend
to be more dissimilar, then the correlations are low.
However, because these measures indicate the simi-
larity by pattern matching between the features and
do not observe the magnitudes of the observations,
they are rarely used in cluster analysis.

Distance measurements represent the similarity
and proximity between observations. Unlike corre-
lation measurements, these similarity measures of
distance or proximity are widely used in cluster
analysis. Among the distance measures available,
the most common are the Euclidean distance or dis-
tance metric, the standardized distance metric or the
Malahanobis distance 26.

Let X(n× p) be a symmetric matrix with n ob-
servations of p variables. The similarity between
the observations can be described by the matrix
D(n×n):

D =



d11 d12 . . . . . . d1n
... d22

...
...

...
. . .

...
...

...
. . .

...
dn1 dn2 . . . . . . dnn


where di j represent the distance between observa-
tions i and j. If di j is a distance, then d′i j =
maxi, j{di j}− di j represents a measure of proximity
25.

Once a measure of similarity is calculated, we
are able to proceed with the formation of clusters.
A popular algorithm is k-means clustering 27. The
algorithm was first proposed in 1957 by Lloyd 28

and published much later 29. K-means clustering
algorithm classifies the pixels of the input image
into multiple classes according to the distance from
each other. The points are clustered around cen-
troids µi, i = 1, . . .k obtained by minimizing the Eu-
clidean distance. Let x1 and x2 be two pixels whose
Euclidean distance between them is:

d(x1,x2) =

√
N

∑
i=1

(x1i− x2i)2 . (1)

Thus, the sum of distances to k-center is mini-
mized, and the objective is to minimize the maxi-
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mum distance from every point to its nearest center
30.

Then, having selected the centroids, each obser-
vation is assigned to the most similar cluster based
on the distance of the observation and the mean of
the cluster. The average of the cluster is then re-
calculated, beginning an iterative process of cen-
troid location depending on how observations are
assigned to clusters; until the criterion function con-
verges 31.

Clustering techniques have been used to per-
form unsupervised classification for image process-
ing since 1969, when an algorithm finding bound-
aries in remote sensing data was proposed 32. Clus-
tering implies grouping the pixels of an image in the
multispectral space 4. Therefore, clustering seeks to
identify a finite set of categories and clusters to clas-
sify the pixels, having previously defined a criteria
of similarity between them. There are a number of
available algorithms 33.

The resulting image of the k-means clustering al-
gorithm with k=3 over Figure 3 is shown in Figure 4.

Fig. 4. Cluster’s result.

Thus, to achieve its main goal, any clustering al-
gorithm must address three basic issues: i) how to
measure the similarity or dissimilarity?; ii) how the
clusters are formed?; and iii) how many groups are
formed?. These issues have to be addressed so the
principle of maximizing the similarity between indi-
viduals in each cluster and maximizing the dissim-
ilarity between clusters can be met 33. A detailed
review on clustering analysis is presented in 6.

Thus, summarizing, in the framework of super-
vised classification pixels are assigned to a known
number of predefined groups. However, in cluster
analysis the number of cluster groups and the groups
themselves are not known in advance 24. Anyway,
image classification is a complex process for pattern
recognition based on the contextual information of
the analyzed images 34. A more detailed discussion

of image classification methods is presented in 35.

3. Fuzzy image classification

In this section, we present an overview of fuzzy im-
age classification. As in Section 2, these methods
are divided in supervised techniques and unsuper-
vised techniques.

3.1. Supervised fuzzy classification

Fuzzy classification techniques can be considered
extensions of classical classification techniques. We
simply need to take advantage of the fuzzy logic pro-
posed to Zadeh in such a way that restricted applica-
tions within a crisp framework we produce all those
techniques presented in Section 2.1. And similarly
to traditional classification techniques, fuzzy classi-
fication includes both supervised and unsupervised
methods.

Fuzzy logic 36 was introduced in the mid-sixties
of last century as an extension of classical binary
logic. Some objects have a state of ambiguity re-
garding their membership to a particular class. In
this way, a person may be both “tall” and “not tall”
to some extent. The difference lies in the degree
of membership assigned to the fuzzy set “tall” and
its complement “not tall”. Therefore, the intersec-
tion of a fuzzy set and its complement is not al-
ways an empty set. Also, conflictive views can si-
multaneously appear within a fuzzy set 37. Such a
vagueness is in the roots of fuzzy logic, and brings
specific problems difficult to be treated by classical
logic. Still, these problems are real and should be
addressed 38.

A fuzzy set C refers to a class of objects with
membership degrees. This set is usually character-
ized by a continuous membership function µC(x)
that assigns to each object a grade of membership
in [0,1] indicating the degree of membership of x
in C. The closer µC is to 1, the greater the degree
of membership of x in C 36. Classical overviews of
fuzzy sets can be found in 36,39,40,41,42,43.

Hence, classes are defined according to certain
attributes, and objects that possess these attributes
belong to the respective class. Thus, in many appli-
cations of fuzzy classification, we consider a set of
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fuzzy classes C . The degree of membership µC(x)
of each object x ∈ X to each class C ∈ C has to be
then determined 44.

The membership function is given by µc : X →
[0,1] for each class c∈C 44, where a quite complete
framework is proposed, subject to learning).

Fuzzy rule-based systems (FRBS) are methods
of reasoning, where knowledge is expressed by
means of linguistic rules. FRBS are widely used in
various contexts, as for example fuzzy control 45 or
fuzzy classification 46. FRBS allow the simultane-
ous use of certain parts of this knowledge to perform
inference.

The main stages of a FRBS are listed below:

• Fuzzification, understood as the transformation of
the crisp input data into fuzzy data 47.

• Construction of the fuzzy rule base, expressed
through linguistic variables, i.e., IF antecedent
THEN result 48,49,50.

• Inference over fuzzy rules, where we find the con-
sequence of the rule and then combine these con-
sequences to get an output distribution 51.

• Defuzzification, to produce a crisp value from the
fuzzy or linguistic output obtained from the previ-
ous inference process 37,52.

FRBS are commonly applied to classification
problems. These classifiers are called fuzzy rules
based classification systems (FRBCS) or fuzzy clas-
sifiers 53.

Fuzzy classification is the process of grouping
objects in a family of fuzzy sets by assigning de-
grees of membership to each of them, defined by the
truth value of a fuzzy propositional function 44.

One of the advantages of fuzzy classifiers is that
they do not assigned two similar observations to dif-
ferent classes in case the observations are near the
boundaries of the classes. Also, FRBCS facilitate
smooth degrees of membership in the transitions be-
tween different classes.

3.2. Unsupervised classification, fuzzy clustering

Regarding unsupervised techniques, perhaps the
most widely used technique is fuzzy c-means, that
extends clustering to a fuzzy framework.

The fuzzy c-means algorithm 54 constitutes an
alternative approach to the methods defined in sub-
section 2.2, based on fuzzy logic. Fuzzy c-means
provide a powerful method for cluster analysis.

The objective function of the fuzzy c-means al-
gorithm, given by Bezdek 55, is as follows:

Jm(U,v) =
N

∑
k=1

c

∑
i=1

um
ik‖yk− vi‖2

A. (2)

where Y = {y1,y2, . . . ,yN} ⊂ ℜn are the observa-
tions, c are the numbers of clusters in Y ;2 6 c <
n, m;1 6 m < ∞ is the weighting exponent which
represents the degree of fuzziness, U ;U ∈ M f c,
v = (v1,v2, . . . ,vc) are the vectors of centers, vi =
(vi1,vi2, . . . ,vin) is the centroid of cluster i, ‖ ‖A in-
troduce A-norm above ℜn, and A is positive weight
matrix (n×n).56

According to Bezdek et al. 56, the fuzzy c-means
algorithm basically consists of the following four
steps:

• Set c,m,A,‖k‖A and choose a matrix U (0) ∈M f c.
• Then at step k, k = 0,1, . . . ,LMAX , calculate the

mean v(i), i = 1,2, . . . ,c with
v̂i =

∑
N
k=1(ûik)

myk

∑
N
k=1(ûik)m where 1 6 i 6 c.

• Calculate the updated membership matrix
Û (k+1) = [û(k+1)

i j ] with ûik = (∑c
j=1(

d̂ik

d̂ jk
)

2
(m−1) )−1;

1 6 k 6 N; 1 6 i 6 c.
• Compare Û (k+1) and Û (k) in any convenient ma-

trix norm. If ‖Û (k+1)−Û (k)‖< ε stop, otherwise
set Û (k) = Û (k+1) and return to the second step.

Fuzzy techniques have found a wide application
into image processing (some studies can be found
in 57,58,59). They often complement the existing
techniques and can contribute to the development of
more robust methods 60. Applying the technique of
fuzzy c-means on Figure 2, the resulting image is
shown in Figure 5.

Fig. 5. Fuzzy c-means’s result.
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As it has been noted, the fuzzy c-means produces
a fuzzy partition 61 of the input image characterizing
the membership of each pixel to all groups by a de-
gree of membership 56.

In conclusion, fuzzy classification assigns differ-
ent degrees of membership of an object to the de-
fined categories.

4. Edge detection

Edge detection has been an important topic in image
processing for its ability to provide relevant infor-
mation of the image and provide the boundaries of
objects of interest.

Edge detection is a useful and basic operation to
acquire information about an image, such as its size,
shape and even texture. This technique is considered
the most common approach to detect significant dis-
continuities in the values of intensities of an image,
and this is achieved by taking spatial derivatives of
first and second order (typically with the gradient
and Laplacian, respectively). That is, non smooth
changes in the function f (x,y) of the image can be
determined with the derivatives. Thus, the operators
that describe edges are tipically expressed by partial
derivatives 8,62.

The result obtained with this technique consists
of a binary image such that those pixels where sharp
changes have occurred appear bright, while the other
pixels remain dark. This output in turn allows a
significant reduction on the amount of information
while preserving the important structural properties
of the image.

The first derivative is determined by the gradient,
which is able to determine a change in the intensity
function through a one-component vector (direction)
pointing in the direction of maximum growth of the
image’s intensity 62. Thus, the gradient of a two-
dimensional intensity function f (x,y) is defined as:

∇ f ≡ grad(f) =
[

gx

gy

]
=

[
∂ f
∂x
∂ f
∂y

]
. (3)

The magnitude of this vector is:

∇ f=mag(∇ f )=
√

g2
x+g2

y=
√

(∂ f/∂x)2+(∂ f/∂y)2. (4)

And the direction is given by the angle:

α(x,y) = tan−1
[

gy

gx

]
. (5)

However, the errors associated with the approx-
imation may cause errors which require adequate
consideration. For example, an error may be that
the edges are not detected equally well in all direc-
tions, thus leading to erroneous direction estimation
(anisotropic detecting edges) 10.

Therefore, the value of the gradient is related to
the change of intensity in areas where it is variable,
and is zero where intensity is constant 8.

The second derivative is generally computed us-
ing the Laplace operator or Laplacian, which for a
two-dimensional function f (x,y) is formed from the
second order derivatives8:

∇
2 f (x,y) =

∂ 2 f (x,y)
∂x2 +

∂ 2 f (x,y)
∂y2 . (6)

Remarkably, the Laplacian is rarely used directly
because its sensitivity to noise and its magnitude can
generate double edges. Moreover, it is unable to de-
tect the direction of the edges, for which it is used in
combination with other techniques 8.

Thus, the basic purpose of edge detection is to
find the pixels in the image where the intensity or
brightness function changes abruptly, in such a way
that if the first derivative of the intensity is greater
in magnitude than a predetermined threshold, or if
the second derivative crosses zero, then a pixel is
declared to be an edge 8,62. In practice, this can
be determined through the convolution of the image
masks, which involves taking a 3×3 matrix of num-
bers and multiply pixel by pixel with a 3×3 section
of the image. Then, the products are added and the
result is placed in the center pixel of the image 63.

There are several algorithms which implement
this method, using various masks 8,64. For ex-
ample, the Sobel operator 65, a Prewitt operator
66, Roberts cross operator 67, Gaussian Laplacian
filter5, Moment-based operator 68, etc. Next, we
look more closely to two of the most used operators.
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4.1. Sobel operator

Sobel operator was first introduced in 1968 by Sobel
65 and then formally accredited and described in 69.
This algorithm uses a discrete differential operator,
and finds the edges calculating an approximation to
the gradient of the intensity function in each pixel of
an image through a 3×3 mask. That is, the gradient
at the center pixel of a neighborhood is calculated
by the Sobel detector 8:

Gx⇒

∣∣∣∣∣∣
−1 −2 −1

0 0 0
1 2 1

∣∣∣∣∣∣ Gy⇒

∣∣∣∣∣∣
−1 0 1
−2 0 2
−1 0 1

∣∣∣∣∣∣
Where the neighborhood would be represented

as: ∣∣∣∣∣∣
z1 z2 z3
z4 z5 z6
z7 z8 z9

∣∣∣∣∣∣
Consequently:

g =
√

g2
x +g2

y

=
√
[(z7 +2z8 + z9)− (z1 +2z2 + z3)]2 . . .

. . .+[(z3 +2z6 + z9)− (z1 +2z4 + z7)]2. (7)

Thus, a pixel (x,y) is identified as an edge pixel
if g > T in this point, where T refers to a predefined
threshold.

The resulting image of edge detection using So-
bel operator on Figure 2 is shown in Figure 6.

Fig. 6. Edge detection’s result - Sobel.

In summary, this technique estimates the gradi-
ent of an image in a pixel by the vector sum of the

four possible estimates of the single central gradi-
ents (each single central gradient estimated is a vec-
tor sum of vectors orthogonal pairs) in a 3×3 neigh-
borhood. The vector sum operation provides an av-
erage over the directions of gradient measurement.
The four gradients will have the same value if the
density function is planar throughout the neighbor-
hood, but any difference refers to deviations in the
flatness of the function in the neighborhood 65.

4.2. Canny operator

This edge detection algorithm is very popular and
attempts to find edges looking for a local maximum
gradient in the gradient direction 70. The gradient
is calculated by the derivative of the Gaussian fil-
ter with a specified standard deviation σ to reduce
noise. At each pixel the local gradient g =

√
g2

x +g2
y

and its direction (Eq. (5)) is determined. Then, a
pixel will be an edge when his strength is a local
maximum in the gradient direction, and thus the al-
gorithm classifies border pixels with 1, and those
that are not in the peak gradient with 0 (Ref. 11).

This method detects both strong and weak edges
(very marked), and it uses two thresholds (T1 and T2
such that T1 < T2). The hard edges will be those who
are superior to T2 and will be weak edges those who
are between T1 and T2. Then, the algorithm links
both types of edges but just considering as weak
edges those connected to strong edges. This would
ensure that those edges are truly weak edges 8.

The resulting image of edge detection using
Canny operator on Figure 2 is shown in Figure 7.

Fig. 7. Edge detection’s result - Canny.

Summarizing, edge detection techniques use
a gradient operator, and subsequently evaluate
through a predetermined threshold if an edge has
been found or not 71. Therefore, edge detection is a
process by which the analysis of an image is simpli-
fied by reducing the amount of processed informa-
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tion, and in turn retaining valuable structural infor-
mation on object edges 70. A more detailed analysis
on edge detection techniques can be obtained in 5.

5. Fuzzy edge detection

Frequently, the edges detected through an edge de-
tection process (as those previously presented) are
false edges because these classics methods are sen-
sitive to various issues such as noise or thick edges,
among others, and require a great amount of calcu-
lation, so that discretization may present problems
64,72.

Fuzzy logic has proved to be well suited to ad-
dress the uncertainty characterizing the process of
extracting information from an image 73. Hence,
many algorithms have included fuzzy logic in the
entire process or at any particular stage of the image
processing 72. An overview of models and methods
based on fuzzy sets for image processing and image
understanding can be found in 74.

A first idea for applying fuzzy logic in edge de-
tection was proposed by Pal and King 75. Subse-
quently, Russo 76 designed fuzzy rules for edge de-
tection. Different algorithms were created to address
fuzzy edge detection since then.

Fuzzy edge detection detects classes of pixels
corresponding to the variation in level of gray inten-
sity in different directions. This is achieved by using
a specified membership function for each class, in
such a way that the class assigned to each pixel cor-
responds to the highest membership value 64. Russo
76 proposed that an efficient way to process each
pixel of the image must consider the set of neighbor-
ing pixels belonging to a rectangular window, called
fuzzy mask.

Let K be the number of gray levels in an im-
age, the appropriate fuzzy set to process that im-
age are made up of membership functions defined in
the universe [0, . . . ,K−1] 76. Fuzzy sets are created
to represent the intensities of each variable and they
are associated to the linguistic variables “black” and
“white”.

The resulting image of applied fuzzy edge detec-
tion on Figure 2 is shown in Figure 8.

Fig. 8. Fuzzy edge detection’s result.

The fuzzy rules used to fuzzy inference system
for edge detection consist on “coloring a pixel white
if it belongs to a uniform region. Otherwise, color-
ing the pixel black”:

(i) IF Ix is zero and Iy is zero THEN Iout is white
(ii) IF Ix is not zero or Iy is not zero THEN Iout is

black.

where Ix and Iy are the image gradient along the x-
axis and y-axis and they have a zero-mean Gaus-
sian membership function. Also, it is specified for
Iout the triangular membership functions, white and
black.

Fig. 9. Membership functions of the inputs/outputs.

As we mentioned previously, there are several
versions of fuzzy edge detection algorithms in the
literature. For instance, there is an algorithm that
uses Epanechnikov function extended as a member-
ship function for each class to be assigned to each
pixel 64, or another algorithm which uses operators
that detect specific patterns of neighboring pixels
for fuzzy rules 77. A study about representing the
dataset as a fuzzy relation, associating a membership
degree with each element of the relation is presented
in 78. Other issue is that fuzzy logic can be used only
on a certain part of the edge detection process 72.

Fuzzy edge detection problems in which each
pixel has a degree of membership to the border can
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be seen in some studies 79,80,81,82,83. Moreover, in
these studies the concept of fuzzy boundary have
been introduced.

6. Image segmentation

Around 1970, image segmentation boomed as an ad-
vanced research topic. In computer vision, image
segmentation is a process that divides an image into
multiple segments, in order to simplify or modify
the representation of the image to be more mean-
ingful and easy to analyze 84. Actually, there are
many applications of image segmentation 85, as it
is useful in a robot vision 86, detection of cancer-
ous cells 87, identification of knee cartilage and gray
matter/white matter segmentation in MR images 88,
among others.

The goal of segmentation is subdividing an im-
age into regions or non-overlapping objects with
similar properties. For each pixel, it is determined
whether it belongs to an object or not, producing a
binary image. The subdivision level is dependent on
the problem to be solved. Segmentation stops when
the objects of interest have been identified and iso-
lated. However, in most cases, processed images are
not trivial and hence the segmentation process be-
comes more complicated.

The most basic attribute for segmentation is the
intensity of a monochrome image and the color
components for a color image, as well as ob-
jects boundaries and texture, which are very use-
ful. In summary, the regions of a segmented im-
age should be uniform and homogeneous with re-
gard to some property such as color, texture, inten-
sity, etc 84,89. Also, the quality of the segmentation
depends largely on the output. However, although
image segmentation is an essential image process-
ing technique and has applications in many fields,
there is no single method applicable to all kinds of
images. Current methods have been classified ac-
cording to certain characteristics of their algorithms
84,90.

Formally, image segmentation can be defined as
a process of partitioning the image into a set of non-
intersecting regions such that each group of con-
nected pixels is homogeneous 85,91. It can be defined

as follows:
Image segmentation partitions an image R in C

subregions R1,R2, . . . ,RC for a uniformity predicate
P, such that the following items are satisfied:

(i)
n⋃

i=1

Ri = R.

(ii) Ri∩R j = /0 for all i and j, i 6= j.
(iii) P(Ri) = T RUE for all i = 1,2, . . . ,C.
(iv) P(Ri ∪R j) = FALSE for any pair of adjacent

regions Ri and R j.
(v) Ri is connected, i = 1,2, . . . ,C.

The first condition states that the segmentation
must be complete, i.e., the union of the segmented
regions Ri must contain all pixels in the image. The
second condition indicates that regions have to be
disjoint, that is, that there is no overlap between
them. The third condition states that pixels belong-
ing to the same region should have similar proper-
ties. The fourth condition states that pixels from ad-
jacent regions Ri and R j differ in some properties.
Finally, the fifth condition expresses that each region
must be connected 8.

Next sections describe main methods of image
segmentation. They are classified into four cate-
gories: thresholding methods (6.1), watershed meth-
ods (6.2), region segmentation methods (6.3) and
graph partitioning methods (6.4).

6.1. Thresholding methods

Thresholding 92 is considered one of the simplest
and most common techniques that has been widely
used in image segmentation. In addition, it has
served in a variety of applications such as object
recognition, image analysis and interpretation of
scenes. Its main features are that it reduces the
complexity of the data and simplifies the process of
recognition and classification of objects in the image
93.

Thresholding assumes that all pixels whose
value, as its gray level, is within a certain range be-
long to a certain class 94. In other words, threshold-
ing methods separate objects from the background 7.
So, according to a threshold, either preset by the re-
searcher or by a technique that determines its initial
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value, a gray image is converted to a binary image
84. An advantage of this procedure is that it is useful
to segment images with very bright objects and with
dark and homogeneous backgrounds 33,100.

Let f (x,y) be a pixel of an image I with x =
1, . . . ,n and y = 1, . . . ,m and B = {a,b} be a pair
of binary gray levels. Then, the pixel belongs to the
object if and only if its intensity value is greater than
or equal to a threshold value T , and otherwise it be-
longs to the background 8,33. The resulting binary
image of thresholding an image function at gray
level T is given by:

fT (x,y) =
{

a si f (x,y)> T
b si f (x,y)6 T

(8)

In this way, the main step of this technique is
to select the threshold value T , but this may not be
a trivial task at all 84. However, many approaches
to obtain a threshold value have been developed, as
well as a number of indicators of performance eval-
uation 93. For example, threshold T can remain con-
stant for the entire image (global threshold), or this
may change while it is classifying the pixels in the
image (variable threshold) 33. Hence, some thresh-
olding algorithms lie in choosing the threshold T ei-
ther automatically, or through methods that vary the
threshold for the process according to the proper-
ties of local residents of the image (local or regional
threshold) 8,84. Some algorithms are: basic global
thresholding 95, minimum error thresholding 96, it-
erative thresholding 97, entropy based thresholding
98 and Otsu thresholding 99.

According to Sezgin and Sankur 7, thresholding
techniques can be divided into six groups based on
the information the algorithm manipulates:

(i) Histogram shape-based techniques 100, where
an analysis of the peaks, valleys and curvatures
of the histogram is performed.

(ii) Clustering-based methods 101, where the gray
levels are grouped into two classes, back-
ground and object, or alternatively they are
modeled as a mixture of two Gaussians.

(iii) Entropy-based techniques 102, in which the al-
gorithms use the entropy of the object and
the background, the cross entropy between the
original binary image, etc.

(iv) Object attribute-based techniques 103,104,
which seek measures of similarity between
the gray level and binary images.

(v) Spatial techniques 105, using probability distri-
butions and/or correlations between pixels.

(vi) Local techniques 106, which adapts the thresh-
old value at each pixel according to the local
characteristics of the image.

Possibly, the most known and used thresholding
techniques are those that focus on the shape of the
histogram. A threshold value can be selected by
inspection of the histogram of the image, where if
two different modes are distinguished then a value
which separates them is chosen. Then, if necessary
this value is adjusted by trial and error to generate
better results. However, updating this value by an
automatic approach can be carried out through an it-
erative algorithm 8:

(i) An initial estimate of a global threshold T is
performed.

(ii) The image is segmented by the T value in
two groups G1 and G2 of pixels, resulting
from Eq. (8).

(iii) The average intensities t1 and t2 for the two
groups of pixels are calculated.

(iv) A new threshold value is calculated: T =
1
2(t1 + t2).

(v) Repeat steps 2 to 4 until subsequent iterations
produce a difference in thresholds lower than a
given sensibility or precision (∆T ).

(vi) The image is segmented according to the last
value of T .

Therefore, the basic idea is to analyze the his-
togram of the image, and ideally, if two dominant
modes exist, there is a remarkable valley where
threshold T will be in the middle 84. However, de-
pending on the image, histograms can be very com-
plex (e.g., having more than two peaks or not obvi-
ous valleys), and this could lead this method to select
a wrong value. Furthermore, another disadvantage
is that only two classes can be generated, therefore,
the method is not able to be applied in multispec-
tral images. It also does not take into account spatial
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information in the image, so it makes the method
sensitive to noise 33.

The histogram of Figure 2 is shown in Figure 10.
The threshold value is 170,8525.

Fig. 10. Histogram.

The outcome of thresholding to the previous im-
age is shown on Figure 11.

Fig. 11. Thresholding’s result.

In general, thresholding is considered to be a
simple and effective tool for supervised image seg-
mentation. It however must achieve an ideal value
T in order to segment images in objects and back-
ground. More detailed studies can be found in
7,107,108,109.

6.2. Watershed methods

Watershed 110 was introduced in the field of digi-
tal topography. This method considered a grayscale
picture as topographic reliefs 111,112,113,114. Later,
this notion was studied in the field of image pro-
cessing 115. Watershed aims to segmenting regions
in catchments, i.e., in an area where a stream of con-
ceptual water bounded by a line trickles through the
top of the mountains, which decomposes the image
into rivers and valleys 116. Light pixels can be con-
sidered the top of the mountain, and dark pixels to
be in the valleys 117. The gradient is treated as the
magnitude of an image as a topographic surface 84.
Thus, it is considered that a monochrome image is
a surface altitude where the pixels of greater ampli-
tude or greater magnitude of intensity gradient cor-
respond to the points of the river, i.e. the lines of the
watershed that form the boundaries of the object. On

the other hand, the pixels of lower amplitude are re-
ferred to as valley points 84,89.

By leaving a drop of conceptual water on any
pixel from an altitude, this will flow to a lower el-
evation point until reaching a local minimum. And
in turn, the pixels that drain to a common mini-
mum, form a retention gap characterizing a region of
the image. Therefore the accumulations of water in
local minima neighborhood form such catchments.
So, the points belonging to these basins belong to
the same watershed 89. Thus, an advantage of this
method is that it first detects the leading edge and
then calculates the basins of the detected gradients
84.

Overall, the watershed algorithm is as follows:

• Calculate curvature of each pixel.
• Find the local minima and assign a unique label to

each of them.
• Find each flat area and classify them as minimum

or valley.
• Browse the valleys and allow each drop to find a

marked region.
• Allow remaining unlabeled pixels fall similarly

and attach them to the labeled regions.
• Join those regions having a depth of basin below

a predetermined threshold.

There are different algorithms to calculate the
watershed, depending on how to extract the moun-
tain rims from the topographic landscape. Two ba-
sic approaches can be distinguished in the following
subsections.

6.2.1. Rainfall approximation

The rainfall algorithm 118 is based on finding the lo-
cal minima of the entire image, which are assigned a
unique label. Those that are adjacent are also com-
bined with a unique tag. Then a drop of water is
placed in each pixel without label. These drops will
flow through neighboring lower amplitudes to a lo-
cal minimum assuming the value of the label. Then
local minimum pixels are shown in black and the
roads of every drop to the local minimum are indi-
cated by white 89.
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6.2.2. Flooding approximation

The flooding algorithm 110 extracts the mountain
rims by gradually flooding the landscape. The flood
comes from below, through a hole in each minimum
of the relief and immerse the surface in a lake en-
tering through the holes while it fill up the various
catchment basins 119. In other words, the method
involves placing a water fountain in local minima,
then the valleys are submerged with water and each
catchment filled until it reaches almost to overflow,
which will create a reservoir in which neighbors
are connected by the ridge 89,117. This approach
comes from the bottom up to find the watershed,
i.e., it starts from a local minimum, and each re-
gion is flooded incrementally until it connects with
its neighbors 116.

By performing the procedure of watershed, im-
age transform complement of Figure 1, is as shown
in Figure 12.

Fig. 12. Transform complement of binary image.

In Figure 13 is shown the outcome of watershed.

Fig. 13. Watershed’s result.

In summary, watershed is a very simple and
advantageous technique for real-life applications,
mainly for segmenting grayscale images trou-
bleshooting, and which uses image morphology
84,117. Notably, because of this method finds the
basins and borders at the time of use to segment
images, the key lies in changing the original image
in an image where the basins correspond to objects
you want to identify. Also, when it is combined
with other morphological tools, watershed transfor-
mation is at the basis of extremely powerful segmen-
tation procedures 115,120.

A critical review of several definitions of the wa-
tershed transform and their algorithms, can be found
in 121,122.

6.3. Region segmentation methods

In this section, we present two region segmentation
methods. These techniques try that neighboring pix-
els with similar properties are in the same region,
i.e., they focus on groups of pixels that have sim-
ilar intensity 71,94. This leads to the class of al-
gorithms known as region growning and split and
merge, where the general procedure is to compare
a pixel with its neighbors, and if they are homoge-
neous then they are assigned to the same class 94.
Region growning and split and merge are presented
in section 6.3.1 and section 6.3.2 respectively.

6.3.1. Region growning

Region growning 123 is a method for grouping
neighboring pixels in segmented regions according
to predefined criteria of growth. Firstly, it specifies
small sets of initial pixel called seed points. From
them, the regions grow by adding neighboring pix-
els with similar predefined properties, until no more
pixels that meet the criteria for inclusion in the re-
gions are found and all pixels in the image have been
scanned 8,33. Similarly, if two or more regions are
homogeneous, they are grouped into one. Also, once
a region has no more similar pixels, then we proceed
to establish a new region from another seed 124.

In summary, the basic procedure is presented bel-
low 33:

• Select a seed group of pixels in the original image.
• Define true value criterion for the stopping rule.
• Combine all pairs of spatially adjacent regions

fulfilling the criterion value.
• Stop the growth of the regions when it is not pos-

sible to combine more adjacent pixels.

However, a disadvantage of this method is the
fact that getting a good result depends on the selec-
tion of the initial seed points and the order in which
they are scanned for grouping each pixel. This de-
pendence makes the segmented result to be sensitive
to the location and ordering of seeds 71,89.
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The resulting image of region growing on Fig-
ure 2 by applying a seed in the pixel x= 148 y= 359,
is shown in Figure 14.

Fig. 14. Region growing’s result.

Consequently, region growing is a procedure
which iteratively groups pixels of an image into sub-
regions according to a predefined criterion of homo-
geneity from a seed 33,124. Similarly, region grown-
ing has a good performance because it considers the
spatial distribution of the pixels 124.

6.3.2. Split and merge

Split and merge 71 is based on a representation of
data in a quadtree where if a region of the original
image is non-uniform in attribute then a square im-
age segment is divided into four quadrants. Hence,
if four neighbors are uniform, they are united in a
square formed by these adjacent squares 89.

Definition 1. Let I be an image and P be a predi-
cate, the image is subdivided into small quadrants,
such that for any region Ri it is P(Ri) = T RUE. If
P(R) = FALSE, the image is divided into quadrants.
If P is FALSE for any quadrant, the quadrant is sub-
divided into sub-quadrants, and so on.

This process is represented by a tree with four
leaves descendants called quadtree, where the root
refers to the initial image and each of its nodes rep-
resent its four subdivisions 8.

The procedure is as follow 8,33:

(i) Start with the complete image, where R repre-
sent the entire image region, if P(R) = FALSE.

(ii) The entire image R is divided into four disjoint
quadrants, and if P is false for any quadrant
(P(Ri) = FALSE), then the quadrants are sub-
divided into sub-quadrants until no more splits
are possible.

(iii) Once no more splits can be done, any adja-
cent regions Ri and R j for which P(Ri∪R j) =

T RUE are joined together.
(iv) The process ends once further connections are

not possible.

Thus, split and merge arbitrarily subdivides an
image into disjoint regions, and then these regions
are joined or divided according to the conditions of
image segmentation in Section 6. This method per-
forms well when the colors of objects in the image
are not very opposite.

The resulting image of split and merge on Fig-
ure 15 is shown in Figure 16.

Fig. 15. RGB image 9.

Fig. 16. Split and merge’s result.

Generally speaking, split and merge begins with
nodes (squares) at some level of the quadtree, so if a
quadrant is not uniform a split is done, being subdi-
vided into four sub-quadrants. However, if four ad-
jacent quadrants are uniform, a merge between them
is performed 71.

Besides, it is important to mention that the main
advantage of region segmentation based techniques
is that they attempt to segment an image into regions
quickly, because the image is analyzed by regions
and no by pixels.

6.4. Graph partitioning methods

A digital image I is modeled as a valued graph or
network composed by a set of nodes (υ ∈ V ) and a
set of arcs E (e ∈ E ⊆ V ×V ) that link such nodes
125,126,127. Graphs have been used in many segmen-
tation and classification techniques in order to rep-
resent complex visual structures of computer vision
and machine learning. In this section algorithms
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which use graph are presented, but first a formal
proposition is shown.

Proposition 1. If A digital image I is viewed as
a graph where the nodes are the pixels, let V =
{P1,P2, . . . ,Pn} be a finite set of pixels in the image
and let E{{Pa,Pb}|Pa,Pb ∈ V} be unordered pairs
of neighboring pixels. Two pixels are neighbors if
there is an arc eab = {Pa,Pb} ∈ E. Let G = (V,E)
be the representation of neighboring relations be-
tween the pixels in an image. Let also dab > 0 be
the degree of dissimilarity between pixels Pa y Pb.
Let D = {dab|eab ∈ E} be the set of all the dissim-
ilarities. Let N(I) = {G = (V,E);D} be the net-
work which summarizes all the previous information
about an image I.

With the above proposition, it is possible to ex-
tract meaningful information about the processed
image, checking the various properties of the graphs.
As we shall see throughout this section, the graphs
turn out to be extremely important and useful tools
for image segmentation. Some of the most popular
graph algorithms for image processing are presented
next.

6.4.1. Random walker

A random walker 128 approach can be used for the
task of image segmentation through graphs: a user
interactively label a small number of pixels called
seeds, and each of the not labeled pixels releases a
random walker, so the probability is calculated when
the random walker reaches a labeled seed 129. This
algorithm may be useful for segmenting an image
in, for example, object and background, from pre-
defined seeds indicating image regions belonging to
the objects. These seeds are labeled, and unlabeled
pixels will be marked by the algorithm using the
following approach: let a random walker start on
an untagged pixel, what is the probability that ar-
rives first at each seed pixel?. A K− tuple vector
is assigned to each pixel, which specify the proba-
bility that a walker beginnings in an unlabeled pixel,
first reaches each seed point K. Then, from those of
K− tuples it is selected the more likely seed for the
random walker 127.

The random walker algorithm consist of four

steps 127:

• Represent the image structure in a network, defin-
ing a function that assigns a change in image in-
tensities, so assign the weights of the edges in the
graph.

• Define the set of K labeled pixels to act as seed
points.

• Solve the Dirichlet problem for each label except
the last, which is equivalent to calculate the prob-
ability that a random walker beginning from each
unlabeled pixel reaches first each of the K seed
pixels.

• Select from these K− tuples the more likely seed
for the random walker, that is, assign each node υi
to the maximum probability label.

The algorithm above consists in generating the
graph weights, establishing the system of equations
to solve the problem and implement the practical de-
tails. Several properties of this algorithm are quick
calculation, rapid editing, inability to produce arbi-
trary segmentation with sufficient interaction and in-
tuitive segmentation 127. Moreover, an advantage is
that the edges of faint objects are found when they
are part of a consistent edge 130.

The resulting image of random walker on Fig-
ure 3 is shown in Figure 17. Notice that this fig-
ure shows the two selected seeds (K = 2), green and
blue, as well as the probability that a random walker
released at each pixel reaches the foreground seeds.
That is, the near the green seed are the nearest ob-
jects so their color is similar to the pixel where seed
is. Similarly, blue seed is surrounded of other color
and its color is more similar. The intensity of the
color represents the probability that a random walker
leaving the first pixel reaches each seed.

Fig. 17. Random walker’s result.

Random walker contributes as a neutral tech-
nique for image segmentation because it does not
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consider any information of the image. Instead, the
segmentation is derived from the K− tuples of each
pixel, selecting the most probable seed for each pixel
or random walker 130.

6.4.2. Graph cuts

Graph cuts 131 is a multidimensional optimization
tool that is capable of applying smoothing in pieces,
while maintaining marked discontinuities 132. It is
supported in both graph theory and the problem of
minimizing the energy function, uses the maximum
flow problem within graph. Thus, through the max-
flow min-cut theorem, it is defined the minimum cut
of the graph, such that the cut size is not larger in
any other cut 133.

A s-t cut is a subset of arcs C ∈ E such that the
S and T terminals are completely separated in the
induced graph G(C) = (V,E \C) 134.

Definition 2. A s-t cut or simple cut of a graph
G = (V,E) is a binary partition of nodes V into two
subsets with a primary vertex in each: source S and
sink T =V −S such that s ∈ S and t ∈ T 132,135.

Thus, each graph has a set of edges E with two
types of terminal nodes P: n− links, referring to
non-terminal neighboring arcs; and t − links, that
are used to connect terminal pixels to non-terminal
pixels. Each graph edge is assigned some nonneg-
ative weight or cost w(p,q), so a cost of a directed
edge (p,q) may differ from the cost of the reverse
edge (q, p). The set of all graph edges consist of
n− links in N and t − links {(s, p),(p, t)} for non-
terminal nodes p ∈ P 132,134.

The minimum cut problem is based on find-
ing the cut with the minimum cost among all cuts.
The cost of a cut C = (S,T ) is the sum of the
costs/weights of the arcs borders (p,q) such that
p ∈ S and q ∈ T . Thus, the min-cut and max-
flow problems are equivalent, because the maximum
flow value is equal to the cost of the minimum cut
132,136,137.

If f is a flow in a graph G with two terminal
nodes called source s and sink t, respectively repre-
senting “object” and “background” labels, and a set
of non-terminals P nodes, then the value of the max-
imum flow is equal to the capacity of a minimum cut

C 132,134,135.
The basic algorithm for this procedure developed

by Boykov and Kolmogorov 133 based on increas-
ing paths through two search trees for the terminal
nodes, consists of three steps that are iteratively re-
peated:

• Growth phase: search trees S and T grow until
they touch giving an s→ t path.

• Augmentation phase: the found path is aug-
mented, search tree(s) break into forest(s).

• Adoption phase: trees S and T are restored.

Other max-flow min-cut algorithms are based on
the push-relabel methods, which are based on two
basic operations: push flow and relabel from an
overflowing node 135.

In general, the cut may generate a binary seg-
mentation with arbitrary topological properties 134.
For example, if you work with the observed inten-
sity I(p) of a pixel p, a cut would symbolize a binary
labeling process f , which assigns labels fp ∈ {0,1}
to the pixels in such a way that if p ∈ S then fp = 0
and if p ∈ T then fp = 1 132.

One advantage of this method is that it allows a
geometric interpretation, and also works with a pow-
erful tool for the energy minimization (a binary op-
timization method). There are a lot of techniques
based on graph cuts that produce good approxima-
tions. This technique is used in many applications
as an optimization method for low vision problems,
based on global energy formulations. In addition,
graph cuts can be very efficient computationally, and
this is why they provide a clean, flexible formulation
of image segmentation 132.

Frequently, this method is combined with others,
however, an improved graph cut method named nor-
malized cuts 138 is based on modifying the cost func-
tion to eliminate outliers. The usage of this tech-
nique within image processing context is presented
in the following section.

6.4.3. Normalized cuts

This procedure works with weighted graphs G =
(V,E) where the weight w(i, j) of each arc is a func-
tion of the similarity between nodes i and j 139.
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A graph G = (V,E) is optimally divided into
two disjoint subsets A and B with A∪ B = V and
A∩B = /0 when Ncut value is minimized. The de-
gree of dissimilarity of A and B is measured as a
fraction of the total weight of the connections arcs
on all nodes in the network. This is called normal-
ized cut (Ncut) 139:

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)
assoc(B,V )

. (9)

where assoc(A,V ) = ∑u∈A,t∈V w(u, t) is the total
cost of connecting the nodes in A with all nodes in
the graph, and similarly with assoc(B,V ).

The total normalized association measure within
a group for a given partition is expressed as 139:

Ncut(A,B) =
assoc(A,A)
assoc(A,V )

+
assoc(B,B)
assoc(B,V )

. (10)

where assoc(A,A) y assoc(B,B) refers to the total
weight of the arcs connecting the nodes within A an
B respectively.

Given a partition of nodes of graph V into two
disjoint complementary sets A and B, let x be an
N = |V | dimensional indication vector, xi = 1 if
node i is in A and xi = −1 otherwise. Also, let
di =∑ j(W (i, j)) be the total connection weight from
node i to all other nodes 138. Therefore, Eq. (6.4.3)
can be rewritten as:

Ncut(A,B) =
∑(xi>0,x j<0)−wi jxix j

∑xi>0 di
. . .

+
∑(xi<0,x j>0)−wi jxix j

∑xi<0 di
. (11)

The algorithm can be summarized in the follow-
ing steps 138,139:

• Given an image, represent it in a weighted graph
G = (V,E), and summarize the information into
W and D (let D = diag(d1,d2, . . . ,dN be an N×N
diagonal matrix and W be an N ×N symmetric
matrix with W (i, j) = wi j).

• Solve (D−W )x = λDx for the eigenvectors with
the smallest eigenvalues.

• Use the eigenvector with the second smallest
eigenvalue to subdivide the graph by finding the
splitting points to minimize Ncut.

• Check whether it is necessary to split the current
partition recursively by checking the stability of
the cut.

• Stop if for any segment Ncut exceeds a specified
value.

The resulting image of gray-scale image segmen-
tation using normalized graph cuts on Figure 2 is
shown in Figure 18.

Fig. 18. Normalized cuts’s result.

Thus, the normalized cuts method originated be-
cause if we only consider to minimizing the cut
value cut(A,B) = ∑u∈A,v∈B w(u,v), a problem arise
that the sets of small cuts are favored if isolated pix-
els appears 138.

6.4.4. Region adjacency graphs

Region adjacency graphs (RGA) 71 provides a spa-
tial view of the image, in order to efficiently manipu-
late the information contained in it, through a graph
which associates a region and the arcs linking each
pair of adjacent regions with each vertex 124.

A region Ri defined by a quadruple Ri =
(k,xk,yk,Ak)|k ∈ (1, . . . ,n), where k refers to the in-
dex number of the region, (xk,yk) represents the cen-
ter of gravity and Ak represents the area.

A RAG is defined by a set of regions and a set
of pairs of regions: ({Ri},{(R j,Rk)} | i, j,k ∈
(1, . . . ,n)). Thus, the set of parts described all re-
gions involved. And the set of pairs of regions indi-
cate regions which are adjacent 140.

As we mentioned above, nodes represent the
regions and are compared in terms of a formula-
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tion based on chains. Thus, a region can be per-
ceived as a shape whose boundary is represented by
a cyclic chain (boundary string), which consists of
a sequence of simple graph arcs. According to a
given algorithm, the similarities between two border
chains are calculated 126.

Two important characteristics of the RAG raised
by Pavlidis 71 are:

(i) The degree of a node is the number of adja-
cent regions to a given region, which usually is
proportional to the size of the region.

(ii) If a region completely surrounds other regions,
that node is a cutnode in RAG, as shown in the
following figure.

Fig. 19. Example of region adjacency graph 71.

Despite being a very useful and robust tool, this
method has the disadvantage that it does not produce
good results when the processed image has not per-
fectly defined regions or discontinuities 141.

The resulting image of RAG on Figure 2 is
shown in Figure 20. The algorithm uses watershed
algorithm to find structure of the regions in the im-
age. Then, two regions are considered as neighbors
if they are separated by a small number of pixels in
horizontal or vertical direction.

Fig. 20. Region adjacency graph’s result.

Accordingly, this technique is used to provide an
efficient system for manipulating implicit informa-
tion in an image through a spatial view. So each
node in the RAG represents a region, and two nodes
(regions) are linked if they are neighbors 142.

Summarizing, graph theory has the advantage of
organizing the image elements into mathematically

sound structures making the formulation of the prob-
lem more understandably and enabling less complex
computation 143.

The image segmentation techniques presented in
this section have been categorized into four classes:
thresholding methods, watershed methods, region
segmentation methods and graph partitioning meth-
ods. In addition, some evaluation methods are cre-
ated to evaluate quality of an image segmented. A
review of these evaluation methods for image seg-
mentation is presented in 144,145.

7. Hierarchical image segmentation

Hierarchy theory 146 has been frequently used in so-
ciology and anthropology. These sciences study a
hierarchical set of social classes or strata 147. In this
section, we present the definition of hierarchical seg-
mentation methods, which try to group individuals
according to criteria starting from one group includ-
ing all individuals until creating n groups each con-
taining a unique individual. This can be done in two
ways, by agglomerative methods 148 or by divisive
methods 149, where the groups are represented by a
dendrogram based on a two-dimensional diagram as
a hierarchical clustering 4.

The agglomerative methods are responsible for
successively merge the n individuals in groups. On
the other hand, the divisive methods choose to sep-
arate the n individuals into progressively smaller
groupings.

First, we begin by presenting the elements
needed to obtain a hierarchical image segmentation
using graphs.

According to Gómez et al. 150,151 given an image
I and its network N(I), a family S = (S0,S1, . . . ,SK)
of segmentations of N(I) constitute a hierarchical
image segmentation of N(I) when the following
properties are verified:

• St ∈ Sn(N(I)) for all t ∈ {0,1, . . . ,K}, (i.e., each
St is an image segmentation of N(I)).

• There are two trivial partitions, the first S0 =
{{v},v ∈ V} containing groups with one node
(singleton), and another partition SK = {V} con-
taining all pixels in the same cluster.
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• |St | > |St+1| for all t = 0,1, . . . ,K − 1, indicat-
ing that in each iteration the number of groups or
communities increases.

• St⊆̃St+1 for all t = 0,1, . . . ,K−1, means that St is
finer that St−1 (i.e., given two partitions P and Q
of the set of pixels V of a network I, it is said that
P is finer than Q if for all A ∈ P exists B ∈Q such
that A⊆ B).

One advantage of hierarchical segmentation is
that it can produce an ordering of the segmentations,
which may be informative for picture display. So
in any hierarchical image segmentation proceedings,
no apriori information about the number of clusters
is required. A dendrogram helps in making the se-
lection of the number of groups on the same levels.
The partitions are achieved through the selection of
one of the solutions in the nested sequence of clus-
ters making up the hierarchy. The best partition is
at a certain level, where the groupings below this
height are far apart.

Another advantage of hierarchical segmentation
is that it can be used to build fuzzy boundaries by a
hierarchical segmentation algorithm designed by the
authors 150,152,153,154,155,156.

There are some algorithms of hierarchical image
segmentation, as 158,159,160,161,162 among others. In
the next subsection, we present an algorithm of hier-
archical image segmentation based on graphs.

7.1. Divide & link algorithm

The divide-and-link (D&L) algorithm proposed by
Gómez et al. 155 and extended in 156 is a binary itera-
tive unsupervised method that obtains a hierarchical
partition of a network, to be shown in a dendrogram,
and it is framed as a process to partition networks
through graphs.

Generally speaking, D&L tries to group a set of
pixels V of a graph G = (V,E) through an iterative
procedure that classifies nodes in V in two classes V0
and V1. However, the rating depends on the type of
edge. There are endpoints of division edges that are
assigned in different classes (split nodes) and there
are endpoints of link edges that are assigned in the
same class (link nodes).

The D&L algorithm consists on the following
main steps150:

(i) Calculate the division and link weights for
each edge.

(ii) Organize subgraph edges Gt sequentially ac-
cording to the weights of the previous step.

(iii) Build a spanning forest F t ⊂ Gt (through, for
instance, a Kruskal-like algorithm 163) based
on the arrangement found in the previous step.

(iv) Build a partition Pt following the binary pro-
cedure applied to F t .

(v) Define a new set of edges Et+1 from Et by
removing those edges that connect different
groups of Pt .

(vi) Repeat steps i-v while Et+1 6= /0.

The output of the D&L algorithm (with six par-
titions) applied to Figure 3 is shown in Figure 21.

Fig. 21. D&L’s result.

In summary, any hierarchical image segmenta-
tion algorithm is a divisive process because it starts
with a trivial partition, formed by a single group con-
taining all nodes, and ends with another trivial par-
tition formed by as many groups as nodes possesses
the finite set of elements you wish to group. It also
has a polynomial time complexity and a low compu-
tational cost. One advantage is that it can be used in
a variety of applications.
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8. Fuzzy image segmentation

Fuzzy image segmentation concept was introduced
in 151,156 and extended in 150,157, where they estab-
lished that a fuzzy image segmentation should be a
set of fuzzy regions R1, . . . ,Rk of the image. They
presented a way to define this concept based on the
fact that crisp image segmentation can be character-
ized in terms of the set of edges that separates the
adjacent regions of the segmentation.

Definition 1. Given an image modeled as a network
image N(I) =

{
G = (V,E); D

}
, a subset B ⊂ E

characterizes an image segmentation if and only if
the number of connected components of the par-
tial graph generated by the edges E−B, denoted as
G(E−B) = (V,E−B), decreases when any edge of
B is deleted.

In this sense, a formal definition of fuzzy im-
age segmentation is through the fuzzyfication of the
edge-based segmentation concept introduced in Def-
inition 1 of this section (see 150 for more details).

Definition 2. Given a network image N(I) =
{

G =

(V,E); D
}

, we will say that the fuzzy set B̃ =
{(e,µB(e)), e ∈ E} produces a fuzzy image seg-
mentation if and only for all α ∈ [0,1] the crisp set
B(α) = {e ∈ E : µB(e) > α} produces an image
segmentation in the sense of Definition 1.

In the previous definition, the membership func-
tion of the fuzzy set B̃ for a given edge represents
the degree of separation between these two adjacent
pixels in the segmentation process.

In 157, it has proven that there exist a relation
between fuzzy image segmentation concept and the
concept of hierarchical image segmentation. In that
paper, it is showed that it is possible to build a fuzzy
image segmentation from a hierarchical image seg-
mentation in the following way.

Given a network image N(I) =
{

G = (V,E);D
}

,
let B = {B0 = E,B1, . . . ,BK = /0} be a hierarchical
image segmentation, and for all t ∈ {0,1, . . . ,K} let
µ t : E −→ {0,1} be the membership function asso-
ciated to the boundary set Bt ⊂ E. Then, the fuzzy
set B̃ defined as:

µB(e) =
K

∑
t=0

wt µ
t(e) ∀e ∈ E. (12)

induces a fuzzy image segmentation of N(I) for any
sequence w = (w0,w1, . . . ,wK) such that:

wt > 0 ∀t ∈ {0,1, . . . ,K}
K

∑
t=0

wt = 1. (13)

The output of fuzzy image segmentation applied
to Figure 3 is shown in Figure 22. In this picture
has been aggregated the output of hierarchical im-
age segmentation of Section 7.1, in order to build a
fuzzy image segmentation 157.

Fig. 22. Fuzzy image segmentation’s result.

9. Final remarks

The main characteristics and relationships between
some of the best known techniques of digital image
processing have been analyzed in this paper. These
techniques have been classified according to the out-
put which they generate, and attending to the prob-
lems they face. Also, this classification depends on
whether they are supervised or unsupervised meth-
ods, and whether they are crisp or fuzzy techniques.
In this way we can notice that different problems
should be formally distinguished when trying to rec-
ognize an object in a digital image (such as classifi-
cation, edge detection, segmentation and hierarchi-
cal segmentation). For example, it has been pointed
out that the output of an edge detection problem does
not necessarily produce a suitable image segmenta-
tion. Edge detection only detects the border of the
objects and does not necessarily separate objects in
the image.

Furthermore, some of the techniques reviewed in
this paper can be used as a previous step for another
technique. For example, an edge detection output
could be the input for an image segmentation if we
find a partition of the set of pixels into connected re-
gions. The opposite is also true, and it is possible
to find the boundary of a set of objects through the
set of pixels that connect pixels of different regions.
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Also, in an output of image segmentation, if two dif-
ferent and not adjacent subsets of pixel can share the
same characteristics, we can apply an image classifi-
cation technique and then these regions will belong
to the same class. Moreover, a solution of clustering
can be a previous step to reach an image segmenta-
tion. Thus, although different, these techniques can
be related to each other.

Computational intelligence is a must in a wide
range of challenging real-world image processing
problems. More sophisticated original approaches,
variations and combinations should be expected de-
pending on the specific characteristics of each image
and the decision-maker objectives (see, for example
164). In particular, one of the most important ap-
plications of computational intelligent techniques is
the imaging process which is used in many fields as
for example, digital imaging 165, medical imaging
166, industrial tomography 167, chemical imaging 168

and thermography 169.
We would like to remark that there were found

no significative differences in computational time
when processing all the images considered in this
paper with different algorithms, being in general
quite short.

Finally, it is important to point out that in the
background of an edge detection process, there is a
classification problem, because a pixel is classified
as either edge or not edge. Similarly, a threshold-
ing method can be a classification problem because a
pixel is classified as either object or background. In
this manner, the classification of the methods shown
in this paper can be extended even more generally, a
problem to be considered in a future research.
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