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Abstract. 

The new gridded Mediterranean sea level anomaly product recently released by AVISO 

(DT14) is evaluated and compared with the earlier version (DT10) at which it is aimed 

to substitute. Differences between the two products are found along coastal regions, 

where the new version captures more variability (up to 10% more) and trends locally 

differ by up to 1 mm/yr for the altimetric period. Coastal tide gauge observations have 

therefore been used as the basis for quantifying changes in DT14. Correlation and 

variance reduction in available monthly tide gauge time series are improved in more 

than 80% of the selected sites by up to 0.2 and 5 cm2, respectively. This resulted in an 

overall higher skill to recover coastal low frequency (with periods larger than a few 

months) sea level signals. Results for higher/lower order percentiles were also explored 

and showed different performances depending on the site, although with a slight overall 

improvement. A comparison with tide gauges on a daily basis using wavelet analysis 

reveals that altimetry gridded products are not capable of recovering higher frequency (a 

few days) coastal sea level signals despite some advances have been achieved thanks to 

the daily temporal sampling of DT14. 

Keywords: Mediterranean Sea; sea level; satellite altimetry; tide gauges; 

1. Introduction 

Since the early nineties, satellite altimetry has become an essential tool in 

oceanographic research, with applications in sea level changes, mesoscale variability or 

propagating ocean Rossby waves, among others (Cazenave and Llovel, 2010 ; Le Traon 

et al., 2013, Cipollini et al. 2010 ; Calafat and Marcos, 2012). During the last 20 years, 

many efforts have been devoted to data processing and development of geophysical 
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corrections that allowed reaching the current maturity of the sea surface height 

observations with 1-2 cm accuracy. The use of multiple satellites has furthermore 

permitted merging sea level measurements into interpolated products, thus facilitating 

the investigation of ocean mesoscale variability (Ducet et al. 2000, Pascual et al. 2009). 

Regional altimetric gridded sea surface height products deserve special attention, as 

they have been developed using processing adapted to areas of particular oceanographic 

interest with higher spatial resolution than the global products. This is the case of the 

Mediterranean Sea, where products are developed with a resolution of 1/8 of degree and 

that is considered a reduced scale ocean laboratory, where processes can be studied at 

smaller scales than in other oceanic regions (Internal Rossby Radius is 10-15 km) 

including deep convection, shelf-slope exchanges, thermohaline circulation, water mass 

interaction and mesoscale and sub- mesoscale dynamics (Robinson et al. 2001; 

Hermann et al. 2009; Bouffard et al. 2012). 

Dedicated altimetric gridded fields for the Mediterranean Sea produced and delivered 

by the Archiving, Validation and Interpretation of Satellite Oceanographic Data 

(AVISO) have provided access to realistic sea surface circulation variability (e.g. 

Larnicol et al., 2002; Pujol and Larnicol 2005; Pascual et al. 2007; Mason and Pascual 

2013). It must be remarked though that, as evidenced by previous in situ experiments 

(e.g., Nencioli et al., 2011, Escudier et al. 2013), altimetric maps have limited 

capabilities in detecting small and coastal features (~10–100km). Indeed, Nencioli et al., 

(2011) showed that in comparison with in situ experiments the altimetry maps for the 

Mediterranean Sea lack the resolution required to detect small and coastal features. In 

this context, Escudier et al., (2013) has developed innovative strategies to attempt to 

improve existing satellite altimetry products to better resolve mesoscale eddies. It is 

shown that this improvement is possible but at the cost of the homogeneity of the fields; 
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the resolution can only be improved at times and locations where altimetric 

observations are densely distributed. 

The objective of the present work is to assess the changes and quantify the 

improvements in the new gridded Mediterranean sea level anomalies product recently 

released by AVISO. New reprocessing and updated geophysical corrections have been 

developed within the framework of MyOcean Project (User Handbook Ssalto/Duacs, 

2014). This assessment will be based on comparisons with tide gauge data.  

2. Data and methods 

2.1 Sea Level Anomalies from altimetry 

Two different satellite altimetric regional products on the Mediterranean Sea have been 

compared. Both consist of gridded Sea Level Anomaly (SLA) observations generated 

by AVISO and available at its web site (http://www.aviso.altimetry.fr/). The first 

product, hereinafter referred to as DT10, corresponds to the former altimeter gridded 

fields, i.e. SLA interpolated onto a 1/8ºx1/8º regular grid and weekly sampling, using 

satellite observations available since October 1992 (User Handbook Ssalto/Duacs, 

2014).  

The second product, hereinafter refer to as DT14 and released by AVISO in April 2014, 

correspond to SLA spanning the period 1993-2012, interpolated with the same spatial 

resolution (for the specific product of the Mediterranean Sea) and with daily temporal 

sampling. The process is the same as for DT10 products except that some parameters 

were adjusted (see below for details) and that a map is produced for every day instead of 

one map per week as for the DT10 product. The daily maps in DT14 are obtained by 

optimal interpolation (OI) as are the weekly maps in DT10. In both the datasets, each 

map produced use data selected in a temporal window of ±49 days. This windows is 
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larger than the temporal correlation scale considered (10 days in the Mediterranean Sea) 

in order to allow an optimal correction of the long-wavelength errors that need to be 

accounted for (i.e. reduction of large scale bias between the different altimeter tracks). 

The main differences between DT14 and DT10 are induced by the use of:  

 a new reference field and SLA bias convention: the SLA DT10 were referenced 

to the mean sea surface MSS_CNES_CLS_2001 (or equivalent precise mean 

profile for repetitive missions), representative of the 7-year [1993, 1999] period. 

The SLA DT14 are referenced to the MSS_CNES_CLS_2011 2001 (or 

equivalent precise mean profile for repetitive missions) corrected to be 

representative of the 20-year [1993, 2012] period. Mean SLA over year 1993 are 

fixed to 0 by convention. 

 updated sensor-specific standards for geophysical and atmospheric corrections, 

and a new ocean tidal component. The details of the standards used in DT14 are 

given in (User Handbook Ssalto/Duacs, 2014) 

 revised inter-calibration (reduction of the bias between the missions): in DT14, 

Jason-2 is used as reference. The previous missions Topex/Poseidon and Jason-1 

were corrected from a global and regional bias is order to ensure the consistency 

of the mean sea level over all the altimeter period. In DT10 this calibration was 

done using Topex-Poseidon as reference. 

 improved error budget: The variance characteristic of the uncorrelated noise 

measurement and long wavelength correlated errors, that are involved in the 

covariance matrix definition (OI process) were reviewed taking into account the 

characteristics the different altimeters that can impact the measurement errors 

(i.e. no radiometer; mono-frequency measurements, non repetitive orbit) 

 the inclusion of Cryosat since 2011 in DT14.  
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We refer to CNES (2014) for further details. Additionally the use of new mean profiles 

(precise mean sea surface height along the tracks of the different altimeters required to 

derive SLA) has enabled a gain of measurements in coastal areas, compared to previous 

mean profiles. Another change consists in the extension of the gridded product up to 

6ºW, improving the representation of the Alboran Sea. The contribution of the 

atmospheric pressure and wind forcing is removed in both DT10 and DT14 datasets 

using a dynamic atmospheric correction applied to the along-track data prior to the 

objective analysis. This correction combines the high frequencies output of the 

barotropic ocean model MOG2D (Modèle d’Onde de Gravité à 2 Dimensions) forced 

by pressure and wind from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) analysis with the low frequencies of the inverted barometer (IB) correction 

(Carrère and Lyard, 2003; Pascual et al. 2009). It has been shown that using this 

correction rather than the static IB improves the representation of the high frequency 

atmospheric forcing on sea level (Volkov et al, 2007; Pascual et al., 2008). Note that in 

DT14 the Dynamic Atmospheric Correction solution has been also upgraded for the 

missions ERS-1, ERS-2 and Topex/Poseidon (i.e. over the end1992-end2005 period) 

while taking into account the more accurate ERA-Interim forcing instead of ECMWF 

operational analysis. 

In this study, we use the ”all-sat“ or ”upd“ (in AVISO nomenclature) gridded SLA 

fields that consider all available altimeters and therefore have higher quality levels, 

although not homogeneous in time due to the time-varying mission configuration. DT10 

corresponds to the last version of the products delivered in the AVISO+ ftp directories 

/regional-mfstep/regional-mfstep/dt/upd/msla/merged/h (no more existing on AVISO+ 

ftp since April 2015); DT14 corresponds to the first version of the product delivered in 

the AVISO+ ftp directories regional-mediterranean/delayed-time/grids/msla/all-sat-
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merged/h (more information can be found at 

http://www.aviso.altimetry.fr/fr/donnees/information-sur-les-produits/updates-and-

reprocessing/ssaltoduacs-delayed-time-reprocessing.html). During the 20 years 

considered, the number of altimeters available generally varies between 2 and 4. The 

common period 1993-2012 of DT10 and DT14 was selected for the analyses. When 

stated, monthly values of SLA were computed at each grid point if at least 3 weeks of 

measurements were available (a monthly product is also available for DT14, simply 

computed as the monthly means of daily fields). Seasonal cycle and linear trends were 

estimated based on monthly observations at each grid point. The time-mean seasonal 

cycle was obtained by fitting an annual and a semi-annual signal using harmonic 

analysis. Linear trends were then computed over deseasoned time series using a robust 

linear regression. 

2.2 Tide gauge records 

Monthly mean sea level records from the Permanent Service for Mean Sea Level 

(www.psmsl.org) tide gauge data repository along the Mediterranean coasts and with 

datum control were used (Holgate et al, 2013). All tide gauge records with at least 10 

years of valid observations during the period 1993-2012 were selected, resulting in 70 

stations. In addition, the two Mediterranean daily tide gauge records available at the 

University of Hawaii Sea Level Center (http://uhslc.soest.hawaii.edu/), namely 

Marseille and Ceuta, were also included. The stations and their information are listed in 

Table 1 and mapped in Figure 1. Note that the stations in the list have been sorted with 

increasing longitude and these were then grouped into five regions: Western 

Mediterranean, Central Mediterranean, Adriatic Sea, Aegean Sea and Eastern 

Mediterranean (see Table for classification).  
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The atmospherically-induced sea level caused by the action of atmospheric pressure and 

wind was removed from the tide gauge records. The same dynamic atmospheric 

correction as for altimetry was applied for the sake of consistency. To do so, 6-hourly 

fields of this correction, available at AVISO web site, were downloaded and converted 

into daily and monthly fields. Then, for each tide gauge site, the closest grid point was 

selected and used to remove the atmospherically-induced sea level from observations.  

The comparison between tide gauge and SLA time series was based on a  particular grid 

point selected for each tide gauge location as follows: first, correlations between each 

tide gauge record and SLA corresponding to grid points within a radius of 2º were 

computed, using detrended and deseasoned monthly time series. Second, the most 

correlated grid point was selected and all the grid points within the area whose 

correlations were statistically the same at the 90% confidence level were identified. 

Finally, the grid point among this set with the smallest distance to the tide gauge was 

chosen. The equivalence between the correlations corresponding to all the grid points 

was tested according to the Fisher Z transformation of each correlation R, which is 

defined as: 

�� =
1

2
��
1 + �

1 − �
 

While the distribution of correlations is generally skewed, the distribution of the Z-

transformed correlations is close to normal and, therefore, confidence intervals can be 

estimated. Given two SLA time series at grid points with correlations of values R1 and 

R2 with the tide gauge, the difference of their Z-transformed values is defined as: 
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Where N is the length of the time series. As Z is normally distributed, its confidence 

intervals can be estimated using a t-test. The value of Z was then used to determine the 

level of significance of the difference between R1 and R2 (90% in our choice). Once the 

grid point was selected, the corresponding SLA time series was used for comparison 

with tide gauges.  

3. Evaluating differences between gridded SLA 

SLA from DT10 and DT14 products and their differences were first assessed. Variances 

at each grid point were computed using weekly and daily data for DT10 and DT14, 

respectively. The latter is mapped in Figure 1 (top) together with the difference between 

DT14 and DT10 (bottom). A positive difference implies that variance of DT14 is higher 

than that of DT10. The map of variability matches the well-known mesoscale activity 

structures in the Mediterranean Sea with the Alboran gyres, Algerian eddies and 

Ierapetra eddy (Pujol and Larnicol, 2005). Differences between the two products ranged 

between -5 and 10 cm2 and were, on average, about 1.3 cm2 (~2% of the averaged 

variance within the basin). Therefore, the new product adds little value to the total 

variability captured by SLA averaged over the entire basin. However, locally and 

especially along the coasts, the increase in variance can represent a significant part of 

the total variance. It is likely that the new mean profiles providing more coastal sea 

level anomalies are partly responsible for this improvement. The Northern Adriatic Sea 

is one of the examples where changes in the variance reached about 10%. When both 

products were compared on a weekly basis the average difference in variance showed 

the same spatial pattern but was reduced to 0.45 cm2. 

Monthly time series were deseasoned and the mean annual and semi-annual cycles were 

computed. The differences in the mean amplitudes and phases of the seasonal cycles 
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between the two products lied within the uncertainty range of the parameters (not 

shown). Thus no changes in the ability of estimating the mean seasonal sea level cycle 

can be reported in the new version DT14. Linear trends and their difference were then 

computed for deseasoned DT10 and DT14 SLA (Figure 2). Linear trends were spatially 

heterogeneous, varying between -5 and 6 mm/yr for the period 1993-2012 (Figure 2, 

top). Trends of their differences ranged between ±1 mm/yr (Figure 2, bottom), a value 

which was smaller than the standard error (SE) of the linear trend over most parts of the 

basin. These areas, shadowed in Figure 2, represented about 92% of the total surface 

and corresponded to the region where no changes in the trends can be reported in the 

new version. The rest of the basin where changes in trends are statistically significant in 

DT14, were mostly concentrated close to the coasts, which was indeed where higher 

improvements of SLA were expected after the increase in variance reported above. In 

these cases, positive values of about 1 mm/yr dominated over negative values. 

4. Validation with coastal tide gauges 

The distances between the selected SLA grid points and the tide gauge sites were first 

explored, as these are considered indicative of the performance of altimetric products in 

regions close to the coast. Indeed, the location of the grid points that were found to be 

closest and most correlated with the coastal record generally differed between DT10 and 

DT14, with DT14 showing smaller values in most cases. The median distance of DT10 

was 96 km whereas for DT14 was 78 km, implying thus that DT14 is generally 

improved in areas close to the coast. These relatively long distances respond to the fact 

that changes along the coasts are essentially barotropic and highly coherent along the 

Mediterranean coasts (Marcos, 2015). 
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The ability of SLA to recover coastal sea level variability was also evaluated using tide 

gauge observations. The correlations between coastal and altimetric time series and the 

differences in the variance reduction are plotted in Figure 3. Correlations were higher 

for DT14 at most of the selected tide gauge sites (87%), with a maximum value of 0.2 in 

the Alboran Sea. The median of the correlations were 0.77 for DT10 in front of 0.79 for 

DT14.  Two examples of these comparisons are plotted in Figure 4, for the stations of 

Imperia (correlation of 0.9) in the western basin and Erdek (correlation of 0.6) in the 

eastern basin. This figure reveals the high coherence between intra- and inter-annual sea 

level variability as measured by the coastal tide gauges and the selected altimetric 

observations. Accordingly, the reduction in the variance, defined as the variance of the 

tide gauge record minus the variance of the difference between the tide gauge and the 

SLA time series, was higher (up to 5 cm2) for DT14. Figure 3b illustrates the difference 

in this variance reduction: positive values indicate that such reduction at the tide gauge 

is greater for DT14. This was found to be the case for more than 84% of coastal sites, 

reinforcing the improvement of the new product DT14 in areas close to the coast. The 

histogram represented in the inset plot (Figure 3b) also highlights this distribution 

skewed towards positive values of the difference. When linear trends were explored it 

was found that median differences with DT14 (0.23 mm/yr) were significantly smaller 

than those with DT10 (0.95 mm/yr), and this despite SLA and tide gauge trends are the 

same only in absence of vertical land movements. The improvement at coastal tide 

gauges is generalized, without any areas particularly enhanced.  

A comparison between sea level percentiles at coastal tide gauges and altimetric grid 

points was conducted using quantile-quantile (qq) plots generated at each tide gauge 

with DT10 and DT14 SLA. Percentiles between 1st and 99th (in integer steps) computed 

for the entire time series of tide gauge and SLA were used. This kind of comparison 
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using high and low order percentiles provides more information than a direct 

comparison of the time series, as that in figure 4; the latter essentially reflects the mean 

sea level (i.e. 50th percentile) behaviour. The root mean square error (rmse) of the 

regression between the tide gauge and the SLA was chosen to measure the goodness of 

the fit. The smaller the rmse the larger similarity between high and low values of SLA 

and tide gauges. The results (Figure 5a) are in line with above results, with median (for 

all tide gauges) rmse slightly smaller for DT14 (0.27 cm) than for DT10 (0.29 cm), 

indicating that the fit of SLA when higher and lower order percentiles were accounted 

for was improved in the new product. It is evident that the correspondence between tide 

gauges and SLA for the highest and lowest sea level values is poorer than for the mean 

sea level (Figure 5). This is likely due to the different original sampling of the tide 

gauges, typically hourly, in front of that of SLA, much longer, which implies that it may 

not capture the highest/lowest sea level events. It is worth noting that there are cases for 

which the fit worsens significantly when DT14 is used. The two cases for which the fit 

is most worsened and most improved are marked in Figure 5a with blue dots and their 

qq-plots are represented in Figures 5b and 5c, respectively. In the case of the station 

374, corresponding to Piraievs in the Aegean Sea (Figure 5b), the fit for DT10 was 

found to be very good even for the highest and lowest order percentiles. In the case of 

the highest improvement in station 788, corresponding to Monaco in the Western 

Mediterranean, the fitting is very similar for both products. This is indeed the case of 

most of the stations, for which the reported reduction in rmse for DT14 cannot be 

attributed to a general feature such as a better match of the higher or lower sea levels.  

4.1 Comparison with daily coastal sea level 

The two daily tide gauge records at Marseille and Ceuta have been checked against the 

high frequency altimetry. With the aim of exploring the energy content at different 
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frequency bands, a wavelet analysis was performed onto the tide gauge and SLA time 

series. The mother function used was Morlet. Energy contents in the range from 1 to 

500 days were represented for the tide gauge and SLA DT14 time series and from 7 to 

500 days for SLA DT10 (Figure 6). Results for both stations revealed that the energy at 

the coastal tide gauge was greater than that of the altimetry for all frequencies, with the 

only exception of the annual cycle. Differences between DT10 and DT14 were small for 

periods shorter than 20 days, after which the energy content decreased rapidly. This 

represents an important difference with the tide gauge measurements and points at the 

fact that none of these products is able to capture daily sea level variability despite its 

temporal sampling. For periods longer than about 20 days there were clear differences 

between SLA DT10 and DT14. The new product displayed higher energy content than 

the former in a wide frequency band. Despite the energy was still lower than observed 

by the tide gauge, it represents an improvement with respect to the SLA DT10. It seems 

reasonable to attribute the energy contents partly to the different grid points selected in 

DT10 and DT14, the latter being closer to the coast. Likewise, the lesser number of 

profiles near the coast in DT10 is expected to smooth the signal in the optimal 

interpolation procedure.  

5. Discussion and conclusions 

A new gridded SLA regional altimetric product for the Mediterranean Sea, recently 

released by AVISO, has been evaluated and the differences with the former version at 

which it is aimed to substitute have been assessed. The new SLA DT14 is distributed 

with daily temporal sampling compared to the weekly resolution of DT10 product. It 

has been shown that the recent improvements have a significant local impact, especially 

along the coasts, where differences between the two products were found both in terms 

of variance and linear trends. The comparison with coastal tide gauges has overall 
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improved: correlations with SLA DT14 were higher than with DT10 at almost all the 

selected tide gauges (87%). Consequently, the variance reduction at the tide gauge sites 

was greater. The improvement is especially large in the area close to the Strait of 

Gibraltar, because of the short tracks in this area, often discarded in the previous version 

and due to the extension of the DT14 products up to 6ºW.  When linear trends from the 

selected grid points were compared to those from tide gauges, it was found that DT14 

reduced the overall difference too. 

The way in which tide gauge and SLA time series are compared is also a subject of 

discussion. Along the coast and over continental shelves, sea level changes are 

essentially barotropic. This fact results in a high coherence in terms of sea level 

variability that can reach long distances following the coast, whereas the correlation 

rapidly decreases in the cross-shore direction with increasing water depth (see e.g. 

Marcos, 2015, for a Mediterranean study). This is why the closest grid point to the tide 

gauge is not necessarily the most correlated, as it likely will lie in an area which may 

not be representative of coastal sea level.  In addition to this it may also happened that 

the quality of the altimetric signal differs from one site to another simply due to the 

amount of raw data used to generate the interpolated product. But even in the case that 

the quality is exactly the same the topographic features of the area under study also have 

an impact. When the comparison between altimetry and tide gauges is simply based on 

the most correlated SLA grid point it may happen that this selected point is located at a 

remote distance from the station. Therefore, a commitment must be reached between the 

maximum distance allowed and the choice of the most correlated grid point to ensure 

that the comparisons are not biased and that different regions are indeed not being 

explored. In this paper we have selected a maximum distance within a radius of 2º in 

latitude and longitude, but this choice is certainly dependent on the region investigated.  
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Figure Captions 

Figure 1. a) Variance of SLA DT14 and locations of tide gauges used in this study 

(black dots identify the two stations with daily sea level observations) and b) difference 

in the variances between DT14 and DT10 SLA.  

Figure 2. a) Linear trends of DT14 SLA and b) trends of differences between DT10 and 

DT14. Areas where differences were smaller than the standard error of the trend of 

DT14 SLA have been shaded. 

Figure 3. a) Correlation of DT10 and DT14 monthly SLA for the selected grid points 

with monthly tide gauge records and b) difference in variance reduction between DT14 

and DT10 at each tide gauge site. Inset plot represents the histogram of these latter 

values. Vertical lines denote regions as in Figure 3 (see Table 1 for number and region 

correspondence). 

Figure 4. Comparison of tide gauge records and altimetric time series from DT14 SLA 

for two selected stations 

Figure 5. a) Rmse of quantile-quantile (qq) plots for all tide gauge locations. All qq-

plots have been computed using percentiles from 1st to 99th. Vertical lines denote 

regions as in Figure 3. The qq-plots of the stations where rmse is most increased 

(reduced) with respect to DT10 are plotted in b (c). These two stations are marked with 

a blue dot in a). 

Figure 6a. Wavelet analysis of the tide gauge time series at Marseille (bottom) and of 

the two SLA most correlated grid points for DT14 (middle) and DT10 (top). 

Figure 6b. As in Figure 6a but for the tide gauge at Ceuta.  
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Tables 

 Region PSMSL 

Code 

Station Name Lat(ºN) Lon(ºE) Period % 

gaps 

1 Western 

Mediterranean 

 488 TARIFA                     36.00  -5.60 1993-2012      1 

2  498 CEUTA                      35.90  -5.31 1993-2012      2 

3  496 MALAGA                     36.71  -4.41 1993-2012      0 

4 1810 MALAGA II                  36.71  -4.41 1993-2012      2 

5 1813 VALENCIA                   39.46  -0.33 1994-2012      8 

6 1811 BARCELONA                  41.35  2.16 1993-2012      5 

7 1892 P. DE MALLORCA          39.55  2.63 1997-2010     35 

8 1764 L''ESTARTIT                42.05  3.20 1993-2012      0 

9  958 SETE                       43.39  3.69 1996-2012     28 

10   61 MARSEILLE                  43.27  5.35 1993-2012     15 

11  980 TOULON                     43.12  5.91 1993-2012      8 

12 1468 NICE                       43.69  7.28 1993-2012     21 

13  788 MONACO   43.72  7.42 2001-2012     40 

14 2078 IMPERIA                    43.87  8.01 2001-2012     40 

15 2076 CARLOFORTE                 39.14  8.30 2001-2012     40 

16 2084 PORTO TORRES               40.84  8.40 2001-2012     42 

17 2090 GENOVA II                  44.41  8.92 2001-2012     42 

18 2089 CAGLIARI II                39.21  9.11 2001-2012     40 

19 2080 LIVORNO II                 43.54 10.29 20012012     40 

20 Central 

Mediterranean 

2079 LAMPEDUSA                  35.49 12.60 2001-2012     40 

21 2093 PALERMO II                 38.12 13.37 2001-2012     40 

22 2083 PORTO EMPEDOCLE           37.28 13.52 2001-2012     42 

23 2092 NAPOLI II                  40.84 14.26 2001-2012     41 

24 1735 MARSAXLOKK   35.82 14.53 1993-2011     12 

25 2086 SALERNO                    40.67 14.75 2001-2012     40 

26 2094 CATANIA II                 37.49 15.09 2001-2012     40 
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27 2082 PALINURO                   40.02 15.27 2001-2012     40 

28 2142 REG. CALABRIA II         38.12 15.64 2001-2012     40 

29 2095 TARANTO II                 40.47 17.22 2001-2012     40 

30 1239 LEVKAS                     38.83 20.71 1993-2012     12 

31  410 PREVEZA                    38.95 20.75 1993-2012     14 

32 1240 KATAKOLON                  37.64 21.31 1993-2012      8 

33 1250 PATRAI                     38.41 21.72 1993-2006     33 

34  411 KALAMAI                    37.02 22.11 1993-2012     11 

35 Adriatic 2100 VENEZIA II                 45.41 12.42 2001-2012     41 

36 2098 ANCONA II                  43.62 13.50 2001-2012     40 

37  761 ROVINJ                     45.08 13.62 1993-2011      5 

38 1817 LUKA KOPER                 45.56 13.75 1993-2003     50 

39 2099 TRIESTE II                 45.64 13.75 2001-2012     41 

40  154 TRIESTE                    45.64 13.75 1993-2012      0 

41 2097 ORTONA II                  42.35 14.41 2001-2012     41 

42  353 BAKAR                      45.30 14.53 1993-2011      5 

43 1859 ZADAR                      44.12 15.23 1994-2011     13 

44 2087 VIESTE                     41.88 16.17 2001-2012     41 

45  685 SPLIT RT MARJANA          43.50 16.39 1993-2011      8 

46  352 SPLIT – G. LUKA       43.50 16.44 1993-2011      5 

47 2075 BARI                       41.14 16.86 2001-2012     40 

48 1706 SUCURAJ                    43.13 17.20 1993-2005     38 

49  760 DUBROVNIK                  42.65 18.06 1993-2009     15 

50 2096 OTRANTO II                 40.14 18.49 2001-2012     40 

51 Aegean  373 THESSALONIKI               40.63 22.93 1993-2012      7 

52  409 POSIDHONIA                 37.95 22.96 1993-2012     38 

53 1441 KHALKIS SOUTH             38.46 23.58 1993-2012     23 

54 1237 KHALKIS NORTH             38.47 23.59 1993-2012      7 

55  374 PIRAIEVS                   37.93 23.62 1993-2012     17 
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56 1232 SOUDHAS                    35.48 24.08 1993-2011      8 

57  375 KAVALLA                    40.93 24.41 1993-2010     23 

58 1234 SIROS                      37.43 24.94 1993-2012      5 

59  634 IRAKLION                   35.34 25.15 1993-2011     35 

60 1238 ALEXANDROUPOLIS           40.84 25.87 1993-2012      6 

61  408 KHIOS                      38.37 26.14 1993-2012      7 

62 1679 MENTES/IZMIR               38.43 26.71 1993-2009     25 

63 1233 LEROS                      37.12 26.84 1993-2012      9 

64 1680 BODRUM II                  37.03 27.41 1993-2009     29 

65 1598 ERDEK                      40.38 27.85 1993-2009     34 

67 Eastern 

Mediterranean 

1243 RHODOS                     36.44 28.23 1993-2012     31 

68  503 ALEXANDRIA                 31.21 29.91 1993-2006     33 

69 1681 ANTALYA II                 36.83 30.61 1993-2009     30 

70 1880 TEL AVIV                   32.08 34.76 1996-2010     36 

71 1797 HADERA                     32.47 34.86 1993-2012     14 

  UHSLC 

Code 

     

  824 Marseille 43.27  5.35   

  207 Ceuta 35.90  -5.31   

Table 1. List of tide gauge records with their PSMSL ID code, location, period of 

operation and percentage of data gaps during the period 1993-2012. 

 


