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Abstract. Possibilistic Defeasible Logic Programming (P-DeLP) is a logic pro-
gramming framework which combines features from argumentation theory and
logic programming, in which defeasible rules are attached with weights express-
ing their relative belief or preference strength. In P-DeLP a conclusion succeeds if
there exists an argument that entails the conclusion and this argument is found to
be undefeated by a warrant procedure that systematically explores the universe of
arguments in order to present an exhaustive synthesis of the relevant chains of pros
and cons for the given conclusion. Recently, we have proposed a new warrant recur-
sive semantics for P-DeLP, called Recursive P-DeLP (RP-DeLP for short), based
on the claim that the acceptance of an argument should imply also the acceptance of
all its subarguments which reflect the different premises on which the argument is
based. In RP-DeLP, an output of a program is a pair of sets, a set of warranted and a
set of blocked conclusions.Arguments for both warranted and blocked conclusions
are recursively based on warranted conclusions but, while warranted conclusions
do not generate any conflict with the set of already warranted conclusions and the
strict part of program (information we take for granted they hold true), blocked
conclusions do. Conclusions that are neither warranted nor blocked correspond to
rejected conclusions. This paper explores the relationship between the exhaustive
dialectical analysis based semantics of P-DeLP and the recursive based semantics
of RP-DeLP, and analyzes a non-monotonic inference operator for RP-DeLP which
models the expansion of a given program by adding new weighed facts associated
with warranted conclusions.
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1. Introduction and motivations

Defeasible argumentation is a natural way of identifying relevant assumptions and con-
clusions for a given problem which often involves identifying conflicting information,
resulting in the need to look for pros and cons for a particular conclusion [10]. This pro-
cess may involve chains of reasoning, where conclusions are used in the assumptions
for deriving further conclusions and the task of finding pros and cons may be decom-
posed recursively. Logic-based formalizations of argumentation that take pros and cons
for some conclusion into account assume a set of formulas and then lay out arguments
and counterarguments that can be obtained from these assumed formulas [4].
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Defeasible Logic Programming (DeLP) [8] is a formalism that combines techniques
of both logic programming and defeasible argumentation. As in logic programming,
knowledge is represented in DeLP using facts and rules; however, DeLP also provides
the possibility of representing defeasible knowledge under the form of weak (defeasible)
rules, expressing reasons to believe in a given conclusion.

In DeLP, a conclusion succeeds if it is warranted, i.e., if there exists an argument (a
consistent sets of defeasible rules) that, together with the non-defeasible rules and facts,
entails the conclusion, and moreover, this argument is found to be undefeated by a war-
rant procedure which builds a dialectical tree containing all arguments that challenge this
argument, and all counterarguments that challenge those arguments, and so on, recur-
sively. Actually, dialectical trees systematically explore the universe of arguments in or-
der to present an exhaustive synthesis of the relevant chains of pros and cons for a given
conclusion. In fact, the interpreter for DeLP [7] (http://lidia.cs.uns.edu.ar/DeLP) takes a
knowledge base (program) P and a conclusion (query) Q as input, and it then returns
one of the following four possible answers: YES, if Q is warranted from P ; NO, if the
complement of Q is warranted from P ; UNDECIDED, if neither Q nor its complement
are warranted from P ; or UNKNOWN, if Q is not in the language of the program P .

Possibilistic Defeasible Logic Programming (P-DeLP) [2] is an extension of DeLP
in which defeasible facts and rules are attached with weights (belonging to the real unit
interval [0, 1]) expressing their relative belief or preference strength. As many other argu-
mentation frameworks [6,10], P-DeLP can be used as a vehicle for facilitating rationally
justifiable decision making when handling incomplete and potentially inconsistent infor-
mation. Actually, given a P-DeLP program, justifiable decisions correspond to warranted
conclusions (to some necessity degree), that is, those which remain undefeated after an
exhaustive dialectical analysis of all possible arguments for and against.

Recently in [1], we have proposed a new semantics for P-DeLP based on a general
notion of collective (non-binary) conflict among arguments and on the claim that the
acceptance of an argument should imply also the acceptance of all its subarguments
which reflect the different premises on which the argument is based. In this framework,
called Recursive P-DeLP (RP-DeLP for short), an output (extension) of a program is
now a pair of sets, a set of warranted and a set of blocked conclusions, with maximum
necessity degrees. Arguments for both warranted and blocked conclusions are recursively
based on warranted conclusions but, while warranted conclusions do not generate any
conflict with the set of already warranted conclusions and the strict part of program
(information we take for granted they hold true), blocked conclusions do. Conclusions
that are neither warranted nor blocked correspond to rejected conclusions.

The key feature that our warrant recursive semantics addresses corresponds with the
closure under subarguments postulate recently proposed by Amgoud [3], claiming that
if an argument is excluded from an output, then all the arguments built on top of it should
also be excluded from that output. As stated in [9], this recursive definition of acceptance
among arguments can lead to different outputs (extensions) for warranted conclusions.
For RP-DeLP programs with multiple outputs we have also considered in [1] the problem
of deciding the set of conclusions that could be ultimately warranted. We have called this
output (extension) maximal ideal output of an RP-DeLP program.

In this paper we explore the relationship between the exhaustive dialectical analysis
based semantics of P-DeLP and the maximal ideal output of RP-DeLP, and we analyze a
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non-monotonic inference operator for RP-DeLP which models the expansion of a given
program by adding new weighed facts associated with warranted conclusions.

2. The language of P-DeLP and RP-DeLP

In order to make this paper self-contained, we will present next the main definitions
that characterize P-DeLP and RP-DeLP frameworks. For details the reader is referred
to [2,1].

The language of P-DeLP and RP-DeLP, denoted L, is inherited from the language
of logic programming, including the notions of atom, literal, rule and fact. Formulas
are built over a finite set of propositional variables p, q, ... which is extended with a
new (negated) atom “∼p” for each original atom p. Atoms of the form p or ∼p will be
referred as literals, and if P is a literal, we will use ∼P to denote ∼p if P is an atom
p, and will denote p if P is a negated atom ∼p. Formulas of L consist of rules of the
form Q ← P1 ∧ . . . ∧ Pk , where Q, P1, . . . , Pk are literals. A fact will be a rule with no
premises. We will also use the name clause to denote a rule or a fact.

P-DeLP and RP-DeLP frameworks are based on the propositional logic (L,�)where
the inference operator � is defined by instances of the modus ponens rule of the form:
{Q ← P1 ∧ . . . ∧ Pk , P1, . . . , Pk} � Q. A set of clauses Γ will be deemed as contra-
dictory, denoted Γ � ⊥, if , for some atom q, Γ � q and Γ � ∼q.

In both frameworks a program P is a tuple P = (Π, Δ,�) over the logic (L,�),
where Π,Δ ⊆ L, and Π 	� ⊥. Π is a finite set of clauses representing strict knowledge
(information we take for granted they hold true), Δ is another finite set of clauses rep-
resenting the defeasible knowledge (formulas for which we have reasons to believe they
are true). Finally, � is a total pre-order on Π ∪ Δ representing levels of defeasibility:
ϕ ≺ ψ means that ϕ is more defeasible than ψ. Actually, since formulas in Π are not
defeasible, � is such that all formulas in Π are at the top of the ordering. For the sake
of a simpler notation we will often refer in the paper to numerical levels for defeasible
clauses and arguments rather than to the pre-ordering �, so we will assume a mapping
N : Π ∪Δ→ [0, 1] such that N(ϕ) = 1 for all ϕ ∈ Π and N(ϕ) < N(ψ) iff ϕ ≺ ψ. 1

The notion of argument is the usual one inherited from similar definitions in the ar-
gumentation literature [11,10,6]. Given a program P , an argument for a literal (conclu-
sion) Q of L is a pair A = 〈A, Q〉, with A ⊆ Δ such that Π ∪A 	� ⊥, and A is minimal
(w.r.t. set inclusion) such that Π ∪ A � Q. If A = ∅, then we will call A a s-argument
(s for strict), otherwise it will be a d-argument (d for defeasible). We define the strength
of an argument 〈A, Q〉, written s(〈A, Q〉), as follows: s(〈A, Q〉) = 1 if A = ∅, and
s(〈A, Q〉) = min{N(ψ) | ψ ∈ A}, otherwise.

The notion of subargument is referred to d-arguments and expresses an incremen-
tal proof relationship between arguments which is defined as follows. Let 〈B, Q〉 and
〈A, P 〉 be two d-arguments such that the minimal sets (w.r.t. set inclusion) ΠQ ⊆ Π and
ΠP ⊆ Π such that ΠQ ∪B � Q and ΠP ∪A � P verify that ΠQ ⊆ ΠP . Then, 〈B, Q〉 is
a subargument of 〈A, P 〉, written 〈B, Q〉 � 〈A, P 〉, when either B ⊂ A (strict inclusion
for defeasible knowledge), or B = A and ΠQ ⊂ ΠA (strict inclusion for strict knowl-

1Actually, a same pre-order � can be represented by many mappings, but we can take any of them to since
only the relative ordering is what actually matters.
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edge). A literal Q of L is called justifiable conclusion w.r.t. P if there exists an argument
for Q, i.e. there exists A ⊆ Δ such that 〈A, Q〉 is an argument.

As in most argumentation formalisms (see e.g. [10,6]), in P-DeLP and RP-DeLP
frameworks it can be the case that there exist arguments supporting contradictory literals,
and thus, there exist sets of conflicting arguments. Since arguments can rely on defea-
sible information, conflicts among arguments may be resolved in both frameworks by
comparing their strength. In this sense the aim of both frameworks is to provide a useful
warrant procedure in order to determine which conclusions are ultimately accepted (or
warranted) on the basis of a given program. The difference between the two frameworks
lies in the way in which this procedure is defined and the type of conflicts are handled.

In P-DeLP warranted conclusions are justifiable conclusions which remain unde-
feated after an exhaustive dialectical analysis of all possible arguments for an against
and only binary attacks or defeat relations are considered. In RP-DeLP semantics for
warranted conclusions is based on a collective (non-binary) notion of conflict between
arguments and if an argument is excluded from an output, then all the arguments built
on top of it are excluded from that output. In the following sections we describe both
mechanisms.

3. Warrant semantics of P-DeLP

Let P be a P-DeLP program, and let 〈A1, Q1〉 and 〈A2, Q2〉 be two arguments w.r.t.
P . 〈A1, Q1〉 defeats 〈A2, Q2〉2 iff Q1 = ∼ Q2 and s(〈A1, Q1〉) ≥ s(〈A2, Q2〉), or
〈A, Q〉 � 〈A2, Q2〉 and Q1 =∼Q and s(〈A1, Q1〉) ≥ s(〈A, Q〉). Moreover, if 〈A1, Q1〉
defeats 〈A2, Q2〉 with strict relation > we say that 〈A1, Q1〉 is a proper defeater for
〈A2, Q2〉, otherwise we say that 〈A1, Q1〉 is a blocking defeater for 〈A2, Q2〉.

In P-DeLP warranted conclusions are formalized in terms of an exhaustive dialec-
tical analysis of all possible argumentation lines rooted in a given argument. An ar-
gumentation line starting in an argument 〈A0, Q0〉 is a sequence of arguments λ =
[〈A0, Q0〉, 〈A1, Q1〉, . . . , 〈An, Qn〉, . . .] such that each 〈Ai, Qi〉 defeats the previous ar-
gument 〈Ai−1, Qi−1〉 in the sequence, i > 0. In order to avoid fallacious reasoning
additional constraints are imposed, namely:

1. Non-contradiction: given an argumentation line λ, the set of arguments of the
proponent (respectively opponent) should be non-contradictory w.r.t. P . 3

2. Progressive argumentation: (i) every blocking defeater 〈Ai, Qi〉 in λ with i >
0 is defeated by a proper defeater4 〈Ai+1, Qi+1〉 in λ; and (ii) each argument
〈Ai, Qi〉 in λ, with i ≥ 2, is such that Qi 	= ∼Qi−1.

The non-contradiction condition disallows the use of contradictory information on
either side (proponent or opponent). The first condition of progressive argumentation
enforces the use of a proper defeater to defeat an argument which acts as a blocking

2In what follows, for a given goal Q, we will write ∼Q as an abbreviation to denote “∼ q", if Q ≡ q, and
“q", if Q ≡ ∼q.

3Non-contradiction for a set of arguments is defined as follows: a set S =
Sn

i=1{〈Ai, Qi〉} is contradictory
w.r.t. P iff Π ∪ Sn

i=1 Ai is contradictory.
4It must be noted that the last argument in an argumentation line is allowed to be a blocking defeater for the

previous one.
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defeater, while the second condition avoids non optimal arguments in the presence of a
conflict. An argumentation line satisfying the above restrictions is called acceptable, and
can be proven to be finite. The set of all possible acceptable argumentation lines results in
a structure called dialectical tree. Given a program P and a goal Q, Q is warranted w.r.t.
P with maximum strength α iff there exists an argument 〈A, Q〉 with s(〈A, Q〉) = α
such that: i) every acceptable argumentation line starting with 〈A, Q〉 has an odd number
of arguments; and ii) there is no other argument of the form 〈B, Q〉, with s(〈B, Q〉) > α,
satisfying the above condition. In the rest of the paper we will write P |∼w 〈A, Q, α〉 to
denote this fact and we will write Cw

DT(P) to denote the set of warranted conclusions of
P based on dialectical trees, i.e. Cw

DT(P) = {Q | P |∼w 〈A, Q, α〉}.
In [5] Caminada and Amgoud proposed three rationality postulates which every

rule-based argumentation system should satisfy. One of such postulates (called Indirect
Consistency) requires that the set of warranted conclusions must be consistent (w.r.t. the
underlying logic) with the set of strict clauses. This means that the warrant semantics of
P-DeLP satisfies the indirect consistency postulate iff given a program P = (Π,Δ,�)
its set of warranted conclusions Cw

DT(P) is such that Π ∪ Cw
DT(P) 	� ⊥.

The defeat relation in P-DeLP, as occurs in most rule-based argumentation sys-
tems, is binary and, in some cases, the conflict relation among arguments is hardly
representable as a binary relation when we compare them with the strict part of a
program. For instance, consider the following program P = (Π, Δ,�) with Π =
{p,¬p ← a ∧ b ∧ c}, Δ = {a, b, c} and a single defeasibility level α for Δ. Clearly,
A1 = 〈{a}, a〉, A2 = 〈{b}, b〉 and A3 = 〈{c}, c〉 are arguments that justify conclu-
sions a, b and c respectively, and A1, A2 and A3 have no defeaters, and thus, {a, b, c}
are warranted w.r.t. the P-DeLP program P . Indeed, conclusions a, b and c do not pair-
wisely generate a conflict since Π ∪ {a, b} 	� ⊥, Π ∪ {a, c} 	� ⊥ and Π ∪ {b, c} 	� ⊥.
However, these conclusions are collectively conflicting w.r.t. the strict part of program Π
since Π ∪ {a, b, c} � ⊥, and thus, the warrant semantics of P-DeLP does not satisfy the
indirect consistency postulate.

In order to characterize such situations we proposed in [1] the RP-DeLP framework,
a new warrant semantics for P-DeLP based on a general notion of collective (non-binary)
conflict among arguments ensuring the three rationality postulates defined by Caminada
and Amgoud.

4. Warrant semantics of RP-DeLP

The warrant recursive semantics of RP-DeLP is based on the following general no-
tion of collective conflict in a set of arguments which captures the idea of an inconsis-
tency arising from a consistent set of justifiable conclusions W together with the strict
part of a program and the set of conclusions of those arguments. Let P = (Π, Δ,�)
be a program and let W ⊆ L be a set of conclusions. We say that a set of arguments
{〈A1, Q1〉, . . . , 〈Ak, Qk〉} minimally conflicts with respect to W iff the two follow-
ing conditions hold: (i) the set of argument conclusions {Q1, . . . , Qk} is contradictory
with respect to W , i.e. it holds that Π ∪ W ∪ {Q1, . . . , Qk} � ⊥; and (ii) the set
{〈A1, Q1〉, . . . , 〈Ak, Qk〉} is minimal with respect to set inclusion satisfying (i), i.e. if
S � {Q1, . . . , Qk}, then Π ∪W ∪ S 	� ⊥.

This general notion of conflict is used to define an output of an RP-DeLP program
P = (Π,Δ,�) as a pair (Warr, Block) of subsets of L of warranted and blocked conclu-
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sions respectively. Since we are considering several levels of strength among arguments,
the intended construction of the sets of conclusions Warr and Block is done level-wise,
starting from the highest level and iteratively going down from one level to next level be-
low. If 1 > α1 > . . . > αp ≥ 0 are the strengths of d-arguments that can be built within
P , we define: Warr = Warr(1) ∪ {∪i=1,pWarr(αi)} and Block = ∪i=1,pBlock(αi),
where Warr(1) = {Q | Π � Q}, and Warr(αi) and Block(αi) are respectively the sets
of the warranted and blocked justifiable conclusions of strength αi. Intuitively, an argu-
ment 〈A, Q〉 of strength αi is valid whenever (i) it is based on warranted conclusions;
(ii) there does not exist a valid argument for Q with strength > αi; and (iii) Q is consis-
tent with warranted and blocked conclusions of strength > αi. Then, a valid argument
〈A, Q〉 becomes blocked as soon as it leads to some conflict among valid arguments of
same strength and the set of already warranted conclusions, otherwise, it is warranted.

In [1] we show that, in case of some circular dependences among arguments, the
output of an RP-DeLP program may be not unique, that is, there may exist several pairs
(Warr, Block) satisfying the above conditions for a given RP-DeLP program. The fol-
lowing example shows a circular relation among arguments involving strict knowledge.
Consider the RP-DeLP programP = (Π, Δ,�)withΠ = {y,∼y ← p∧r,∼y ← q∧s},
Δ = {p, q, r ← q, s← p} and a single defeasibility level α for Δ. Then, Warr(1) = {y}
and A1 = 〈{p}, p〉 and A2 = 〈{q}, q〉 are valid arguments for conclusions p and q,
respectively, and thus, conclusions p and q may be warranted or blocked but not re-
jected. Moreover, since arguments B1 = 〈{q, r ← q}, r〉 and B2 = 〈{p, s ← p}, s〉
are valid whenever q and p are warranted, respectively, and Π ∪ {p, r} � ⊥ and
Π ∪ {q, s} � ⊥, we get that p can be warranted iff q is blocked and that q can
be warranted iff p is blocked. Hence, in that case we have two possible outputs:
(Warr1, Block1) and (Warr2, Block2), where Warr1 = {y, p}, Block1 = {q, s} and
Warr2 = {y, q}, Block2 = {p, r}. Figure shows the circular dependences among
{A1,A2} and {B1,B2}. Conflict and support dependencies among arguments are repre-
sented as dashed and solid arrows, respectively. The cycle of the graph expresses that (1)
the warranty of p depends on a (possible) conflict with r; (2) the support of r depends
on q (i.e., r is valid whenever q is warranted); (3) the warranty of q depends on a (possi-
ble) conflict with s; and (4) the support of s depends on p (i.e., s is valid whenever p is
warranted).

p q

r s

1 3

2 4

Figure 1. Circular dependences for program P .

In [1] we analyze the problem of deciding the set of conclusions that can be ulti-
mately warranted in RP-DeLP programs with multiple outputs. The usual skeptical ap-
proach would be to adopt the intersection of all possible outputs. However, in addition
to the computational limitation, as stated in [9], adopting the intersection of all outputs

1
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may lead to an inconsistent output in the sense of violating the base of the underlying
recursive warrant semantics, claiming that if an argument is excluded from an output,
then all the arguments built on top of it should also be excluded from that output. Intu-
itively, for a conclusion, to be in the intersection does not guarantee the existence of an
argument for it that is recursively based on ultimately warranted conclusions. Instead, the
set of ultimately warranted conclusions we are interested in for RP-DeLP programs is
characterized by means of a recursive level-wise definition considering at each level the
maximum set of conclusions based on warranted information and not involved in neither
a conflict nor a circular definition of warranty. We refer to this output as maximal ideal
output of an RP-DeLP program.

Intuitively, a valid argument 〈A, Q〉 becomes blocked in the maximal ideal output,as
soon as (i) it leads to some conflict among valid arguments of same strength and the set
of already warranted conclusions or (ii) the warranty of 〈A, Q〉 depends on some circular
definition of conflict between arguments of same strength; otherwise, it is warranted.

margorpsuoiverpehtniagaredisnoC P gnidroccA. to Figure , valid arguments for
conclusions p and q are involved in a circular circular definition of conflict, and thus,
conclusions p and q must be blocked in the maximal ideal output of P and arguments
for conclusions r and s are rejected. Hence, in that case, we have the following maximal
ideal output of P: (Warrmax, Blockmax), where Warrmax = {y}, Blockmax = {p, q}.

5. Dialectical analysis and maximal ideal output

In [1] we prove that the maximal ideal output of an RP-DeLP program is unique and
satisfies the indirect consistency property defined by Caminada and Amgoud with respect
to the strict knowledge.

Next we show that given a program P and its set Cw
DT(P) of warranted conclusions

based on dialectical trees, Cw
DT(P) contains each warranted conclusion in the maximal

ideal output of P . 5

Proposition 1 Let P = (Π,Δ,�) be a program with levels of defeasibility 1 > α1 >
. . . > αp ≥ 0. If (Warr, Block) is the maximal ideal output of P , for each level αi it
holds that Warr(αi) ⊆ {Q | P |∼w 〈A, Q, αi〉}. Obviously, Warr(1) = {Q | P |∼w

〈A, Q, 1〉}.

Notice that the inverse of Prop. 1 does not hold since the dialectical analysis based
semantics of P-DeLP does not satisfy the indirect consistency property defined by Cam-
inada and Amgoud with respect to the strict knowledge. Because we are interested in ex-
ploring the relationship between the warrant semantics of P-DeLP and the maximal ideal
output of RP-DeLP, we have to extend the P-DeLP framework with some mechanism
ensuring this property.

In [5] Caminada and Amgoud propose as a solution the definition of a special trans-
position operator Cltp for computing the closure of strict rules. This accounts for tak-
ing every strict rule r = φ1, φ2, . . . , φn → ψ as a material implication in propositional
logic which is equivalent to the disjunction φ1 ∨ φ2 ∨ . . . , φn ∨ ¬ψ. From that disjunc-
tion different rules of the form φ1, . . . , φi−1,¬ψ, φi+1, . . . , φn → ¬φi can be obtained

5Proofs are not included in the paper for space reasons.

1
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(transpositions of r). If S is a set of strict rules, Cltp is the minimal set such that (i)
S ⊆ Cltp(S) and (ii) If s ∈ Cltp(S) and t is a transposition of s, then t ∈ Cltp(S).

Computing the closure under transposition of strict rules allows the indirect consis-
tency property to be satisfied in the case of rule-based argumentation systems like DeLP
or P-DeLP as it was proved in [5]. In fact, in some sense, it allows to perform forward
reasoning from warranted conclusions, and thus, to evaluate collective conflicts among
arguments. However, P-DeLP is a Horn-based system, so that strict rules should be read
as inference rules rather than as material implications. In this respect, the use of trans-
posed rules might lead to unintuitive situations in a logic programming context. Consider
e.g. the program P = (Π, Δ,�) with Π = {q ← p ∧ r , s ← ∼r , p,∼q,∼s}, Δ = ∅.
In P-DeLP, p, ∼q and ∼s would be warranted conclusions, i.e. Cw

DT(P) = {p,∼q,∼s}.
However, the closure under transpositionCltp(Π)would include the rule∼r ← p ∧ ∼q ,
resulting in inconsistency since both s and∼s can be derived, so that the whole program
would be deemed as invalid.

Apart from the above limitation, when extending a P-DeLP program with all pos-
sible transpositions of every strict rule, the system can possibly establish as warranted
goals conclusions which are not explicitly expressed in the original program. Consider
e.g. the program P = (Π, Δ,�) with Π = {∼y ← a ∧ b, y}, Δ = {a, b} and two levels
of defeasibility for Δ as follows: {b} ≺ {a}. Assume α1 is the level of {a} and α2 is the
level of {b}, with 1 > α1 > α2 > 0. Transpositions of the strict rule ∼y ← a ∧ b are
∼a ← y ∧ b and ∼b ← y ∧ a . Then, the argument A = 〈{∼b ← a ∧ y , a},∼b〉 with
strength α1 justifies conclusion ∼b. Moreover, as there is neither a proper nor a block-
ing defeater of A, we conclude that ∼b is warranted w.r.t. P� = (Π ∪ Cltp(Π),Δ,�),
although no explicit information is given for literal ∼b in P . Moreover, notice that
Cw
DT(P) = {y, a, b} and Cw

DT(P�) = {y, a,∼b}.
Next we show that if (Warr, Block) is the maximal ideal output of a program

P = (Π,Δ,�), the set Warr of warranted conclusions contains indeed each literal Q
satisfying that P� |∼w 〈A, Q, α〉 and Π ∪ A � Q, with P� = (Π ∪ Cltp(Π),Δ,�) and
whenever Π ∪ Cltp(Π) 	� ⊥.

Proposition 2 Let P = (Π, Δ,�) be a program with levels of defeasibility 1 > α1 >
. . . > αp ≥ 0 and such that Π ∪ Cltp(Π) 	� ⊥. If (Warr, Block) is the maximal ideal
output of P and P� = (Π ∪ Cltp(Π),Δ,�), for each level αi it holds that Warr(αi) =
{Q | P� |∼w 〈A, Q, αi〉 and Π ∪ A � Q}. Obviously, Warr(1) = {Q | Π � Q} = {Q |
P� |∼w 〈A, Q, 1〉 and Π ∪A � Q}.

Following the approach we made in [2] for dialectical semantics, next we study the
behavior of the maximal ideal output of an RP-DeLP program in the context of non-
monotonic inference relationships. In order to do this, we define an inference operator
Ew
RS that computes the expansion of a program including all new facts which correspond

to warranted conclusions in the maximal ideal output.
Formally: Let P = (Π, Δ,�) be an RP-DeLP program with levels of defeasibility

1 > α1 > . . . > αp ≥ 0 and let (Warr, Block) be the maximal ideal output of P .
We define the operator Ew

RS associated with P as follows: Ew
RS(P) = (Π ∪Warr(1),Δ ∪

(∪i=1...pWarr(αi)),�′) and such that N ′(ϕ) = N(ϕ) for all ϕ ∈ Π∪Δ, N ′(ϕ) = 1 for
all ϕ ∈ Warr(1), and N(ϕ) = αi for all ϕ ∈ Warr(αi), i = 1 . . . p.

Notice that by definition operator Ew
RS is well-defined (i.e., given an RP-DeLP pro-

gram as input, the associated output is also an RP-DeLP program). Moreover, Ew
RS sat-
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isfies inclusion: given an RP-DeLP program P = (Π, Δ,�) with levels of defeasibility
1 > α1 > . . . > αp ≥ 0 and maximal ideal output (Warr, Block), Π ⊆ Π ∪ Warr(1),
Δ ⊆ Δ ∪ (∪i=1...pWarr(αi)) and �′ preserves the total pre-order � on Π ∪Δ.

In what follows, given an RP-DeLP program P = (Π, Δ,�), a clause ϕ and a set of
clauses Γ, we will write ϕ ∈ P and Γ ⊆ P to denote that ϕ ∈ Π ∪Δ and Γ ⊆ Π ∪Δ,
respectively.

Besides, monotonicity does not hold for Ew
RS, as expected. It is satisfied if all war-

ranted conclusions from a given program are preserved when the program is aug-
mented with new clauses. As a counterexample consider the program P = (Π,Δ,�)
with Π = {q}, Δ = {p ← q} and a single level of defeasibility α for Δ. Then,
Warr(1) = {q} and Warr(α) = {p}, and thus, {q, p} ⊆ Ew

RS(P). However, if we extend
program P with the strict fact ∼p, we get the following program P ′ = (Π′, Δ,�′) with
Π′ = {q,∼p} and N ′(∼p) = 1. Then, Warr(1) = {q,∼p} and Warr(α) = ∅ in the
maximal ideal output of P ′. Hence, p 	∈ Ew

RS(P ′) but p ∈ Ew
RS(P) .

Semi-monotonicity is an interesting property for analyzing non-monotonic conse-
quence relationships. It is satisfied if all defeasible warranted conclusions are preserved
when the program is augmented with new defeasible clauses. Semi-monotonicity does
not hold for Ew

RS, as adding new defeasible clauses cannot invalidate already valid argu-
ments, but it can enable new ones that were not present before, thus introducing new
conflicts or new circular dependences among arguments. Arguments that were warranted
may therefore no longer keep that status. Consider a variant of the previous counterex-
ample: we consider the fact ∼p as defeasible information, i.e. we define the following
program P ′ = (Π, Δ′,�′) with Δ′ = {p ← q ,∼p} N ′(∼p) = N ′(p ← q). Now,
Warr(1) = {q}, Warr(α) = ∅ and Block(α) = {p,∼p} for the maximal ideal output of
P ′. Hence, p 	∈ Ew

RS(P ′) but p ∈ Ew
RS(P).

Next we define some relevant logical properties that operator Ew
RSsatisfies.

• The operator Ew
RSsatisfies idempotence: Ew

RS(P) = Ew
RS(Ew

RS(P)).
• The operator Ew

RSsatisfies cummulativity: ifQ ∈ Ew
RS(P), then ifR ∈ Ew

RS(P∪{Q})
implies R ∈ Ew

RS(P).
• The operator Ew

RSsatisfies (Horn) supraclassicality: Π� ⊆ Ew
RS(P), where Π� =

{Q | Π � Q}.
Finally, the operator Ew

RSsatisfies (somewhat softened) right weakening with respect
to the set of strict rules. Indeed, it is satisfied in the full sense for RP-DeLP programs with
a single defeasibility level: let P = (Π, Δ,�) be an RP-DeLP program with a single
defeasibility level for Δ, if Q ← P1 ∧ . . . ∧ Pk ∈ Π and {P1, . . . , Pk} ⊆ Ew

RS(P), then
Q ∈ Ew

RS(P).
The key point here is how warranted and blocked conclusions at higher levels of

the maximal ideal output are taken into account in lower levels. In particular blocked
conclusions play a key role in the propagation mechanism between defeasibility levels.
In the RP-DeLP approach if a conclusion ϕ is blocked at level α, then for any lower
level than α, not only the conclusion ϕ is rejected but also every conclusion ψ such that
{ϕ, ψ} � ⊥. Then, for the general case we have the following right weakening logical
property for operator Ew

RS. Let P = (Π, Δ,�) be an RP-DeLP program with defeasibility
levels 1 > α1 > . . . > αp > 0, and let (Warr, Block) be the maximal ideal output of
P . If Q ← P1 ∧ . . . ∧ Pk ∈ Π and {P1, . . . , Pk} ⊆ Ew

RS(P), then either Q ∈ Ew
RS(P)

and N ′(Q) ≥ min{N ′(Pi) | Pi ∈ {P1, . . . , Pk}}, or Q, or ∼Q ∈ Block(β) for some
β > min{N ′(Pi) | Pi ∈ {P1, . . . , Pk}}.
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6. Conclusions and future work

In this paper we have analyzed the relationship between the exhaustive dialectical anal-
ysis based semantics of P-DeLP and the recursive based semantics of RP-DeLP and we
have shown that the maximal ideal semantics of RP-DeLP provides a useful framework
for making a formal analysis of logical properties of warrant in defeasible argumentation.

Our current research work in RP-DeLP will follow two main directions: on the one
hand, we are concerned with characterizing a lower bound on complexity for computing
the warranty status of arguments according to the maximal ideal recursive semantics. On
the other hand, we are concerned with developing a graphic representation framework of
the maximal ideal recursive semantics. This representation could be used as a mechanism
for refinement of strict and defeasible information.
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