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Abstract 23	

 24	

Aim The drivers of tree recruitment over large spatial scales remain unexplored.  Here, we ask 25	

whether the species potential for recruitment and the strength of density dependent processes, 26	

both inferred from species relative abundances, show emerging patterns that can be explained 27	

upon the basis of climatic and functional trait information. 28	

Location Eastern Forests of the USA. 29	

Methods We document the geographical distributions and magnitudes of seedling recruitment 30	

and the strength of density dependence and conspecific density dependence for the forests of the 31	

eastern USA spanning >1.2 million km2 across 88,854 local communities comprising 164 tree 32	

species. We also compiled climatic variables and 16 traits representing several important 33	

ecological axes of tree functional strategies to assess which factors were most strongly associated 34	

with the emerging broad-scale spatial patterns.   35	

Results Strong geographical variation in the potential of seedling recruitment and a latitudinal 36	

change from negative to positive density dependence moving northward were associated with 37	

adaptation to seasonal freezing temperatures and seed size. Wood density and leaf nitrogen, in 38	

contrast, were related to the magnitude of the negative density dependence and conspecific 39	

density dependence respectively, which were prevalent over most of the region.  40	

Main conclusions Our results provide strong evidence that tree recruitment and the strength of 41	

density dependent processes have broad-scale patterns explainable by a few key species 42	

functional traits.    43	
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Introduction 44	

“The patterns must be understood as emerging from the collective behaviors of large ensembles 45	

of smaller scale units”(Levin, 1992). 46	

 47	

Ecologists and foresters have studied tree recruitment for decades given its importance to 48	

understanding forest dynamics (Clark et al., 1998; Rees et al., 2001; Clark et al., 2010; Comita et 49	

al., 2010), the maintenance of forest diversity (Bolker & Pacala, 1999; Harms et al., 2000; 50	

Johnson et al., 2012) and, more recently, species responses to climatic change (Peñuelas & 51	

Boada, 2003; Zhu et al., 2012).  Much effort has focused on local scales, but studies of 52	

biogeographical patterns emerging from local assemblages are rare (Johnson et al., 2012; Coll et 53	

al., 2013; Carnicer et al., 2014; Ruiz-Benito et al., 2014).  This severely limits our understanding 54	

of the climatic and functional factors driving patterns of tree species recruitment at scales 55	

relevant to global change.  56	

 57	

Variation in the potential for recruitment among tree species can arise from endogenous factors 58	

(i.e. density independent processes), such as genetic-based differences in fecundity, masting, 59	

seedling tolerance to drought and cold, or age at maturity (Rejmánek & Richardson, 1996; Clark 60	

et al., 1998; Herrera et al., 1998; Mueller et al., 2005).  This species potential for recruitment can 61	

also be strongly affected by density dependent processes, either from interactions with neighbors 62	

for limiting resources such as light and soil nutrients, or more specifically from conspecific 63	

neighbors due to Janzen-Connell effects of pathogens and seed and seedling predators (Janzen, 64	

1970; Connell, 1971; Canham et al., 2006; Comita et al., 2010; Rees, 2013).  Importantly, 65	

species with high relative recruitment often dominate local communities.  This can occur from 66	
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producing copious offspring, which is insensitive to neighbors (Clark et al., 1998), and from a 67	

positive relationship between offspring survival and the number of conspecific neighbors 68	

(McIntire & Fajardo, 2011).  In contrast, a more diverse forest community is maintained when, 69	

inter alia, species limit the establishment of their own seedlings more than the species with 70	

which they interact (Chesson, 2000; Comita et al., 2010; Johnson et al., 2012). 71	

 72	

Although both the species potential for recruitment and the strength of density dependent 73	

processes strongly interact with abiotic and biotic drivers (e.g. light and moisture availability or 74	

pathogen/herbivore populations) (Borchert et al., 1989; Ribbens et al., 1994), which may result 75	

in high recruitment variability at local scales (Clark et al., 2010), we hypothesize that they 76	

should also have broad-scale patterns related to climatic variation.  These emerging geographical 77	

patterns may occur from the single effect of limiting conditions such as drought or freezing as 78	

well as from the correlated effect that climate has on shaping the geographical structure of 79	

important species traits influencing fecundity, germination and seedling mortality.  For instance, 80	

we hypothesize that the seed size-seed number trade-off (Smith & Fretwell, 1974) recently 81	

demonstrated for trees (Adler et al., 2014) will translate to a geographical pattern of higher 82	

fecundity and thus higher recruitment at northern latitudes and higher altitudes where 83	

communities are composed of tree species producing smaller seeds (Moles et al., 2007; Hawkins 84	

et al., 2014).  85	

 86	

We also hypothesize that an increase in the density of neighbors will reduce recruitment 87	

(Lambers et al., 2002; Comita et al., 2010), but interactive effects may occur with climatic 88	

conditions shifting from negative to positive with increasing environmental stress (Callaway et 89	
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al., 2002; McIntire & Fajardo, 2011).  For example, prior work suggests that wood density may 90	

determine the geographical pattern of the strength of density dependence (Enquist et al., 1999; 91	

Swenson & Enquist, 2007; Chave et al., 2009; Adler et al., 2014).  Species with dense wood, 92	

which in North American forests are distributed in southern latitudes and lower elevations, tend 93	

to be larger, have longer life spans and survive better in the face of drought or insect/pathogen 94	

attack, which may produce stronger negative effects of neighbors for longer.  Other functional 95	

traits related to resource acquisition such as height (for light) or rooting depth (for water) can 96	

also determine the strength of density dependence when resources are limiting (Sterck et al., 97	

2011).   98	

 99	

Recent work has shown that the strength of conspecific density dependence in North American 100	

forest decreases with latitude (Johnson et al., 2012), perhaps because drivers limiting 101	

recruitment, such as host-specific herbivores and pathogens, are themselves limited by climate 102	

(Janzen, 1970; Connell, 1971; Harms et al., 2000), although the only empirical test of this 103	

hypothesis found no support (Lambers et al., 2002).  This suggests that the geographical pattern 104	

of conspecific density dependence should be similar to overall density dependence. Less clear is 105	

identifying the functional determinants of the strength of conspecific density dependence, as it 106	

tends to vary with shade tolerance (Kobe & Vriesendorp, 2011).  Shade tolerance is a complex 107	

atribute that can be mechanistically driven by an array of functional traits including height, wood 108	

density, seed size, leaf area, and leaf N (Kitajima, 1994; Niinemets, 1997; Hewitt, 1998).  Such 109	

complex interactions among suites of traits make it difficult to predict the distributions of 110	

phenotypes across space. 111	

 112	
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 113	

In this paper we estimate the species potential for recruitment arising from density independent 114	

processes (hereafter ‘recruitment potential’, RP), and the strength of density dependence with all 115	

neighbors (hereafter ‘density dependence’, DD) and with conspecific neighbors only (hereafter 116	

‘conspecific density dependence’, CDD) to document their community geographical patterns for 117	

the forests of the eastern United States.  We considered in total 164 tree species occurring across 118	

88,854 sites (approx. 1.27 million km2).  These demographic variables were then analyzed using 119	

a machine learning method for regression (Random Forest) with respect to four climatic 120	

variables accounting for variation in temperature and precipitation, and with 16 functional traits 121	

(Table 1), representing several important ecological axes of woody plant strategies in terms of 122	

leaf economics, growth allocation, resource acquisition and regeneration (Westoby et al., 2002; 123	

Westoby & Wright, 2006; Kraft et al., 2008).  We focus on three questions: (1) Do local 124	

communities have geographical structure of potential for recruitment and strength of density 125	

dependent processes based on species distribution? (2), If so, can these patterns be explained by 126	

climate and species traits? (3) What is the relative importance of climatic versus functional 127	

factors? 128	

 129	

Methods 130	

Extracting information from the FIA database 131	

Our study centered on the forests of the USA delimited by the Northern and Southern Region 132	

units of the US Forest Service’s Forest Inventory and Analysis (FIA).  These forests extend from 133	

Florida to Maine and from the Atlantic Coast to the Kansas-Colorado line.  We downloaded from 134	

the FIA (http://www.fia.fs.fed.us; accessed in February, 2012) data collected between 2005-135	
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2010, corresponding to the most recently updated five-year cyclical inventory.  The FIA protocol 136	

is designed to record, per site and per species, the number of trees larger than 12.7 cm diameter 137	

at breast height (dbh) in four subplots (168.3 m2) 36.6 m apart, and the number of seedlings in 138	

contiguous nested microplots (13.5 m2).  FIA defines as seedlings those individuals smaller than 139	

2.54 cm dbh and taller than 30.5 cm for angiosperms and 12.2 cm for gymnosperms.  We used 140	

Access queries per state to select only those sites corresponding to natural stands (i.e. excluding 141	

tree plantations and orchards), without human disturbance, and without fire occurrence in the 142	

five years prior to being surveyed.  We then used the FIPS code (the species code used by FIA) 143	

to remove those entries corresponding to broad tree classifications (e.g. evergreen, deciduous) 144	

and genera, and to merge species under currently recognized names.  We used The Plant List 145	

(http://www.theplantlist.org; accessed in March 2012) as the source of information on synonyms. 146	

These selection criteria rendered a total of 88854 sites containing 164 species. 147	

 148	

Estimation of recruitment potential and density dependent effects 149	

We followed an analytical approach quasi-similar to Johnson et al. (2012).  First, we used each 150	

of the four subplot-microplot pairs per site as our unit of analysis (replicates).  Second, according 151	

to the scatterplots of the number of seedlings per focal species (Si) as a function of the total 152	

number of adult neighbors (T), we fitted an exponential function using maximum likelihood 153	

methods (R version 2.13.2, function “optim,” method “L-BFGS-B”) with the specific form: 154	

S! = !!e!!! 

     (1) 155	

Here, ai is the potential number of seedlings recruited per species in the absence of interaction 156	

with adult neighbors (RP) (i.e. recruitment from density independent effects).  bi is the inflection 157	
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curve parameter, which indicates the direction and the magnitude of the effect of adult neighbors 158	

density on RP.  Negative values of bi indicate that the number of seedlings decreases 159	

exponentially as the number of adults increases (i.e. negative, or direct, density dependence) 160	

whereas positive values indicate the reverse (i.e. positive, or inverse, density dependence) 161	

(Appendix S1 in Supporting Information).  For the fitting process, however, we selected a 162	

negative binomial error structure giving the greatest heterogeneity observed in the increase of the 163	

variance of the data with respect to the mean across species (overdispersion parameter k ranging 164	

from 0.318 to 7835, median = 1.399, smaller values of k indicate greater heterogeneity) (Bolker, 165	

2008).  We followed this procedure to assess the average species response to the overall density-166	

dependent effect of conspecific and heterospecific neighbors (DD) as well as to the separate 167	

effect of conspecific neighbors (CDD).  For CDD, we selected sites only containing seedlings 168	

and adults of a single focal species without the presence of other species.  The main advantage of 169	

this function is to obtain a joint fit for ai (bounded to be >1), and bi (set to be free).  This also 170	

makes values of the inflection curve (bi) sensitive to those fitted to the intercept (ai).  Therefore, 171	

we confirmed that differences in the strength of average DD versus average CDD were not due 172	

to differences in average RP (the correlation between y-intercepts of DD and CDD fits was r = 173	

0.809, p<0.001).  For both DD and CDD, we set the threshold of the number of replicates per 174	

species to ten subplot-microplot pairs to perform the fitting, and finally, we did not divide the 175	

data into regional subunits because i) we needed to match the resolution of trait information, 176	

which is available as a single value per species (see methods section “climatic and species trait 177	

information”), and ii) we needed a single value per species for phylogenetic comparative 178	

analyses to test whether obtained parameters can be considered a species characteristic in order 179	

to be mapped (see next methods section). 180	
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 181	

Phylogenetic analyses testing whether recruitment and density dependent effects are species 182	

specific.  183	

We asked whether RP, DD, and CDD values can be considered a species characteristic or they 184	

are evolutionarily labile.  This was a crucial step to identify the type of information necessary to 185	

explore emerging geographical patterns of recruitment potential and density dependent effects.  186	

The rationale is that if they were labile or weakly conserved, they would likely be a product of 187	

the local environment; that is, two closely related species could have either similar or very 188	

different values.  Thus, environmental data would be needed to map geographical patterns of RP, 189	

DD, and CDD.  In contrast, if they were conserved, we can assume that they are a species 190	

characteristic and closely related species will tend to have similar values while values between 191	

disparate lineages will tend on average to diverge.  In such case, we would consider species 192	

distributions instead of environment a better approach to explore geographical patterns.  193	

  194	

We performed two types of phylogenetic comparative analyses: phylogenetic signal 195	

representation curves (PSR) (Diniz-Filho et al., 2012), complemented with the fitting by 196	

phylogenetic Generalized Least Squares (pGLS) of three models of evolution given our species 197	

phylogenetic relatedness (Appendix S2).  Both approaches indicated that species recruitment and 198	

density dependent parameters displayed large deviations from a Brownian model of evolution 199	

and are consistent with an interpretation of trait evolution under an Ornstein-Uhlenbeck (OU) 200	

process (Appendix S2).  In addition, Blomberg’s K values across all species indicated also a 201	

significant phylogenetic signal according to an OU process  (KRP = 0.249, p= 0.006; KDD = 0.087, 202	

p= 0.038; KCDD = 0.147, p= 0.051) (lower Blomberg’s K values under a OU model indicate 203	
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stronger phylogenetic signal).  This phylogenetic signal was partially driven by differences 204	

between angiosperm and gymnosperm species.  The RP of gymnosperms was significantly 205	

higher (F1,162 = 4.23, p = 0.048) and their DD marginally weaker (F1,162 = 2.67, p = 0.108) 206	

although both taxonomic groups showed similar CDD (F1,162 = 1.31, p = 0.247).  In summary, all 207	

methods of analysis indicated that species average RP, DD, and CDD are phylogenetically 208	

conserved, so they were considered a species characteristic and they were subsequently mapped 209	

using species distributions to test whether community geographical patterns can be predicted by 210	

climatic variables and species functional traits.  Note that in any case we aim to test the relative 211	

contribution of phylogeny to the geographical patterns of RP, DD, and CDD and to their 212	

functional predictors.  213	

 214	

Climatic and species trait information 215	

We selected 20 variables to examine how climate and species functional traits are associated 216	

with RP, DD and CDD.  We selected four climatic variables representing the two most important 217	

climatic gradients occurring at meso- and macro-scales in the eastern USA (temperature and 218	

precipitation).  Two measures of temperature (BIO5, maximum temperature of the warmest 219	

month; BIO6, minimum temperature of the coldest month) and two measures of precipitation 220	

(BIO12, annual precipitation; BIO18, precipitation in the warmest month) were extracted from the 221	

30 arc-second WorldClim database (http://www.worldclim.org).  Further, sixteen variables 222	

representing a range of important axes of ecological strategies of tree species (Westoby et al., 223	

2002; Westoby & Wright, 2006; Moles et al., 2007; Kraft et al., 2008) were obtained from 224	

various sources.  This trait information is available at the species level (Table 1, Appendix S3).  225	

These traits show geographical variation at local scales as well as large scales, and none of them 226	
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were strongly correlated (r < 0.8).  We did not include specific leaf area (SLA), a widely used 227	

plant trait, in the analysis due to limited information (values for fewer than 50% of the species 228	

were available).  229	

 230	

Forest community data and geographical analyses with Random Forest models.  231	

To generate community data at the site level from species-level data we first created a presence-232	

absence matrix for the 164 species across FIA sites.  Then, we calculated averages of the three 233	

dependent variables (RP, DD, CDD) and the sixteen functional trait predictors at sites including 234	

at least two species.  235	

 236	

We then generated Random Forest models, each based on 200 regression trees with 1000 237	

permutations per regression tree, in the R package RandomForest (Liaw & Wiener, 2002), first, 238	

to statistically account for the spatial patterns of average community data across sites, second, to 239	

statistically account for the variation across species without the spatial component.  Comparing 240	

both analyses served to test whether the drivers of recruitment match between community and 241	

species level.  Briefly, Random Forest modeling is a powerful machine-learning technique that 242	

combines the predictions of multiple independent regression trees into a robust composite model.  243	

The relative importance of the predictors is assessed by the decrease in explained variance 244	

resulting from permutations of the focal variable.  We selected Random Forest modeling over 245	

more traditional linear modeling approaches because do not assume stationary of relationships.   246	

This statistical technique is able to disentangle interacting effects and can identify nonlinear and 247	

scale-dependent relationships among multiple, correlated predictors (Cutler et al., 2007) that 248	

often occur at the scale of this analysis.  249	
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For the community level analysis we generated nine Random Forest models, proceeding as 250	

follows: for each dependent variable (RP, DD and CDD), we generated three models considering 251	

the average site values of the predictors based on the subplot species composition; one including 252	

only climatic variables, one including only species traits, and one including all predictors 253	

(Appendix S4).  This allows us to evaluate the extent to which the climate vs. trait predictors 254	

with higher importance values have independent relationships with geographical structure of the 255	

response variables or if their relative importance is largely due to correlations with the other 256	

class of predictors.  For each model, we recorded the percentage of the explained variance 257	

(pseudo-R2 ranging from 0 to 100%), and we ranked the relative importance of each variable 258	

ranging from 100 (the strongest predictor) to 0 (having no predictive power) according to their 259	

node purity values.  The sign of the relationship between the dependent variable and the 260	

predictors were further assessed with Pearson correlation.  We found that models including all 261	

predictors explained large amounts of variance, which might be due to including twenty 262	

predictors.  We therefore regenerated the Random Forest models including only those predictors 263	

with high relative importance.  To take a conservative approach the threshold was set to 264	

importance value > 75.  These simplified models explained 12-20% less variance than the full 265	

models (Appendix S4), but in all cases remained powerful in terms of explained variance 266	

considering the small size of the FIA plots, the large sample size, and the geographical scope of 267	

the data. 268	

 269	

For the species level analysis, we generated three Random Forest models, one for each 270	

dependent variable, considering trait values for each species as the predictors rather than site 271	

averages.  Here, we also recorded the percentage of explained variance of the model, and we 272	
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estimated the relative importance of each predictor and the sign of the relationship between the 273	

dependent variable and the predictors as indicated above.  274	

 275	

In the final step of the analysis we generated spatial autocorrelograms of Moran’s I (the most 276	

widely used autocorrelation metric) to evaluate the strengths of the geographical gradients of RP, 277	

DD and CDD, followed by correlograms of the residuals extracted from the Random Forest 278	

model combining all predictors.  Moran’s I values, ranging from ca. -1 to 1, indicate whether 279	

communities connected at a given distance are more similar (positive correlation) or less similar 280	

(negative correlation) than expected for randomly associated pairs of plots. This allows us to 281	

evaluate the extent to which the climatic variables and traits are able to account for the spatial 282	

patterns across the full range of scales, from local to subcontinental (Hawkins et al. 2014). 283	

 284	

Results 285	

 Recruitment potential (density independent effects) 286	

Average RP of local communities has a strong geographical pattern very similar to the 287	

distribution of the minimum number of frost-free days (Min F-F days, Table 1) required by each 288	

species to complete its seasonal phenological development and to seed size to a lesser extent 289	

(Figs. 1a, 2a, 3a, b).  Local communities comprising species able to live under longer seasonal 290	

freezing conditions and with smaller seeds had the potential to recruit three times more 291	

individuals (Table 2).  Geographically, the potential of recruitment of tree communities in the 292	

forests of the eastern USA has a latitudinal gradient with higher recruitment at northern latitudes, 293	

an elevational gradient with higher recruitment in Appalachian forests compared to surrounding 294	
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lowland sites (Fig. 1a), and a visible longitudinal gradient with lowland forests nearer the east 295	

coast having higher recruitment than forests at the forest—prairie interface.   296	

 297	

Density dependence 298	

Most species suffer reduced recruitment in the presence of neighbors (i.e. a negative DD) 299	

(Appendix S5); thus negative density dependence in tree communities is expected to occur 300	

across most, but not all, of the region (Fig. 1b inset).  The geographical structure of DD was 301	

relatively weaker than for RP, with which it was also weakly correlated (r = 0.17) (see Fig. 1b 302	

for map and spatial correlogram; DD showed a flatter curve of the Moran’s I values of the raw 303	

data compared to RP).  The spatial structure of DD at intermediate scales resulted, for instance, 304	

in stronger density dependent effects at forest—prairie interface sites near the Texas-Louisiana-305	

Arkansas borders associated with oak-pine forest (Fig. 1b). Nevertheless, we found two clear 306	

trait predictors: communities comprising species with higher wood densities and trunk diameters 307	

tend to interact more negatively (Table 2 and Figs. 2b, 3d).  In addition, tree communities also 308	

show a sharp shift from negative to positive DD associated with longer, more severe winters  309	

(Figs. 1b, 3e). 310	

 311	

Conspecific density dependence 312	

Average CDD shows similarities with DD. First, their magnitudes were comparable.  Second, 313	

negative CDD is also prevalent.  Third, the geographical pattern of CDD is uncorrelated with RP 314	

(r = -0.02), at least partially because species with stronger negative CDD interactions occur in 315	

numerous scattered locations at smaller geographical scales, such as the lower basin of the 316	

Mississippi River, parts of Florida, lowland forest along the east coast, Appalachian forest, and 317	
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Great Lakes forest.  Fourth, there is again a shift from negative to more positive conspecific 318	

interactions moving northward and westward related to Min F-F days (Figs. 1c, 3a), although the 319	

spatial pattern is weak, albeit still significant (P<0.001), based on the correlogram.  A major 320	

difference is that leaf N instead of wood density was the primary trait predictor of CDD (Table 321	

2), with stands with lower leaf N showing the potential to interact more negatively between 322	

conspecifics (positive correlation, Fig. 2c).  Another difference is that CDD was predicted by a 323	

larger number of traits than DD, including seed mass, maximum trunk diameter, wood density, 324	

and anaerobic tolerance (Table 2 and Fig. 2c).  325	

 326	

Species traits and climate: independent and correlated predictors   327	

It is worth noting that the combined Random Forest models including both climate and species 328	

traits as predictors explained large amounts of the observed geographical patterns of RP, DD, 329	

and CDD (Fig. 2) and captured virtually all spatial pattern; the Moran’s I values of the model 330	

residuals for each variable retained no detectable spatial autocorrelation at any scale (Fig. 1).  In 331	

addition, Random Forest models at the community level explained more variation of RP, DD and 332	

CDD than models at the species level, perhaps because of the significant differences in sample 333	

size (cf. Table 2 and Fig. 2).  Surprisingly, climatic variables per se are not strong predictors; the 334	

pseudo-R2 did not increase appreciably between the Random Forest community model including 335	

only the species traits and the model including both climate and traits (Fig. 2; Appendix S4).  336	

However, the temperature variables, maximum temperature during summer (BIO5) (for RP) and 337	

minimum temperature during winter (BIO6) (for CDD), were related to spatial patterns via their 338	

relationships with specific species traits (BIO5 and BIO6 are correlated with Min F-F days (r = 339	

0.56 and r = 0.62 respectively, Fig. 3c, e).  Moreover, the geographical patterns for density 340	
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independent (RP) and density dependent (DD and CDD) processes were not identical, the former 341	

being much more strongly structured than the latter.  This suggests that the geographical 342	

structure of the magnitude and sign of community density dependent processes do not depend on 343	

the recruitment potential although they are modestly correlated at the species level (rRP-DD	=	-344	

0.40,	rRP-CDD	=	-0.22).  345	

 346	

Discussion 347	

Our central finding is that the recruitment from density independent and dependent processes of 348	

trees species of eastern USA forest communities exhibit broad-scales patterns.  We also found 349	

clear functional predictors.  Among them, variation in the magnitude of recruitment potential has 350	

the clearest geographical structure, explained by the ability to tolerate seasonal freezing 351	

conditions (Min F-F days), seed mass, and maximum temperature during summer (Table 2, and 352	

Figs. 1a, 2).  Several explanations for why forest communities at northern latitudes, at higher 353	

elevations, and along the east coast can recruit up to three times more individuals are plausible 354	

and not mutually exclusive.  First, species have evolved smaller seeds in their adaptation to cold 355	

climates in order to complete rapid seed development to avoid freeze-induced mortality in the 356	

fall (Moles et al., 2007; Hawkins et al., 2014).  Because species with smaller seeds tend to 357	

produce more offspring per individual than species with larger seeds, we expect that being more 358	

fecund may generate higher community recruitment since seed predation rate is generally not 359	

related to seed mass (Moles et al., 2003).  Second, the activity of several drivers of seed/seedling 360	

mortality such as pathogens, insects and mammals increases with temperature, mainly under 361	

moist conditions (Bale et al., 2002; Harvell et al., 2002).  Thus, being adapted to tolerate 362	
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freezing conditions for longer when active growth is not possible (i.e. low Min F-F days) reduces 363	

this biotic risk of mortality.  Finally, a longer growing season with a hot summer increases 364	

seasonal drought and seedling mortality rates by water stress (Ruiz-Benito et al., 2013). 365	

 366	

We also found that density-dependent processes, either in the interactions with the total number 367	

of adults (DD) or with conspecific adults only (CDD), reduced recruitment at almost all spatial 368	

scales (Figs. 1b, c).  Two distinctive functional traits arise when explaining the magnitude of 369	

negative interactions: wood density for DD and leaf nitrogen for CDD (Table 2 and Figs. 2b, c).  370	

A simple explanation for DD partially supported by our analyses may be that tree species with 371	

higher wood density tend to be larger (Table 2, Max Trunk diameter) (Baker et al., 2004), and 372	

bigger individuals produce stronger negative competitive effects on both conspecific and 373	

heterospecific neighbors (Rees, 2013).  Why communities with lower leaf N tend to interact 374	

more negatively only between conspecifics can be related to shade tolerance (Kobe & 375	

Vriesendorp, 2011), although our categorical measure of shade tolerance was unable to account 376	

for the geographical pattern of CDD.  Shade-tolerant species show also enhanced survival 377	

against attack by host-specific enemies because they invest in conservative functional strategies 378	

such as low leaf N, large seeds and dense wood (traits with high relative importance in our 379	

analyses, Table 2) (Kitajima, 1994; Coley & Barone, 1996; Hewitt, 1998).  Also, lower leaf N 380	

can reflect species living on nutrient-poor soils (Fig. 3f, lower Leaf N values correspond to 381	

communities living in ultisols, which are acid forest soils with relatively low fertility).  382	

Competition for nutrients in these environments is probably high compared to more fertile soils, 383	

especially with conspecifics as they exploit similarly soil resources.  384	

 385	
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Tree communities shift from negative to positive DD and CDD from south to north, which 386	

relates to the latitudinal pattern of Min F-F days (Figs. 1b, c, 3a).  This change in the sign of 387	

species interactions (at approx. 100 Min F-F days) with increasing environmental stress (colder 388	

conditions at northern latitudes) is consistent with studies at the global scale supporting the 389	

stress-gradient hypothesis (Callaway et al., 2002).  Seedlings are the stage most sensitive to cold 390	

injury because the layer of cold air close to the ground can freeze their meristems; an effect that 391	

is worsened in forest openings by radiation frost (Howe et al., 2003).  Thus, the presence of adult 392	

trees likely favors seedling survival at northern latitudes by increasing soil surface temperature.  393	

Nevertheless, the fact that the change in the sign of DD and CDD is abrupt and the other main 394	

predictors are functional traits raises doubts about a simple climate-driven explanation.  It may 395	

be possible that negative to positive interactions depend partially on evolutionary histories of 396	

plants. This is a plausible explanation given that we found DD marginally weaker for 397	

gymnosperm species, and changes in composition from angiosperm-dominated forests (Oak-398	

Hickory, Aspen-Birch) to gymnosperm-dominated forests (Spruce-Fir) (Appendix S6) appear to 399	

match the line separating negative from positive interactions (most evident again for DD).  400	

 401	

One surprising result from both the trait and the combined (climate + trait) Random Forest 402	

community models is that Min F-F days is consistently the predictor with the highest relative 403	

importance (Fig. 2, Appendix S4).  It is commonly thought that the ability to respond to 404	

seasonally freezing temperatures defines range limits.  At northern latitudes freezing 405	

temperatures limit fruit maturation, and at southern latitudes budburst may not occur due to the 406	

lack of chilling temperatures.  Indeed, the physiological relationship of freezing with species 407	

occurrences has been extensively explored using process-based species distribution models to 408	
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project shifts in the species ranges due to climate change (reviewed in Chuine, 2010). Our results 409	

suggest an aspect related to demography not widely considered.  Specifically, within species 410	

ranges the degree of adaptation to the seasonal breadth of freezing (and thus the length of the 411	

growing season) influences the magnitude of potential recruitment and the strength and sign of 412	

density dependence of local communities.  We believe that the combination of previous work 413	

with a consideration of the role of phenology can stimulate research to predict not only future 414	

forest composition with environmental change (Cleland et al., 2007) but also the relative 415	

abundances of tree species.  416	

  417	

In sum, by combining demographic, functional, and geographical aspects of local forest 418	

communities, we have found strong broad-scale patterns in three key components of forest 419	

recruitment.  We have also found that a phenological trait related to the tolerance to seasonal 420	

freezing conditions combined with three functional traits (seed mass, wood density, and leaf N) 421	

account most of the observed spatial structure.  Importantly, we have quantified the magnitude 422	

by which these traits explain reduction in recruitment or the shift from negative to positive 423	

interactions.  Nevertheless, we estimated an average value of RP, DD, and CDD per species, and 424	

the observed geographical variation was based on differences in species occurrences among local 425	

communities.  Future research needs to estimate these three parameters within species at smaller 426	

spatial scales to address the question of which drivers are operating locally that can change the 427	

species potential for recruitment and the strength of density dependence, and hence, local 428	

community patterns.  This may account for the 12, 25, and 40% of variation in RP, DD, and 429	

CDD unexplained by our models (there is no residual spatial autocorrelation after fitting the 430	

predictors (Fig. 1), indicating that no additional spatially structured variables are needed to 431	
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explain the patterns statistically).  Coupled with this, we also need more data on intraspecific 432	

trait variation, at least across sites (information logistically difficult to obtain, but it could 433	

initially be focused on seed mass, wood density and leaf N based on the results found here).  434	

Finally, the subplots sampled by the FIA are small (0.017 h), which means that much of the 435	

unexplained variance could be due to sampling error with respect to the trees actually present in 436	

local communities, a potential problem that is difficult to access at the subcontinental scale.  437	

These methodological issues aside, our results show that forest recruitment exhibit broad-scale 438	

patterns, and they can be explained by a few key functional traits.   439	

 440	
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Tables 

Table 1: Environmental and functional traits predictors included in the analyses. N represents the 

number of species with information for each trait. The total number of species in the database is 

164. Source references are included in Appendix S3. 

Type Name N Definition Meaning 
Climatic Annual precipitation (mm)    
 Summer precipitation (mm)    
 Max temperature (ºC)    

 
Min temperature (ºC) 
 

 
 

 
 

 
 

Species 
traits 

Anaerobic tolerance 141 Relative tolerance to anaerobic soil 
conditions. 

Stress tolerance  

      CaCO3 tolerance 141 Relative tolerance to calcareous soils. Stress tolerance 

 Dispersal mode 159 Unassisted, animal, or wind. Disturbance and dispersal  

 Drought tolerance 141 Relative species tolerance to drought 
conditions compared to other species with 
the same growth habit from the same. 
geographical region 

Stress tolerance 

 Fire tolerance 139 Relative ability to resprout, regrow, or 
reestablish from residual seed after a fire. 

Regeneration, disturbance 
and resource use  

 Growth rate 137 Growth rate after successful establishment 
relative to other species with the same 
growth habit. 

Resource use 

 Max Height (m) 164  Light acquisition 
 Leaf Nitrogen (Nmass %) 106  Leaf economics-resource  

 
capture 

 Leaf Phosphorus (Pmass %) 82  Leaf economics-resource  
  Max trunk diameter (m) 144  Light acquisition 

 Min frost-free days 140 The minimum average number of frost-free 
days within the species’ geographical range. 

Stress tolerance 

 Min root depth (cm) 141 The minimum depth of soil required for 
good growth. 

Stress tolerance 

 Leaf Phenology 164 Evergreen versus deciduous. Resource use  

 Seed mass (mg) 155  Regeneration  

 Shade tolerance 143 Relative tolerance to shade conditions. Light acquisition 

 Wood density (mg/cm3) 113  Resource use, resistance 
to pathogens 
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Table 2: Random Forest models at the species level including all trait predictors (environmental 

predictors are excluded). Shown are variable importance values (VI) of the species traits with VI 

>75 for recruitment potential, density dependence, and conspecific density dependence. 100 

indicate the species trait with the highest relative importance for the Random Forest model. The 

sign of Pearson’s correlation are given to indicate the sign of the relationship. The percentage of 

explained variance (Pseudo-R2) gives an overall fit for the model.  

 

 Recruitment  

Potential (RP) 

Density  

Dependence (DD) 

Conspecific Density 

Dependence (CDD) 

Pseudo- R2 0. 31 0. 28 0. 22 

Species trait    

Anaerobic tolerance   80.7 (-) 

Leaf N mass   100 (-) 

Max trunk diameter  95. 4 (-) 75.1 (-) 

Min frost-free days 87. 6 (-) 81. 0 (-) 85. 3 (-) 

Seed mass 100 (-)  75. 7 (-) 

Wood density  100 (-) 78. 3 (-) 
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Figure Legends 

 

Figure 1: Figure 1: Left column: (a) geographical pattern of mean recruitment potential (RP), 

(b) mean strength of density dependence (DD), and (c) mean strength of conspecific density 

dependence (CDD) for the eastern forest of the USA. Inset in (b) shows change from negative to 

positive interactions moving northwards. Right column: spatial correlograms of RP, DD, and 

CDD using random samples of 15,000 sites. Raw data and residuals correspond to Random 

Forest models provided in Fig. 2. All Moran’s I values for the residuals are between -0.02 and 

0.03. 

 

Figure 2: Variable importance values from a Random Forest model (based on 200 regression 

trees) of (a) mean of recruitment potential (RP), of (b) mean of the strength of density 

dependence (DD), and of (c) mean of the strength of conspecific density dependence (CDD), 

including all trait and environmental predictors. Broad-scale environmental variables are in 

white, and traits are in gray. Pearson’s correlations are given for those important predictors to 

provide the sign of the relationship. Non-abbreviated value names are given in Table 1. Similar 

models performed only with the most important predictors are presented in Appendix S4.  

 

Figure 3: Geographical pattern of the mean of the most important predictors resulting from the 

Random Forest analyses. For a detailed description see Table 1.		
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