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Abstract 

The revegetation of polluted sites and abandoned agricultural soils is critical to reduce 

soil losses and to control the spread of soil pollution in the Mediterranean region, which 

is currently exposed to the greatest soil erosion risk in Europe. However, events of 

massive plant mortality usually occur during the first years after planting, mainly due to 

the adverse conditions of high irradiance and drought stress. Here, we evaluated the 

usefulness of considering the positive plant-plant interactions (facilitation effect) in the 

afforestation of polluted agricultural sites, using pre-existing shrubs as nurse plants. We 

used nurse shrubs as planting microsites for acorns of Quercus ilex (Holm oak) along a 

gradient of soil pollution in southwestern Spain, and monitored seedling growth, 

survival, and chemical composition during three consecutive years. Seedling survival 

greatly increased (from 20% to more than 50%) when acorns were sown under shrub, in 

comparison to the open, unprotected matrix. Facilitation of seedling growth by shrubs 

increased along the gradient of soil pollution, in agreement with the stress gradient 

hypothesis that predicts higher intensity of the facilitation effects with increasing abiotic 

stress. Although the accumulation of trace elements in seedling leaves was higher 
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underneath shrub, the shading conditions provided by the shrub canopy allowed 

seedlings to cope with the toxicity provoked by the concurrence of low pH and high 

trace element concentrations in the most polluted sites. Our results show that the use of 

shrubs as nurse plants is a promising tool for the cost-effective afforestation of polluted 

lands under Mediterranean conditions. 

 

Keywords: nurse plant; soil remediation; soil pH; Quercus ilex; Retama sphaerocarpa. 

Highlights: 

 We assessed the potential use of nurse shrubs for the afforestation of 

Mediterranean polluted soils. 

 Holm oak acorns were sown in different planting microsites along a gradient of 

soil pollution 

 Shrub cover greatly increased oak seedling survival during the first three years 

after sowing. 

 The facilitation of oak seedling growth by shrubs increased along the pollution 

gradient. 

 Using nurse shrubs is a promising tool for the afforestation of polluted 

agricultural lands. 
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1. Introduction 

The revegetation of degraded sites and abandoned agricultural soils is critical to reduce 

soil losses in the Mediterranean region, which is currently exposed to the greatest soil 

erosion risk in Europe (Grimm et al., 2002; Panagos et al., 2015). Among degraded 

sites, the revegetation of polluted sites should be prioritised, as the increase in soil 

erosion could lead to the spread of pollutants from polluted spots. However, 

establishing a woody plant cover in these degraded sites is a challenging task, given that 

the environmental conditions in these sites are, in general, far from similar to those in 

which natural regeneration occurs.  

In barren polluted sites, such as those affected by mining activities, vegetation is often 

poorly developed and the soil surface is exposed to high irradiance; soils are usually 

poor in organic matter, and their structure is frequently altered (Tordoff et al., 2000; 

Walker, 2002), leading to a decreased water holding capacity (Stocking and Murnaghan, 

2001). All these factors strongly reduce seedling survival during the dry season, which 

constitutes one of the most limiting demographic processes for regeneration in 

Mediterranean woody plant species (Pérez-Ramos et al., 2012; Pulido and Díaz, 2005; 

Rey and Alcántara, 2000). Consequently, mortality rates during the first years after 

planting are usually very high in Mediterranean degraded sites (Gómez-Aparicio et al., 

2004; Navarro-Cerrillo et al., 2005; Pausas et al., 2004), and the afforestation of large 

degraded areas poses a huge cost for local and regional authorities. 

The need for alternative afforestation techniques prompted a number of studies during 

the last decade to explore the potential application of positive plant-plant interactions 

for the restoration of degraded sites (Castro et al., 2004; Gómez-Aparicio et al., 2004; 

Maestre et al., 2001). Based on results obtained in these studies, many authors have 
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called for a change in the paradigms of traditional afforestation techniques towards a 

new conceptual framework that considers the spatial heterogeneity of vegetation 

structure and promotes these positive plant-plant interactions (Gómez-Aparicio, 2009; 

Padilla and Pugnaire, 2006; Rey-Benayas et al., 2008). Many studies in Mediterranean 

ecosystems have reported that the presence of pioneer shrub species (often called nurse 

plants) facilitates the establishment of other late-successional species under their 

canopies, mainly due to the amelioration of extreme temperature conditions and the 

improvement of plant water status (Callaway, 1992; Castro et al., 2004; Gómez-

Aparicio et al., 2005; Padilla and Pugnaire, 2009), but also by the concurrence of better 

soil conditions under the shrubs (Pugnaire et al., 1996). In addition, facilitation by nurse 

plants may also be mediated by indirect underlying mechanisms when the nurse species 

promotes other mutualistic or beneficial interactions with soil microorganisms, such 

mycorrhizal species (Goberna et al., 2007; Gonzalez-Polo et al., 2009; Duponnois et al., 

2011; Martinez-Garcia et al., 2011). The target species may also benefit from the release 

of herb competition for water and nutrients under the nurse shrubs (Cuesta et al., 2010). 

Positive plant-plant interactions are expected to be especially beneficial under high 

abiotic stress (Callaway et al., 2002; Lortie and Callaway, 2006), and therefore the 

application of the facilitation effect could be particularly useful in highly disturbed 

environments (Brooker et al., 2008; Pueyo et al., 2008; Zsereva and Kozlov, 2007). 

Surprisingly, there are very few examples of the application of these techniques in the 

restoration of polluted sites. In these sites, the presence of nurse shrubs might have 

additional benefits to the target species, given that the higher levels of soil organic 

matter detected under the shrub canopy (Ginocchio et al., 2004) as well as the 

stabilisation of pollutants in the nurse root system (Domínguez et al., 2009; Frèrot et al., 

2006) could reduce the levels of bioavailability of some pollutants. Conversely, airborne 
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pollutants can be captured and accumulated more intensively under the shrub canopy 

than in open gaps, resulting in a better performance of the target species at a certain 

distance from the shrub canopy (Eränen and Kozlov, 2007). To date, very few studies 

have assessed the role of the chemical stress (i.e. high concentrations of toxic elements 

in the soils) in the intensity of the facilitation by shrubs. According to the abiotic stress 

gradient hypothesis (Bertness and Callaway, 1994; Callaway et al., 2002; Pugnaire and 

Luque, 2001), the intensity of the facilitation effect enhances with increasing stress. 

Therefore, given similar levels of water and light conditions, it would be expected that 

the facilitation effect provided by shrubs will be higher as the chemical stress (i.e. soil 

pollution) increases. Here, we aimed to test this hypothesis.  

In this study, we evaluated the effectiveness of using nurse shrubs as planting microsites 

for acorns of Quercus ilex (Holm oak) along a gradient of soil pollution in the 

Guadiamar River Valley (southwestern Spain). Soils in this area were affected by a 

mining accident that polluted them with trace elements, mainly As, Cd, Cu, Pb, and Zn 

(Domínguez et al., 2008). We followed a two-phase restoration strategy, first selecting 

shrubs that were planted during the initial afforestation of the area (after the accident), 

and secondly, planting acorns under the shrubs as potential facilitators of oak 

recruitment. This multi-phase technique, which attempts to mimic the natural sequence 

of the successional process (i.e. herb-shrub-tree), could result in a valuable restoration 

tool of degraded areas, as previously proposed for other Mediterranean non-polluted 

forests (Gómez-Aparicio et al., 2004; Siles et al., 2008). Specifically, we were interested 

in testing that: 1) the presence of shrubs have a significant effect on soil properties, 

particularly organic matter, pH, and nutrient content, which results in a better nutritional 

status of the target plant and in a lower accumulation of trace elements in the 

aboveground biomass; 2) microsites under shrubs are more favourable for emergence, 
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survival, and growth of oak seedlings than the open, unprotected microsites; 3) the 

intensity of facilitation increases along a gradient of soil pollution (chemical stress). As 

a secondary objective, we aimed to test whether the intensity of the facilitation is higher 

when a pioneer shrub species (Retama sphaerocarpa), rather than a late-successional 

shrub (Phillyrea angustifolia), is used as a nurse in these harsh environments. 

Understanding the effectiveness of different nurse plants constitutes an issue of major 

interest for the conservation and restoration of degraded ecosystems (Gómez-Aparicio, 

2009; Rolo et al., 2013). 

2. Material and Methods 

2.1. Study site and species 

The Guadiamar River Valley is located in southwestern Spain. The climate is 

Mediterranean-type with an annual average of about 2900 h of sunshine and maximum 

values of solar radiation exceeding 1000 W m
-2

. The average annual temperature is 19 

ºC, the average annual rainfall is 610 mm, and potential evapotranspiration is 774 mm.  

The area was affected by a large mining accident in 1998, contaminated the soils, 

mostly under agricultural production, with As, Cd, Cu, Pb, Tl, and Zn (Cabrera et al., 

1999; Garralón et al., 1999). Although sludge and contaminated topsoils were removed 

after the accident, the underlying soils still contained high concentrations of trace 

elements (Moreno et al., 2001). In 1999–2001 the affected area was afforested using 

native Mediterranean shrub and tree species as part of a large soil remediation and 

phytomanagement programme (Domínguez et al., 2008). Plantations followed the 

traditional technique using regular planting grids, with densities ranging from 480 to 

980 plants per hectare. The success of these plantations was very irregular; plant species 

in the higher terraces showed higher mortality rates, which was positively related to the 
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drought stress and the high levels of soil pollution, while riparian species showed the 

highest survival and growth rates (Domínguez et al., 2010a). A monitoring survey 

carried out eight years after the plantations showed that shrub species contributed the 

highest percentage of cover (Rodríguez et al., 2009). 

We selected Holm oak (Quercus ilex subsp. ballota Desf. Samp), which is the most 

common late-successional tree in the native forests in the area, as the target species to 

afforest. We tested the potential of two of the most common shrub species planted in the 

area as nurse plants for the establishment of Holm oak seedlings: Retama sphaerocarpa 

and Phillyrea latifolia. In one of the experimental sites where P. latifolia was absent 

(Site 2, see below), wild olive saplings (Olea europea) of similar age and height were 

used instead as late-successional nurse plants. 

2.2. Experimental design 

Four sites were selected along a gradient of soil pollution in the Guadiamar Valley, 

determined by the distance to the pollution source, based on previous surveys of the 

spatial distribution of soil and plant trace elements along the Valley (Domínguez et al., 

2008). All these sites were under agricultural or pasture production before the accident 

(1998), and were afforested between 1999 and 2001 during the implementation of the 

remediation programme. 

Holm oak acorns were collected in October–December 2005 from native, non-

contaminated forests in the Valley. Unhealthy acorns were discarded using the flotation 

method (Gribko and Jones, 1995), and the rest of the acorns were stored at 2–4 ºC until 

used. In December 2005 the selected acorns were sown in 15 experimental units per 

site. Each experimental unit consisted of a pair of planting microsites, separated by a 

maximum distance of 10 m: a) SHRUB, under the canopy of the selected shrub species, 



 8 

and b) OPEN, in the open sites, without the protection of any plant cover. From the 15 

experimental units per site, 8 had R. sphaerocarpa individuals as nurse shrub, and 7 had 

P. angutifolia/O. europaea individuals. In each of the planting microsites, 8 acorns were 

sown horizontally, protected by wire cages (25 × 25 × 25 cm) to exclude seed predators. 

Previously, acorns were weighed individually to ensure homogeneity in the size of the 

used acorns. A total of 960 seeds were sown. Under shrubs, acorns were systematically 

sown at the southeast face of the shrubs. 

 

2.3. Microsite  environment characterisation 

To analyse the effect of shrubs on microenvironmental conditions, we characterised 

some key above and belowground properties in each experimental unit. Light 

availability was quantified by hemispherical photography using a digital camera 

(Coolpix 4500, Nikon) aimed at the zenith, with a fish-eye lens with 180 degree field of 

view (FCE8, Nikon). Photographs were taken at dawn, sunset, or under cloudy 

conditions. Images were analysed using Hemiview canopy analysis software ver. 2.1 

(1999, delta-T Devices, Cambridge, UK). Global Site Factor (GSF) ranging from 1 

(lack of plant cover) to 0 (complete cover) was used as an integrative index of light 

availability at the ground level.  

Soil moisture (soil volumetric water content, SVWC) was measured at every routine 

visit to the experimental microsites (see details below) using a time-domain 

reflectometer (TDR, Campbell Scientific Inc., Logan, UT, USA) with 12 cm depth rods. 

At least two measurements were taken and averaged in each experimental unit at each 

time. Soil samples (0–10 cm) were collected from each of the experimental microsites 

in spring 2008 using an auger of 3 cm diameter. Several samples were collected and 

mixed at each planting microsite to produce a composite soil sample per microsite and 
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experimental unit (a total of 120 soil samples). Samples were air dried and sieved to < 2 

mm to analyse standard chemical and physical properties: pH, organic matter content 

(Walkley and Black, 1934), total organic-N content (Kjeldahl digestion; Kammerer et 

al. 1967), available P (Olsen et al. 1954), and available K (1M ammonium acetate 

extraction and determination by atomic emission spectroscopy, Bower et al. 1952). A 

fraction of each soil sample was also ground in an agate mortar to <1 mm for trace 

elements analysis. Soil samples were digested using ‘aqua regia’ (1:3 concentration 

HNO3:HCl) in a microwave oven (Microwave Laboratory Station Mileston ETHOS 

900, Milestone s.r.l., Sorisole, Italy) and analysed for trace elements concentrations (As, 

Cd, Cu, Mn, Pb, Tl, and Zn) by ICP-MS (inductively coupled plasma-mass 

spectroscopy, Perkin Elemer, Sciex-Elan 5000). In a subset of 10 of the 15 experimental 

units per microsite (a total of 80 soil samples), soil microbial biomass was also analysed 

in fresh samples within 48 h after collection using the fumigation-extraction method 

(Gregorich, 1990). 

Because the presence of shrubs might also improve oak seedling performance by 

releasing competition with herbs for water and nutrients (Cuesta et al., 2010), we 

estimated the abundance of herbaceous plant species in each experimental unit and 

microsite in the late spring of 2007 by harvesting the aboveground biomass contained in 

two 25 × 25 cm quadrats per microsite. Samples were oven dried at 70 ºC for 48 h and 

further weighed. 

2.4. Seedling monitoring and growth analysis 

We monitored seedling emergence, growth, and survival over three consecutive years 

(from January 2006 to December 2008). During the first three months after sowing the 

experimental units were visited fortnightly to record seedling emergence and survival. 

Afterwards, the experimental units were monitored once per month during the first year, 
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and once per season during the second and the third year. The height of the emerged 

plants was also measured at each visit using a ruler. 

In order to conduct a detailed analysis of seedling growth and morphology, we 

performed non-destructive measurements of stems and leaves on a subsample of the 

emerged seedlings. For each experimental unit and microsite, a seedling was randomly 

selected and marked (N = 15 seedlings per microsite and site) at the beginning of the 

growing season of the second year (March 2007). We preferred not to quantify seedling 

growth for the first year due to their recognised primary dependence on seed mass 

(Pérez-Ramos et al., 2010). Length and diameter at the base and the top of each stem 

and branch were recorded to calculate stem/branch volume. The number of leaves was 

counted, and the length and width of each leaf was measured using a digital caliper. 

These measurements were taken at the beginning (March–April 2007) and end (June–

July 2007) of the growing season in order to estimate relative growth rates (see below). 

The same measurements were conducted one year later (2008) on the same marked 

seedlings to estimate growth rates during the third growing season.  

To estimate plant biomass from these non-destructive measurements, a subset of 

seedlings (four per site and microsite) was harvested and transported to the laboratory in 

a chilled container. There, a calibration between the non-destructive and destructive 

biomass measurements was conducted. Allometric relationships between dry biomass 

measured in the laboratory and field measurements were established for each type of 

microsite (r
2
 > 0.93). Total aboveground biomass (M) of each marked seedling in the 

field was then calculated for each sampling date, and aboveground relative growth rates 

(RGR) were calculated as RGR = (lnM1 - lnM0)/t, where M0 and M1 are the total 

biomass values at the beginning and end of each growing season, respectively, and t is 

the time interval (number of days) between the two dates (Hunt, 1978).  
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2.5.  Plant chemical analysis 

At the end of the experimental period (autumn 2008), a subset of the surviving seedlings 

(five per site and microsite) was harvested to measure their final biomass and analyse 

the chemical composition of their roots and leaves. For the collection of the root 

samples, the surrounding soil was carefully excavated, as deep as possible, and the 

maximum depth of the rooting system was recorded. For chemical analyses, only the 

top 10 cm of the root length were considered. Leaves, stems, and roots were washed 

thoroughly with distilled water, dried at 70 ºC for at least 48 h, weighed, and ground 

using a stainless-steel mill. Plant material was digested in a microwave oven using 

concentrated HNO3. Macronutrients (except N) were analysed by ICP-OES (Inductively 

Coupled Plasma Optical Emission Spectrophotometry; Thermo Jarrel Ash Corporation). 

Trace elements were analysed by ICP-MS. The quality of the analysis was assessed 

using reference materials NCS DC 73350 (white poplar leaves, China National Analysis 

Center for Iron and Steel) and INCT-TL-1 (tea leaves, Polish Institute of Nuclear 

Chemistry and Technology). Our experimental values showed recoveries from the 

certified values of 81 to 105%. Isotopic analyses of C and N in the leaf samples were 

performed using a continuous flow elemental analyser-isotopic ratio mass spectrometer 

(EA Thermo 1112-IRMS Thermo Delta V Advantage). The precision for both the δ
13

C 

and δ
15

N analyses was approximately 0.2 per mil. 

 

2.6. Data analysis 

A principal component analysis (PCA) was applied to explore the patterns of 

covariation among all the studied environmental variables. Previously, variables were 

log-transformed. To test for the effect of nurse shrubs on environmental properties (soil 
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characteristics, herb biomass and light availability, previously log-transformed), a 

mixed-linear model was applied, with microsite type (shrub vs. open) as a fixed factor 

and site as a random factor. Likewise, similar models were applied to test for the effect 

of nurse shrubs on seedling growth rates and chemical composition. 

We applied generalised linear models (GLZ) to analyse the effect of shrubs on seedling 

emergence. Emergence was considered as a binomial variable, whereas emergence time 

(period of time between the sowing date and the date of emergence) followed a gamma 

distribution. GLZ models were also applied to study the influence of the different 

microsite environmental conditions (seasonal soil moisture values, light availability, soil 

physico-chemical properties, and herb biomass) on emergence time, as well as on 

different parameters related with seedling growth (aboveground biomass and RGR). In 

all these analyses, soil Cd concentration was used as an index of soil pollution, given 

that the concentrations of all the metals deposited on the soil by the mine spill are 

largely interrelated (Domínguez et al., 2008), and that Cd showed the highest levels of 

bioavailability after the remediation of the area (Domínguez et al., 2009). Soil moisture 

values were averaged by season to have some indicators of the seasonal moisture levels 

at each experimental unit. 

The distribution of the seedling survival times was analysed by Kaplan-Meier function 

estimations using the Gehan’s Wilcoxon test for the comparison of the survival curves 

between microsites and across sites. We used the Cox's Proportional Hazard Model as a 

regression model to estimate the influence of the environmental variables on survival 

times. All the mentioned analyses were performed using STATISTICA v.7 (StatSoft 

Inc., Tulsa, OK, USA). 
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To summarise the effect of shrub presence on the demographic processes and traits 

considered in this study (emergence, survival, growth, and accumulation of trace 

elements), we used a modified Relative Neighbour Effect index (RNE, Markham & 

Chanway, 1996). The original RNE ranges from -1 to 1, with negative values indicating 

facilitation and positive values indicating competition. In our case, we calculated the 

inverse of this index so that facilitation effect could be indicated by a positive index for 

an easier interpretation (Gómez-Aparicio et al., 2004). For seedling emergence (E), 

RNE was calculated for each site as RNEE = (Esb - Eop)/Emax, where Esb is emergence 

rate under nurse shrubs (sb), Eop is the emergence rate in the open microsites (op), and 

Emax is the emergence rate in the site with the greatest emergence in the pair. Similarly, 

for seedling survival (S), RNES was calculated as RNES = (Ssb - Sop)/Smax. For seedling 

growth (G), RNEG was calculated as RNEG = (RGRsb - RGRop)/RGRmax, where RGRsb is 

the mean relative growth rate (RGR) in the shrub microsite, RGRop is the mean relative 

growth rate in the open microsite, and RGRmax is the maximum growth value in each 

site. We also used Zn and Cd leaf concentrations (C) to calculate a RNEA for trace 

element accumulation (A) in each site: RNEA = (Csb - Cop)/Cmax. 

 

3. Results 

3.1. Soil properties and effect of shrub cover on microsite  

Soils from the different sites had contrasted pH and trace element concentrations. In the 

most contaminated site (Site 3), extremely acid soils (pH < 4) were frequently found, as 

the result of the oxidation of the remnants of sludge deposited on the soil during the 

mining accident (Table S1). Main pollutants were As, Cd, Cu, Pb and Zn, for which 
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concentrations in the most polluted site were up to 133, 0.86, 180, 250 and 247 mg kg
-1

, 

respectively (Table S1). 

Some of the aboveground and belowground microsite properties showed a strong 

pattern of covariation. A PCA applied to all the studied environmental variables, with 

all sites and microsites pooled, revealed that those soils located in polluted sites (i.e. 

with higher values of soil Zn and Cd) tended to have lower soil pH and lower soil 

moisture during spring and summer. Herb biomass was more closely associated to 

winter soil moisture and soil organic matter than to light availability, and soil microbial 

biomass was basically driven by soil pH (Figure 1, Appendix Table S2). 

The presence of shrub had a limited influence on soil properties. Most of the variability 

in the studied soil variables was determined by the differences across sites, and not 

between microsites (shrub vs. open, Appendix Table S3). Only organic matter content 

was significantly higher in the soils under shrub than in the open microsites (mixed-

linear model, microsite effect: F =143.15, p = 0.023). For organic N content, there was a 

significant site × microsite interaction (F = 6.52, p < 0.001). Light availability, as 

expected, was clearly lower under shrubs (mixed-linear model, microsite effect: F 

=117.39, p =0.002). 

When distinguishing between nurse types, we found that under the pioneer shrub (R. 

sphaerocarpa) the amount of light reaching the ground level tended to be higher (F = 

7.33, p =0.07) than under the late-successional shrub (P. angustifolia). In general, soils 

underneath P. angustifolia individuals tended to be richer in phosphorus (F = 7.1, p= 

0.07) than soils underneath R. sphaerocarpa. 

 

3.2.  Seedling emergence and survival 
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Seedling emergence was similar between microsite types (GLZ; microsite effect: Wald 

statistic = 2.06, p = 0.151, Supplementary Information, Table S4). The final percentage 

of emerged seedlings was not significantly influenced by any environmental factor, 

including soil moisture, light availability, or soil pollution (data not shown). However, 

the timing of emergence (period of time between the sowing date and the average date 

of emergence) was significantly influenced by soil moisture (Supplementary 

Information Table S5). 

Nurse shrubs had a clear positive effect on seedling survival (Gehan’s Wilcoxon test = -

11.7, p ˂ 0.0001; Figure 2a). In the open microsites, massive seedling mortality 

occurred during the first summer, when nearly 50% of the emerged seedlings died. 

Under the shrub cover, the number of seedlings surviving the first summer was around 

90%, and afterwards the mortality rates were still much lower than in the open 

microsites. At the end of the experimental period (three years after seed sowing), the 

probability to survive under shrub was higher than 50%, while in the open sites it was 

lower than 20% (Figure 2a). When comparing across sites, survival curves were also 

significantly different (Chi² = 27.2759, p = 0.0024), with the lowest survival rates 

(when both microsites were pooled) found in the most polluted site (Site 3, Figure 2b). 

When distinguishing between shrub species (R. sphaerocarpa vs. P. angustifolia), a 

significant site × shrub species interaction was found (GLZ, Wald statistic = 10.1; p = 

0.018). In general, seedling survival was similar or slightly higher under R. 

sphaerocarpa individuals than P. angustifolia, except in Site 3, where the mortality 

under the R. sphaerocarpa shrubs was comparatively higher (Figure 2c). 

Survival regression analysis confirmed that, when all microsites were pooled together, 

light availability at the ground level was the environmental factor with the greatest 

influence on seedling survival (Table 1). In addition, soil pH also influenced survival 
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dynamics significantly. Thus, those seedlings that emerged in extremely acidic soils, 

which could be found in the most polluted site due to the oxidation of the metal 

residues, had a lower probability to survive the dry periods. When the regression 

analysis was performed for each microsite type individually, soil pH was the only 

influential factor for seedling survival under shrub. In the open microsites, soil pH and 

light influenced survival curves significantly. Interestingly, light was positively 

associated to the survival of the seedlings in the open microsites, as opposed to the 

general pattern observed when both microsite types (spanning a broader range of light 

availability values) were pooled.  

 

3.3. Seedling growth  

The intensity of the facilitation of growth by shrubs was enhanced with plant age, but 

only in those sites where soil conditions were more stressful for plants. After the second 

growing season (two years after sowing), seedling aboveground biomass was similar or 

slightly higher under shrub than in the open microsites, except in the most polluted site  

(Site 3, Figure 3a). Relative growth rates were heterogeneous across sites, without any 

clear pattern of facilitation of growth under shrub (Figure 3b). However, during the 

third growing season, RGR was clearly higher under the shrubs in those spill-affected 

sites, while in the non-affected sites RGR remained similar between microsites (mixed-

linear model; site × microsite interaction:  F = 2.56, p = 0.06; Figure 3d). Moreover, 

there was a relationship between the level of soil pollution and the facilitation intensity 

(the relative increase in seedling growth under shrub, in comparison to the open 

microsites) during the third growing season (Figure 4). 
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3.4. Plant chemical composition 

The presence of shrubs did not have a strong influence on the nursed plant nutritional 

status (Table 2). Only in the two polluted sites were there some significant differences 

between microsites. In these sites, leaf Mg concentration tended to be higher in those 

shrub-nursed plants (Table 2; Supplementary Information Table S6). When 

distinguishing between shrub species, plants under R. sphaerocarpa benefited from the 

N-fixing capacity of this shrub species, as indicated by a higher leaf N content and a 

lower 
15

N signature of the seedling, in comparison with plants growing under P. 

angustifolia (data not shown).  

Trace element composition in the oak seedlings was driven basically by the site 

location, as soil pollution levels were very different across sites (Table 2). The type of 

microsite significantly influenced leaf Mn and Tl only; plants under shrub tended to 

accumulate more Mn and less Tl in their leaves (Supplementary Information Table S7). 

Leaf Zn concentrations also tended to be greater in those seedlings under shrub (mixed-

linear model, microsite effect: F = 8.40; p = 0.059). In roots, Pb concentrations were 

significantly higher in those plants growing in open microsites (Table 2; Supplementary 

Information Table S7). In all cases, leaf trace element concentrations were within the 

normal ranges for higher plants, and below the phytotoxic threshold values 

(Supplementary Information Table S7). 

 

3.5. Relative neighbour effects 

The analysis of relative neighbour effects (RNE) allowed the comparison of the 

facilitation intensity among different plant processes. Among the studied processes, the 

intensity of the facilitation by shrubs was, by far, higher for plant survival than for 
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seedling emergence or growth (highest positive RNE, Figure 5). The balance of the 

shrub-seedling interaction on seedling growth depended on the site and seedling age, 

and, as revealed above, the facilitation of growth by shrubs increased with the plant age. 

In contrast to one of our initial hypotheses, the accumulation of the two most labile soil 

pollutants (Cd and Zn) in oak seedlings was also enhanced under the cover of shrubs. 

 

4. Discussion 

 

4.1.  Shrub effects on soil properties and trace element accumulation 

In natural Mediterranean shrublands, shrubs exert a significant influence on soil 

physico-chemical properties, promoting the accumulation of soil organic matter and 

enhancing soil microbial activity (Duponnois, 2011; Goberna et al., 2007, Gonzalez-

Polo et al., 2009), thereby resulting in greater nutrient availability and moisture 

retention in the soils underneath (Boeken and Oresten, 2001; Gómez-Aparicio et al., 

2005; Pugnaire et al., 1996). This shrub influence on soil is a key driver for the 

dynamics of plant communities inhabiting these water-limited environments (Armas 

and Pugnaire, 2005; Boeken and Oresten, 2001; Shachak et al., 2008), as well as for the 

colonisation of new species in highly disturbed ecosystems (Párraga-Aguado et al., 

2013; 2014). Therefore, we expected that in the studied afforested sites, where shrubs 

had been planted nine years before soil sampling, the presence of the shrubs would 

result in significant changes in some key soil properties in comparison to the open 

matrix. However, most of the variability in soil parameters was determined by the 

differences across sites, and only organic matter levels were significantly greater in the 

soils underneath shrub. Similarly, Cuesta et al. (2010) did not find a significant increase 

in nutrient content in soils located under young R. sphaerocarpa individuals in 
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comparison to open microsites six years after their plantation. It is possible that at this 

successional stage after agriculture abandonment and afforestation, when ruderal 

species still contribute significantly to total aboveground biomass (Madejón et al., 

2009), the influence of shrubs on soil nutrient availability is overruled by the presence 

of ruderal herbs, in comparison to natural Mediterranean shrublands. In the future, it is 

quite likely that the influence of shrubs on soil organic matter and nutrient availability 

will become more evident as ruderal plant species are replaced by other herbs with other 

suites of functional traits (Kazakou et al., 2006; Kazakou et al., 2009; Pywell et al., 

2003) and as the shrub cover increases. In addition, soil contamination may be 

hampering the decomposition of the shrub litter to a certain extent, slowing the 

processes of organic matter formation and differentiation of physico-chemical 

properties between microsites. A recent work in the same study area showed that 

microbial biomass and activity were strongly affected by the soil acidification and the 

high availability of trace elements in the polluted soils (Madejón et al., 2012), affecting 

tree litter decomposition (Ciadamidaro et al., 2014).  

The presence of shrubs did not have a strong influence on the patterns of trace element 

accumulation in the target species. In contrast to one of our hypotheses, the 

accumulation of Mn and Zn was enhanced, and not suppressed, by the presence of 

shrubs, and the RNE index showed a positive effect of the shrubs on Zn and Cd 

accumulation in the oak leaves. On the one hand, the solubilisation of these cationic 

trace elements could be enhanced under shrubs due to the wetter soil conditions. In 

addition, as shrubs (particulary R. sphaerocarpa) are able to explore deeper soil layers 

than herbs and promote the hydraulic lift to shallow layers (Prieto et al., 2010), it is 

possible that they enhanced the mobilisation and transport of these two labile elements 

from deeper layers. On the other hand, the litter quality of shrub species might have also 
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influenced the solubilisation of trace elements in the soils underneath. The studied 

species are evergreen shrubs with a low SLA and high LDMC. In Mediterranean woody 

species, these traits are usually associated to low Ca concentration in the leaf 

(Domínguez et al., 2012), which usually promotes the acidification of the soils 

underneath (Reich et al., 2005). Despite the greater accumulation of Zn and Cd in the 

oak seedlings growing underneath shrubs, trace element accumulation in leaves was 

always within the normal ranges reported for higher plants, and below the phytotoxic 

thresholds. Therefore, this unexpected enhancement of trace element accumulation 

under shrub is not likely to pose a disadvantage for the oak seedlings growing in this 

type of microsite in comparison to those without the protection of shrubs. 

4.2.  Seedling performance in polluted areas: the role of nurse shrubs 

 

4.2.1  Seedling emergence and survival 

Nurse shrubs had a clear facilitation effect on oak seedling establishment, strongly 

decreasing oak seedling mortality over the dry season. Our results indicate that the 

underlying mechanisms of facilitation were mainly related to the improvement of 

microclimatic conditions derived from shading, as indicated by the selection of light as 

the best predictor of seedling survival in our regression models. Shading prevented 

plants from the damaging effects of high irradiance, extreme temperatures, and water 

loss during the summertime, with Q. ilex seedlings likely being less water stressed and 

photoinhibited under shrubs than in the open sites (Baquedano and Castillo, 2006; 

Cuesta et al., 2010). Soil nutrients apparently had a minor role in the facilitation 

process, given that soil nutrient concentrations were not increased under shrub, as 

discussed in detail above. When distinguishing between nurse types, seedling survival 

rates were slightly higher under the pioneer shrub (R. sphaerocarpa) than under the late 
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successional shrubs (P. angustifolia and O. europaea), although this pattern was not 

observed in the most polluted site. Seedlings growing under R. sphaerocarpa might 

benefit from the higher light availability in comparison to the conditions under the 

canopy of the late-successional shrubs. The moderate shading conditions provided by 

the pioneer, leafless shrub would allow seedlings to maintain a relatively high C gain 

during the growing season, potentially helping them to tolerate drought stress during the 

dry season (Valladares et al., 2004). 

Our results also highlight the importance of soil acidity (low pH) for oak mortality in 

polluted sites. For both types of microsites, those seedlings that emerged in more acidic 

soils had a lower probability to survive the dry season. In these soils, the availability of 

cationic trace elements, and consequently, the risk of toxicity to plants, is basically 

driven by soil pH (Domínguez et al., 2009). Previous studies with woody plant species 

have reported root damage by trace elements, but low contaminant transport from roots 

to shoots (Arduini et al., 1996; Fuentes et al., 2007; Wisniewski and Dickinson, 2003). 

Therefore, despite the fact that trace element accumulation in seedling aboveground 

biomass was always below the phytotoxic thresholds, toxicity at the root level cannot be 

excluded. Metal toxicity might cause multiple direct and indirect effects that concern 

plant-water relations (reviewed by Barceló and Poschenrieder, 1990). Damages in the 

root system might be critical for seedling survival, given that the development of an 

extensive root system is crucial to cope with water stress and survive the dry season 

(Castro, 2006; Urbieta et al., 2008).  In addition, oak plants growing in acidic soils from 

this area are more prone to show nutritional deficiencies, particularly of phosphorus 

(Domínguez et al., 2010b).  

In contrast to the clear effect on seedling survival, the presence of shrubs did not exert 

any influence on seedling emergence, likely because this process was more dependent 
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on initial seed reserves than on external resources (Pérez-Ramos et al., 2010; Quero et 

al., 2007). In fact, the final percentage of emerged seedlings was not significantly 

influenced by any environmental factor, including soil moisture, light availability, or 

soil pollution. Soil water heterogeneity however influenced the timing of emergence, 

seedlings planted in moister microsites emerging earlier than those sown in more water-

limited environments. A shortened time to emergence is commonly interpreted as an 

advantageous regeneration strategy for Mediterranean tree species, likely because it 

enables seedlings to develop more extensive root systems for a longer period of time, 

and thus enhances their probability of survival during the dry season (e.g. Castro, 2006; 

Urbieta et al., 2008). The contrasting effects we found on seedling survival and 

emergence highlight the necessity of considering several performance estimators to 

obtain complete and robust conclusions of the role played by these nurse shrubs in the 

recovery of plant community structure in degraded ecosystems (Gómez-Aparicio, 2009 

and references therein). 

4.2.2  Seedling growth  

The use of shrubs as nurses not only increased oak seedling survival but also enhanced 

seedling growth in the long term. Thus, the positive effects of shrubs on seedling 

growth were more marked after three growing seasons, likely due to the strong 

dependence on seed reserves during early growth in large-seeded species such as oaks. 

Interestingly, the facilitation intensity (in terms of growth) was only evident in polluted 

soils, where seedlings growing in open microsites were likely more stressed by the 

combined negative effects imposed by a high irradiance, a high level of acidity, and, 

potentially, a high availability of trace elements. In these open and spill-affected 

habitats, the three-year-old seedlings even reached negative values of RGR as a 

consequence of a drought-escape strategy involving leaf shedding during summer and 



 23 

further regrowth (i.e. resprouting) with the arrival of the rainy season. The enhanced 

benefits of shrub facilitation in the polluted sampling sites supports our initial 

hypothesis stating higher facilitation effects with increasing chemical stress, which was 

in turn based on the common assumption that positive plant interactions are expected to 

be more important in more stressful environments (Bertness and Callaway, 1994; 

Callaway and Walker, 1997). In some polluted environments, the additional benefits 

provided by shrubs are derived from the role of their litter as a good cation-chelating 

agent (thus reducing soil phytotoxicity), as well as a good source of macronutrients (e.g. 

Frèrot et al., 2006; Ginocchio et al., 2004). In our study, however, we did not find a 

strong influence of the shrubs in the soil factors related to trace element bioavailability 

(i.e. soil pH). Thus, the increase in the neighbour effect in the polluted sites could be 

mainly derived from the release of high-irradiance stress under shrub, which allowed 

the plants to better cope with the toxicity induced by low pH and high availability of 

trace elements.  

4.3.  Conclusions: use of nurse shrubs for the afforestation of polluted soils 

Our results clearly show that the use of shrubs as nurse plants is a promising tool for the 

afforestation of polluted lands with Holm oak. By sowing acorns underneath shrubs, 

emerged seedlings benefited from shading conditions that, in turn, helped them to cope 

better with additional abiotic stresses (such as those derived from a low pH and a high 

presence of potentially toxic trace elements). Therefore, considering the presence of 

pre-existing shrubs in the design of planting schemes would considerably reduce the 

costs of achieving a significant number of survivors during the first years after planting, 

when massive mortalities occur. If pre-existing shrubs are not available in the area to 

afforest, we recommend applying a multi-phase approach, considering the plantation of 

shrub species first, and then the introduction of late-successional trees in the microsites 
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created by shrubs. This approach attempts to accelerate the natural sequence of the 

successional process, and it is particularly recommended for semi-arid systems, where 

neighbour effects are in general more positive than in mesic temperate systems (Gómez-

Aparicio et al., 2009). Because shrubs are able to develop certain plant cover faster than 

slow-growing, late-successional trees, the early establishment of shrub species 

positively contributes to the enhancement of the aesthetic value of the site and to the 

improvement of the social perception of the afforestation programme during the initial 

years of the restoration process. 

Our results also highlight the importance of controlling soil pH conditions during the 

restoration programme. Soil pH was the most important soil factor influencing survival 

of oak seedlings, and a strong soil acidification was observed in the most polluted soils 

at the time of sampling, almost ten years after the application of soil amendments. Thus, 

restoration programmes in similar polluted sites should consider the long-term 

monitoring and correction of soil pH in order to ensure the maintenance of soil 

conditions that maximise oak survival over time, and to reduce the risks associated to 

the leaching of soluble trace elements from acidic soils. 
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Tables 

 

Table 1. Results of the regression models (Cox's Proportional Hazard Models), applied 

to seedling survival times, with both microsites types pooled (all microsites), and 

analysed separately (open vs. shrub). Those environmental factors with a significant 

influence on survival times (p < 0.05) are indicated in bold letters. In these models, 

those factors explaining the hazard rates have positive beta values. Thus, positive beta 

values indicate a positive relationship between an environmental factor and seedling 

mortality. GSF: global site factor (light availability at the ground level); OM: organic 

matter. 

Environmental Factor All microsites   Open   Shrub 

 Beta p  Beta p  Beta p 

Winter soil moisture 0.015 0.239  0.010 0.525  0.051 0.141 

Summer soil moisture 0.010 0.688  0.031 0.404  -0.042 0.428 

GSF 2.481 <0.001  -3.466 0.003  -0.741 0.412 

Herb biomass 0.009 0.025  0.001 0.930  0.014 0.111 

pH -0.208 0.001  -0.202 0.005  -0.498 0.001 

Soil OM -0.106 0.271  -0.077 0.496  0.040 0.840 

Soil P 0.001 0.929  0.027 0.023  -0.015 0.529 

Soil K 0.000 0.758  0.000 0.676  0.000 0.914 

Soil Cd 0.272 0.165   0.343 0.167   -0.091 0.809 
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Table 2.  Results of the mixed-model analysis, analyzing the effect of the microsite type 

(open vs. shrub, fixed factor) and the site location (random factor) on leaf and root 

chemical composition (F statistic indicated). Significance level is indicated as follows: 

p<0.001***, p<0.01**, p<0.05*.
 

 

  
Microsite 

effect 
Site Microsite × Site 

  
Microsite Site Microsite × Site 

Leaf    
 

Root 

   Ca 0.01 0.47 3.01* 

 

Mn 1.32 32.21** 0.51 

Fe 2.13 1.75 1.50 

 

Cu 1.12 22.39* 0.58 

K 0.34 0.44 1.37 

 

Zn 3.88 2.18 1.02 

Mg 2.56 2.68 3.05* 

 

As 2.09 17.93* 1.60 

P 3.24 1.03 0.82 

 

Cd 0.71 5.84 4.17* 

S 3.24 1.03 0.82 

 

Tl 0.05 5.30 1.98 

N 0.58 0.30 2.80 

 

Pb 12.30* 7.53 0.55 

15N 0.03 0.35 1.07 

     13C 0.38 0.53 1.01 

     C:N 0.62 0.30 2.68 

     N:P 0.02 0.54 1.08 

     
    

     Mn 26.01** 49.31*** 0.13 

     Cu 0.01 1.47 2.14 

     Zn 8.40 16.16* 0.57 

     As 1.51 38.16** 0.73 

     Cd 0.45 5.45 2.38 

     Tl 30.30** 46.97** 0.13 

     Pb 4.12 26.94 0.76 
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Figure legends 

Fig. 1. Result of a PCA analysis applied to the microsite environmental variables. GSF: 

global site factor (light availability at the ground level); MB: soil microbial biomass; 

OM: soil organic matter; SpringM: average spring soil moisture; SummerM: average 

summer soil moisture; WinM: average winter soil moisture; Herb: herb biomass. 

 

Fig. 2. Survival curves of the emerged seedlings, distinguishing between microsites 

types (shrub vs. open) and across sites (b).  Survival rates distinguishing between shrub 

species (R. sphaerocarpa vs. P. angustifolia) are also indicated (c). In figure b, open 

and filled symbols correspond to non-polluted and polluted sites, respectively. 

 

Fig 3. Aboveground biomass and Relative Growth Rates (RGR) of the oak seedlings 

growing under shrub and in open microsites during the second (a ,b) and the third (c, d) 

growing season after sowing, across the four studied sites. 

 

Fig. 4. Relative increase in seedling survival and growth under shrub, in comparison to 

plants growing in the open microsites across the explored gradient of soil pollution 

(indicated by total soil Cd concentration). 

 

Fig. 5. Relative neighbour effect (RNE) on seedling emergence, survival and growth, 

and on Zn and Cd accumulation in leaves. 

 




