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Abstract

One of the main challenges of fuzzy community detection problems is to be able to measure the
quality of a fuzzy partition. In this paper, we present an alternative way of measuring the quality
of a fuzzy community detection output based on n-dimensional grouping and overlap functions.
Moreover, the proposed modularity measure generalizes the classical Girvan-Newman (GN) modu-
larity for crisp community detection problems and also for crisp overlapping community detection
problems. Therefore, it can be used to compare partitions of different nature (i.e. those com-
posed of classical, overlapping and fuzzy communities). Particularly, as usually done with the GN
modularity, the proposed measure may be used to identify the optimal number of communities to
be obtained by any network clustering algorithm in a given network. We illustrate this usage by
adapting in this way a well-known algorithm for fuzzy community detection problems, extending
it to also deal with overlapping community detection problems and produce a ranking of the over-
lapping nodes. Some computational experiments show the feasibility of the proposed approach to
modularity measures through n-dimensional overlap and grouping functions.
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1. Introduction.

Large and complex networks representing relationships among a set of entities have been one of
the focuses of interest of scientists in many fields in the recent years. Examples of complex networks
include social networks, the world-wide web network, telecommunication networks and biological
networks. One of the most important problems in social network analysis is to describe/explain its
community structure. Generally, a community in a network is a subgraph whose nodes are densely
connected within itself but sparsely connected with the rest of the network.

Community detection problems has been widely studied during the last decade (see e.g. [15, 20]),
with many applications to several disciplines. Discovering inherent communities and structures in
a social network must be a main objective when we pursue a better understanding of a given
network. Nevertheless, real communities in complex networks often present overlap, such that each
vertex may occur in more than one community. Community detection problems with overlapping
communities have been also studied in the literature (see [38]), with different purposes. On one
hand, a main aim of this problem is to uncover communities allowing some key nodes to belong to
more than one community. On the other hand, a related aim is to detect and identify those nodes
(usually mentioned as overlapping nodes) that belong to more than one community. Overlapping
nodes may play a special role in a complex network system, and how to detect them is indeed a
very interesting issue. In this sense, it is important to remark that most known algorithms, such
as divisive algorithms [16] or agglomerative algorithms [15], cannot detect them.

As it is pointed in [23], two distinct types of overlapping are possible: crisp (where each node
fully belongs to each community of which it is a member) and fuzzy (where each node belongs
to each community up to a different extent or degree). Thus, taking into account this distinction,
three classes of community detection problems are possible: classical community detection problems
(in which just non-overlapping communities are allowed), crisp overlapping community detection
problems (in which a node could belong to more than one community) and fuzzy community
detection problems (in which each node has a degree of membership to each community). As a
result, there are two main challenges in fuzzy community detection problems. The first is the
development of algorithms that produce a fuzzy clustering of the nodes in the network. And the
other is to quantify the quality of such a fuzzy partition.

In this paper, we present an alternative way of measuring the quality of a fuzzy community
detection output based on n-dimensional grouping and overlap functions [4, 18], that generalize the
classical modularity for crisp community detection problems and also for crisp overlapping commu-
nity detection problems. In addition with this, in this paper we also develop a fuzzy community
detection algorithm, an overlapping community detection algorithm and an overlapping-node rank-
ing method. These three proposals will then allow uncovering the fuzzy structure of a network and
its overlapping communities (in a crisp way), as well as a procedure to rank the nodes based on
this fuzzy structure.

This paper is organized as follows: Section 2 is devoted to recall the basic notions of overlap and
grouping functions, both in their bivariate and n-dimensional formulation, as well as to remind the
concept of community detection problems, with and without overlapping communities. Similarly,
Section 3 reviews the state-of-the-art in modularity measures, allowing the introduction of our new
modularity measure for fuzzy community detection problems in Section 4. Our proposed methods
for fuzzy community detection and crisp overlapping community detection, as well as the associated
ranking process based on overlap and grouping functions are presented in Section 5. Finally, Section
6 is devoted to show the results of some computational experiments and to discuss some concluding
remarks.
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2. Preliminaries

In this section, we recall some concepts and properties of bivariate and n-dimensional overlap
and grouping functions, which were initially proposed in [4, 24], and extended to the n-dimensional
case in [18].

2.1. Bivariate overlap and grouping functions

Aggregation is a basic and necessary tool for most knowledge-based systems. An aggregation
operator [3, 8–12, 21] is usually defined as a real function An that, from n data items x1, . . . , xn in
[0, 1], produces an aggregated value An(x1, . . . , xn) in [0,1] [7, 12]. Some desirable properties any
aggregation operator should satisfy use to be imposed: for example, some boundary conditions (for
all n, An(0, . . . , 0) = 0 and An(1, . . . , 1) = 1), monotonicity and continuity in each variable (see
again [5, 10]. Other properties can be also imposed, as those studied in [6, 19, 32, 33, 36].

The concept of overlap as a bivariate aggregation operator was introduced in [4] to measure the
degree of overlap of an object in a fuzzy classification system with two classes. This concept has
been applied to some interesting situations, in which it is necessary to know the degree of overlap
within general classification systems, in particular image segmentation problems as that described
in [24] (in which it is necessary to discriminate between object and background) or in the framework
of preference relationships [5].

Obviously, there are situations in which we need to measure the degree of overlapping of an
object in a fuzzy classification system with more than two classes. Thus, with the aim of so-
extending this concept, the concept of an overlap function was generalized into a n-dimensional
framework in [18]. Through this generalization, it is possible to analyze most relevant properties
and applications. Indeed, in this work we propose an application of n-dimensional overlap and
grouping functions to community detection problems into a fuzzy framework.

The definition of an overlap function and some basic results about it were presented in [4, 24].
Particularly, an overlap function is defined as a particular type of bivariate aggregation function
characterized by a set of symmetry, natural boundary and monotonicity properties.

Definition 2.1.
GO : [0, 1]2 −→ [0, 1]

is an overlap function if and only if the following holds:

1. GO is symmetric.

2. GO(x, y) = 0 if and only if xy = 0.

3. GO(x, y) = 1 if and only if x = 1 and y = 1.

4. GO is non-decreasing.

5. GO is continuous.

Let us observe (as shown in [4, 5, 24]), that overlap functions are closely related with t-norms,
but present some differences since the associative property is not required for the former (while it
is for the latter). In the following example, we can see an instance of an aggregation function that
is an overlap function but not a t-norm if p > 1.

3
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Example 2.1. It is easy to see that the bivariate aggregation function Gp(x, y) = (min{x, y})p is
an overlap function, since the properties (1)-(5) are satisfied. But let us also note that, when p > 1,
the bivariate function Gp is not associative, and thus it is not a t-norm.

Let us now recall in the notion of grouping function, also proposed in [4, 24] as a natural
complement to overlap functions. Given two degrees of membership x = µA(c) and y = µB(c) of
an object c into classes A and B, a grouping function is supposed to yield the degree z up to which
the combination (grouping) of the two classes A and B is supported, that is, the degree up to which
either A or B (or both) hold.

Definition 2.2. A grouping function is a function

GG : [0, 1]2 −→ [0, 1]

that satisfies the following conditions:

1. GG is symmetric.

2. GG(x, y) = 0 if and only if x = y = 0.

3. GG(x, y) = 1 if and only if x = 1 and y = 1.

4. GG is non-decreasing.

5. GG is continuous.

2.2. n-dimensional overlap functions

In [18], the previous ideas presented for two sets or classes were extended into a more general
case. Sometimes, an object may belong to more than two classes, and thus it may be interesting to
measure the degree of overlap of this object with respect to the classification system given by the
available classes.

Definition 2.3. An n-dimensional aggregation function GO : [0, 1]n −→ [0, 1] is an n-dimensional
overlap function if and only if:

1. GO is symmetric.

2. GO(x1, . . . , xn) = 0 if and only if

n∏

i=1

xi = 0.

3. GO(x1, . . . , xn) = 1 if and only if xi = 1 for all i ∈ {1, . . . , n}.

4. GO is increasing.

5. GO is continuous.

In a similar way, the grouping concept can be also extended into a more general framework.
Given n degrees of membership xi = µCi

(c) for i = 1, . . . , n of an object c into classes C1, . . . , Cn,
a grouping function is supposed to yield the degree z up to which the combination (grouping) of
the n classes C1, . . . , Cn is supported.

4
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Definition 2.4. An n-dimensional function

GG : [0, 1]n −→ [0, 1]

is an n-dimensional grouping function if and only if it satisfies the following conditions:

1. GG is symmetric.

2. GG(x) = 0 if and only if xi = 0, for all i = 1, . . . , n.

3. GG(x) = 1 if and only if there exist i ∈ {1, . . . , n} with xi = 1.

4. GG is non-decreasing.

5. GG is continuous.

Again, continuous t-conorms (their n-ary forms) and their convex combinations are prototypical
examples of n-ary grouping functions.

Example 2.2. The following aggregation functions are examples of n-dimensional grouping func-
tions:

• The maximum powered by p: GG(x1, . . . , xn) = max
1≤i≤n

{xp
i } with p > 0.

• The Einstein sum aggregation operator: ES(x1, . . . , xn) =

∑n
i=1

xi

1 +
∏n

i=1
(xi)

2.3. Community detection problems with overlapping communities

In order to introduce the formal definitions of community detection problems with or without
overlapping communities, let us introduce the following notation:

• V = {1, 2, . . . , n} will represent the finite set of objects in the network, i.e. the elements to
be clustered.

• E =
{
{i, j} | i, j ∈ V

}
will be the set of non-ordered pairs of related (neighboring) items of

V . In this way, if two elements i, j ∈ V are related, then there exists an edge e = {i, j} ∈ E;
otherwise, {i, j} 6∈ E. Let m be number of edges (m =

∣∣E
∣∣).

Hence, we have a graph G = (V,E) that shows the relationships between the items. The graph
G can be assumed to be connected; otherwise, its connected components can be analyzed separately.

Classical community detection problems can be viewed as graph partition problems. In this way,
the obtained family of clusters can be viewed as the first step towards a posterior segmentation
or classification, depending on the final objective of our analysis. Clustering network problems,
also addressed as community detection problems in networks, are usually defined as the problem of
finding a good partition for a given graph G = (V,E).

Definition 2.5. Given a graph G = (V,E), we will say that the set C = {C1, . . . , Cr} is a commu-
nity detection solution (without overlapping communities) if and only if

• Ci ∩ Cj = ∅ for all i 6= j(non-overlapping communities),

5
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•
⋃r

j=1
Cj = V ,

• each subgraph (Ci, E|Ci
) is a connected graph for all i.

Currently, there exist a huge number of algorithms that address the identification of classical
communities (for more details see for example [20], or the exhaustive review of Fortunato [15]
or). Clustering networks algorithms detect communities according to topological structures or
dynamical behaviors of networks. Depending on the characteristics of the algorithms that cluster
the graph into communities or groups, many classifications are possible. For example, Fortunato
[15] establishes a division between traditional methods, partitional clustering, spectral clustering,
divisive algorithms, modularity-based methods and dynamic algorithms.

As has been pointed out in the introduction, there exist many real situations (see [38]) in which
one node should belong to more than one community. Taking into account this, classical community
detection problems can be extended to a more general formulation in which what we actually look
after is just the covering of the network.

Definition 2.6. Given a graph G = (V,E), we will say that the set C = {C1, . . . , Cr} is an over-
lapping community detection solution if and only if

•
⋃r

j=1
Cj = V ,

• each subgraph (Ci, E|Ci
) is a connected graph for all i.

The applications of this problem are diverse. On one hand, as a natural extension of classical
community problems, in which more complex and realistic situations are allowed. On the other
hand, and related to some classical social network problems, this more complex problem serves
the purpose of detecting and identifying key nodes for a given structure (usually referred to as
overlapping nodes). These nodes play a special role in complex network systems. However, most
known classical algorithms, such as divisive algorithm [16] or agglomerative [15], cannot detect
them.

Finally, to conclude this section we will also present a formulation of fuzzy community detection
problems. Fuzzy community detection problems are usually understood as a natural extension of
community detection problems with overlapping communities, in which we search for a good fuzzy
partition of the set of nodes in the graph. It is clear that once it is allowed that a node can belong to
more than one cluster or community, it seems reasonable to extend this idea by considering a fuzzy
membership function µCi

to be associated to each community Ci under consideration. Nevertheless,
there are many authors (see for example [23] among others) that define fuzzy community detection
problems by imposing the constraint

∑r
l=1

µCl
(i) = 1 for any node i in the network, which implies

that this fuzzy solution is in fact a Ruspini fuzzy partition [34]. However, it is important to notice
that this constraint actually imposes the so-defined fuzzy community detection problems to be
closer to the classical community detection problems than to overlapping community detection
problems. And even worse, this constraint implies that fuzzy community detection problems are
not an extension of overlapping community detection problems. For these reasons, we prefer the
following definition of fuzzy community detection problems.

Definition 2.7. Given a graph G = (V,E), we will say that the fuzzy clusters {C̃1, . . . , C̃r} over
the set V with membership functions µC1 , . . . µCr

: V −→ [0, 1], are a solution of a fuzzy community
detection problem if and only if ∀ i ∈ V , max{µCl

(i), 1 ≤ l ≤ r} > 0.

6
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Consistently with [1, 2], we would like to emphasize that we do not impose that
∑

l=1,r µCl
(i) =

1. Rather, we only need to impose that all nodes in the network belong to at least one class
with degree strictly greater than zero. Let us observe that all fuzzy community detection solutions
that impose the previous Ruspini-like condition are a particular case of our previous definition,
but the opposite is not true. Also, let us observe that such Ruspini-like assumption eliminates all
overlapping community detection solutions as possible solutions for a fuzzy community detection
problem. Instead, by adopting our definition, the following proposition trivially holds.

Proposition 2.1. Any classical community detection solution is a particular solution of the com-
munity detection problem with overlapping communities. Also, any overlapping community detec-
tion solution is particularly a solution of the fuzzy community detection problem.

3. Modularity measure in fuzzy community detection problems

3.1. State of the art

Once the classical community detection problem, overlapping community detection problem
and the fuzzy community detection problem have been formally defined, it is time to measure how
good the solutions are. Modularity is one of the most used measures to quantify the quality of a
partition in networks when you don’t know the a-priori communities. In the case in which the graph
is built artificially and/or the real communities are known a priori, different measures to compare
two partitions can be found in the literature (see [15]). Nevertheless, in real networks, in which
quite often there is not a priori knowledge about the actual communities, modularity is still the best
choice to determine if a partition is good or not. For unsupervised clustering algorithms, modularity
can also be used to determine the optimal number of communities. Moreover, modularity is often
used to compare the performance among several algorithms. This measure was initially defined by
Girvan and Newman in [16] for crisp partitions and crisp graphs. In this paper it will be denoted
by QGN . Particularly, given a network G = (V,E) and a partition C in the conditions of Definitions
2.5 or 2.6, the Girvan-Newman modularity of such a partition is defined as:

QGN =
1

2m

∑

i,j∈V

[
Aij −

ki kj
2m

]
δ(ci cj), (1)

where m is the number of edges in the graph, ki is the degree of node i, Aij is the adjacency matrix
of the graph and δ(ci cj) is equal to 1 if nodes i and j belong to the same cluster and 0 otherwise.
The modularity of a partition represents the fraction of edges that fall within the given groups
minus the expected such fraction if edges were distributed at random.

Remark 1. Let us observe that this definition allows to measure the performance of a crisp clus-
tering of a graph with overlapping communities (i.e. a node can belong to more than one class).

Although the above modularity measure presents some issues (as for example the resolution
limit), currently it is the most used measure to quantify the quality of a solution for community
detection problems, with and without overlapping communities, when there is not an a priori known
community structure.

Taking into account that there are few methods that produce a fuzzy partition of a network (see
for example [38]), few efforts has been dedicated to extend the crisp modularity measure into a more

7
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general scenario. Next we give a very short review of the different extensions of the modularity
measure in a fuzzy framework (see [15] for more details).

In [40], it is presented one of the first definitions that permit to measure the modularity of a
fuzzy partition of a network. In that paper, the authors propose a fuzzy modularity measure based
on the α-cuts of such fuzzy partition, in the following sense. Recall that given a network G = (V,E)
and a fuzzy partition {C1, . . . , Cr} of V , the set Vc = {i ∈ V / µCk

(i) ≥ α} is a crisp community
for all k ∈ {1, . . . , r} and for any value of α ∈ [0, 1].

Definition 3.1. Given a fuzzy partition {C1, . . . , Cr} of a network G = (V,E) and its correspond-
ing α-cuts Vc for a given α ∈ [0, 1], Zhang’s fuzzy modularity is defined as:

QZhang(α) =
r∑

c=1

[
∑

i,j∈Vc

((µCc
(i) + µCc

(j))/2)Aij

2m
−


 ∑

i∈Vc,j /∈Vc

((µCc
(i) + 1− µCc

(j))/2)Aij

2m




2

].

The previous definition presents some problems since the modularity of a fuzzy partition depends
on the value of α, that is for each α ∈ [0, 1] a different value of the modularity measure is obtained.
In [27], an alternative definition of fuzzy modularity was presented by Liu, which not depends on
a parameter α.

Definition 3.2. Given a fuzzy partition {C1, . . . , Cr} of a network G = (V,E), let now the crisp
communities Vc be defined as Vc = {i ∈ V / µCc

(i) = max{µCk
(i) 1 ≤ k ≤ r}. Then, Liu’s fuzzy

modularity is defined as:

QLiu =
r∑

c=1




∑

i,j∈Vc

((µCc
(i) + µCc

(j))/2)Aij

2m
−


 ∑

i∈Vc,j /∈Vc

((µCc
(i) + 1− µCc

(j))/2)Aij

2m




2



Obviously, the main difference between QLiu and QZhang lies on the definition of the crisp com-
munities Vc. Let us observe that if the fuzzy partition {C1, . . . , Cr} is a Ruspini partition (i.e. for
all i ∈ V ,

∑
c=1,...,r µCc

(i) = 1), then it is possible to find values of α for which both measures
coincides.

The third well-known generalization of the crisp modularity measure in a fuzzy framework is
given in [29]. In that paper, the Kronecker delta δ(ci cj) that appears in the classical formula given
by expression (1), is replaced by sij , where sij denotes the sum of the products of the membership
degrees of nodes i and j in the communities to which they both belong. Formally, the fuzzy
modularity measure introduced in [29] by Nepusz et al. can be expressed as follows:

QNE =
1

2m

∑

i,j∈V

[
Aij −

ki kj
2m

]
sij , (2)

where sij =
∑

c=1,...,r µCc
(i)µCc

(j). In the previous formula it is imposed that the fuzzy partition
{C1, . . . , Cr} of the graph has to be a Ruspini partition, in the sense that

∑
c=1,...,r µCc

(i) = 1 for
any i ∈ V . By imposing the Ruspini condition it is guaranteed that all the sij belong to the unit
interval [0, 1].

In the following example we present the result of calculating these three fuzzy measures modu-
larity from a fuzzy clustering of a well-known network.
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Example 3.1. In [40], it is introduced a network in which there exist clearly overlapping nodes (see
Figure 1). This situation presents in a natural way 3 overlapping communities with some nodes as
5, 9, 2 or 13 (especially 5 and 9) that may belong to more than one community.

Figure 1: Zhang’s network with overlapping communities.

In Table 1, we show a fuzzy clustering of the 13 nodes in three communities.
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Table 1: A fuzzy clustering of the Zhang network.

Nodes µC1(i) µC2(i) µC3(i)

1 0 0 0.9898
2 0.0152 0.0189 0.9898
3 0.0017 0 0.9901
4 0.0017 0 0.9901
5 0.9774 0 0.9728
6 0.9900 0 0
7 0.9900 0 0
8 0.9898 0 0
9 0.9898 0.3463 0
10 0.0017 0.9901 0
11 0 0.9898 0
12 0.0017 0.9901 0
13 0.0173 0.9897 0.0210

Given the fuzzy clustering µ = (µC1 , µC2 , µC3) shown in Table 1, in Table 2 we show the values
attained by the modularity measures QZhang(α), QLiu and QNE for different thresholds α . As it
can be observed, both QLiu and QNE modularity measures do not depend on α. Also let us note
that the modularity QNE assumes a probabilistic scenario and requires the fuzzy clustering to be a
Ruspini partition. Taking into account that µ is not a fuzzy partition in the sense of Ruspini, QNE

does not perform well. Classical Girvan-Newman modularity cannot be computed since the detected
communities are not crisply defined.

Table 2: Modularity measures in terms of α .

α QZhang(α) QLiu QNE

(0, 0.0017] -0.527 0.4215 1.21
(0.0017, 0.0173] -0.0714 0.4215 1.21
(0.0173, 0.021] 0.2470 0.4215 1.21
(0.021, 0.3463] 0.3307 0.4215 1.21
(0.3463, 0.9728] 0.3968 0.4215 1.21
(0.9728, 0.9774] 0.4215 0.4215 1.21
(0.9774, 1] Not defined 0.4215 1.21

4. A new modularity measure for fuzzy community detection outputs

Although the fuzzy modularity presented in [29] is close to the correct generalization of the
classical modularity measure QGN into a fuzzy scenario, it presents some deficiencies. The most
important one is that it is necessary to impose that the fuzzy partition of the set of nodes has to
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be a Ruspini partition, and thus is not a generalization of the classical modularity measure when
there exist overlapping communities. Therefore, if we have a crisp or fuzzy partition in which for
one node i it is

∑r
c=1

µCc
(i) > 1, then QNE does not perform well.

In the original definition of Girvan-Newman modularity, δ(ci cj) represents the truth-value
associated with the assertion node i and node j belong to the same community. In QNE this degree
of truth of node i and node j belong to the same community is replaced by sij =

∑r
c=1

µCc
(i)µCc

(j),
which in fact exhibits a different meaning. As it is pointed in [23], the modularity measure QNE

does not permit overlapping in the sense that
∑r

c=1
µCc

(i) > 1 (either in the crisp or fuzzy case),
and thus it is not a generalization of the crisp GN modularity measure with overlapping nodes.

Now let us try to quantify the assertion node i and node j belong to the same community by
means of overlap and grouping functions. Let us observe that the δ(ci cj) in the classical, crisp
modularity measure QGN takes value 1 if and only if both i and j belong to the same community,
for any of the communities in the network partition {C1, . . . , Cr}. If we denote by Ci = ∪l / i∈Cl

Cl

and Cj = ∪l / j∈Cl
Cl the sets of communities to which nodes i and j respectively belong, then

Ci∩Cj = ∪l /ı,j∈Cl
Cl represents the set of communities in which i and j belong simultaneously. In

a crisp scenario, δ(ci cj) = 1 if and only if ∪l / i,j∈Cl
Cl 6= ∅. In a fuzzy framework, this union can

be represented by means of a grouping function GG and the intersection or the condition of both
i, j ∈ Cl through an overlap function.

To illustrate this idea, let i and j be two nodes such that their membership functions to the three
communities C1, C2 and C3 are respectively given by µ(i) = (µC1(i), µC2(i), µC3(i)) = (0.9, 1, 0)
and µ(j) = (µC1(j), µC2(j), µC3(j)) = (0.4, 0.5, 1). The truth-degree of the assertion nodes i and j
belong simultaneously to the community C1 could be measured as the degree of overlap that this
community has over the nodes i and j, i.e. GO(µC1(i), µC1(j)) = GO(0.9, 0.4). And then, after
obtaining the degrees up to which i and j belong to communities C1, C2 and C3, it is possible to
aggregate these three values into a single one by using a grouping function. Thus, we propose to
redefine the sij as

sij = GG (GO(µC1(i), µC1(j)), . . . , GO(µC3(i), µC3(j))) (3)

For example, by taking the overlap function GO(x, y) = min{x, y}1/2 and the grouping function
GG(x1, . . . , xn) = max{xi, }, we obtain that sij = max{0.41/2, 0.51/2, 0} = 0.51/2 = 0.707.

Taking into account the previous considerations, in the next definition we present an extension of
the classical modularity measure QGN enabling to evaluate the performance of a fuzzy classification
(not necessarily a Ruspini partition) of the set of nodes of a graph based on grouping and overlap
functions.

Definition 4.1. Given a fuzzy clustering or partition C of a graph (V,E) with membership functions
µCc

: V −→ [0, 1], for all c ∈ C, its modularity measure is defined as:

Q̃(C) =
1

2m

∑

i,j∈V

[
Aij −

ki kj
2m

]
GG {GO (µCc

(i), µCc
(j)) c ∈ C} , (4)

where Aij is the adjacency matrix of the crisp graph, m is the number of links of this graph, ki is
the degree of node i in the graph, GG : [0, 1]|C| −→ [0, 1] is an n-dimensional grouping function and
GO : [0, 1]2 −→ [0, 1]is a bivariate overlap function.
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Proposition 4.1. Given a fuzzy clustering C of a graph (V,E) with membership functions µCc
:

V −→ [0, 1], for all C ∈ C, if the fuzzy clustering is a solution of the classical community detection
problem (i.e. for all i ∈ V, µC ∈ {0, 1} and

∑
C∈C µC(i) = 1 ∀ i ∈ V ), then the following holds:

QGN = Q̃(C).

Proof. From the definition of grouping and overlap functions it is clear that given any i, j ∈ V ,
the expression GG {GO (µC(i), µC(j)) C ∈ C} coincides with δij if the fuzzy clustering is a classical
partition.

Proposition 4.2. Given a fuzzy clustering C of a graph (V,E) with membership functions µC :
V −→ [0, 1], for all C ∈ C, if the fuzzy clustering is a solution of the overlapping community
detection problem (i.e. for all i ∈ V, µC ∈ {0, 1}) then the following holds:

QGN = Q̃(C).

Proof. From the definition of grouping and overlap functions it is again clear that given any
i, j ∈ V , the expression GG {GO (µC(i), µC(j)) C ∈ C} coincides with δij if the fuzzy clustering is
a classical covering.

Let us note that Proposition 4.1 is also satisfied by measures QNE , QLiu and QZhang. That
is, these three measures coincide with the Girvan-Newman modularity when facing crisp, non-
overlapping communities. However, Proposition 4.2 does not hold for any of these three measures,
that is, they do not coincide with Girvan-Newman modularity in case the crisp communities present
overlapping. This is an important feature of the modularity measure Q̃(C) here proposed: it
coincides with Girvan-Newman modularity both in the overlapping and non-overlapping scenarios.

In Table 3, we summarize these results. In the first column, it is said ’yes’ if the measure is able
to deal with classical crisp (non-overlapping) partitions; in the second column, ’yes’ means that
the measure is able to deal with overlapping community detection solutions (or crisp coverings);
the third column evaluates if a measure is able to deal with fuzzy community detection solutions
assumed to be Ruspini partitions (i.e. fuzzy partitions), while this assumption is removed for the
fourth column (that instead refers to fuzzy clusters rather than partitions); and finally, the last
column assesses whether the measure coincides with the classical Girvan-Newman modularity QGN

for crisp (non-overlapping) partitions.

Table 3: Different modularity measures.

Measures Crisp Partition Crisp Covering Fuzzy Partition Fuzzy Clustering Extension

GN Modularity YES YES NO NO -

Zhang Modularity YES NO YES NO YES

Liu Modularity YES NO YES NO YES

Nepusz Modularity YES NO YES NO YES

New Modularity YES YES YES YES YES

Thus, to sum up, let us remark that if the partition C is crisp, then Q̃ coincides with the classi-
cal modularity measure QGN (despite overlapping communities being allowed or not, as explained
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above). Let us also observe that our definition allows measuring the performance of a crisp overlap-
ping classification as well as of a fuzzy overlapping classification in the sense that

∑
C∈C µC(i) > 1.

It can be easily proved that our fuzzy modularity measure Q̃ is a generalization of the classical
QGN when there exist overlapping communities. However, it is important to remark that neither
QZhang, QLiu nor QNE can provide a suitable measure in the case of a crisp partition with overlap-
ping communities. Therefore, let us stress the relevance of the proposed fuzzy modularity measure
Q̃, since it allows to measure the performance of a fuzzy network clustering, naturally extending
the classical modularity measure for crisp overlapping communities to the fuzzy case.

5. Identifying fuzzy communities, overlapping nodes and ranking them

In the previous sections we have been addressing three different problems or detection tasks:
the classical community detection (CCD for short) problem, the overlapping community detection
(OCD) problem and the fuzzy community detection (FCD) problem. Together with these three
tasks or problems, in this section we now also focus on two other problems: the overlapping node
detection (OND) problem, and the problem of ranking the overlapping nodes (RON).

In the first, OND problem, the main aim is to classify the nodes into two groups: overlapping
nodes (that are those nodes that acts as intermediaries between two or more communities) and those
others for which this role is not relevant. Several algorithms have been proposed in the literature
(see [22] for example) to deal with the OND problem. The second problem, RON, is related with
the study of measures that quantify the intermediation power of nodes in a community detection
structure. Although this problem could seem similar to the definition of a betweeness centrality
measure, the difference between them is that the inherent community structure is not taken into
account in a betweeness centrality measure. Betweeness centrality measures (see e.g. [17] for more
details) try to capture the intermediation power of one node in the communications between the
rest of the nodes in the network, but not between communities. To the extent of our knowledge,
the RON problem has not been formally studied in the related literature.

Let us note that the five problems or tasks above referred are strongly related, since the following
six implications between them hold (we use the inclusion symbol ⊂ to denote that some problems
are particular instances of other problems, and the implication symbol −→ to denote that solutions
to some problems can be obtained from those of other problems) :

• CCD ⊂ OCD. Any solution to a classical community detection problem is also a solution to
the overlapping community detection problem (first part of Proposition 2.1).

• OCD ⊂ FCD. Any classical overlapping community detection solution is a fuzzy community
detection solution (second part of Proposition 2.1).

• OCD −→ OND. From any solution to the (crisp) overlapping community detection problem,
an overlapping node detection solution can be derived in a trivial way: if a node belongs to
more than one community then this node is an overlapping node. Otherwise, the node is not
an overlapping node.

• FCD −→ OCD −→ OND. From any fuzzy community detection solution, we may obtain
(for example by fixing an alpha-cut) an overlapping community detection solution. From this
last, attending to the previous item, an overlapping node detection solution can be easily
obtained. Nevertheless, the implication FCD to OCD can be addressed in different ways and
is not necessarily a trivial task.
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• RON −→ OND. From any ranking of the overlapping nodes (i.e. from any solution to RON),
it is possible to obtain a solution to the overlapping node detection problem.

• FCD −→ RON . Given a solution to the fuzzy community detection problem, we could derive
a degree of overlap for each node, which can be used to construct a ranking of the overlapping
nodes, i.e. a solution to RON. Nevertheless, this implication is not necessarily a trivial task.

Many algorithms have been proposed for the classical community detection (see [15, 20] for more
details) and the overlapping community detection problems (see [22, 40]). Nevertheless, very few
methods have been proposed that deal with the fuzzy community detection problem. Moreover,
up to our knowledge, no method have been proposed that deals with the FCD, OND and RON
problems simultaneously. Based on this observation, and taking into account that the modularity
measure proposed in this paper is able to deal with any of the CCD, OCD and FCD problems,
we present a general method that finds a consistent solution to the FCD, OCD, OND and RON
problems. In the following subsections we explain its steps in detail.

5.1. Identifying Fuzzy Communities

As previously pointed out, very few algorithms have been proposed that produce a fuzzy cluster-
ing of a network. In [29], a fuzzy clustering is obtained through a non-linear constrained optimiza-
tion problem solved as a quadratic-complexity algorithm. In [40], the network is transformed into a
k−1-dimensional Euclidean space and then the fuzzy c-means (FCM) algorithm is used to detect up
to k communities. Other algorithms as the FOG algorithm [14] or the NMF algorithm [31] present
a probabilistic solution (i.e. a probabilistic classification of the nodes) that cannot be considered as
a fuzzy algorithm in the usual sense. Later, in [41] a similar method to [40] is provided, in which
the network structure is mapped into a low-dimensional space through a multidimensional scaling
(MDS) approach. After that, FCM is employed to find fuzzy communities in the network. The
number of communities is determined by means of the fuzzy modularity measure QNE proposed in
[29]. In this paper we have been applied the FCM algorithm without normalization.

Although the main aim of this paper is to present a new modularity measure that fixes the main
deficiencies of the preexisting ones, it is possible to rebuild some of the few algorithms that actually
produce a fuzzy clustering of a network by using this new modularity measure. With this aim, in
this section we provide a new fuzzy community detection algorithm based on that proposed in [40],
but taking into account the new modularity measure here defined to determine the optimal number
of classes.

Fuzzy Community Detection Method: (FCDz−grouping)

• For each possible number of communities c ∈ {2, . . . , n}:

(1) Obtain a fuzzy clustering of the network µ1, . . . , µc with c classes (e.g. by means of the
Zhang or the Wang algorithms).

(2) Compute the fuzzy modularity function of the previous fuzzy partition Q̃(µ).

• Pick the number of classes c and the corresponding fuzzy partition µ that maximize the
modularity function Q̃(µ).

Example 5.1. The Zhang’s example. Now we come back to the previously presented example
given in [40]. As already discussed, this network (shown in Figure 1) clearly presents three overlap-
ping communities, with some nodes as 5, 9, 2 or 13 (especially 5 and 9) that could belong to more
than one community.

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 4 shows the obtained modularity measure for each number of communities, when using
the composition of overlap and grouping functions max{i 6= jMin1/2{xi, xj}} to compute the fuzzy
deltas sij . Let us observe that the optimal number of communities is 3. The obtained fuzzy
community detection solution is the same that was presented in Table 1 of Example 3.1. As can be
observed the optimal number of communities is 3.

Table 4: Modularity versus number of communities in the FCDz−grouping method.

Number of Communities Modularity

2 0.2927
3 0.3699
4 0.2288
5 0.1250
6 0.0610
7 0.0215
8 0.0005
9 0
10 0
11 0
12 0
13 0

5.2. Overlapping nodes detection based on fuzzy clustering

As previously mentioned, one of the most important problems in community detection problems
is the identification of the overlapping nodes of a network (OND problem). In this section we will
describe how to deal with the OND problem based on the FCDz−grouping method previously
defined. Let us note that the fuzzy community detection algorithm used in this work is the Zhang’s
method described in [40], but any other algorithm able to cluster a network may be used in a
similar way. A more-in-deep analysis of the interactions between different FCD algorithms with
the modularity measure here proposed could be an interesting issue for future work, as it lies outside
the scope of this work.

Now we present a simple method to produce a solution of the overlapping community detection
(OCD) problem, and thus also of the overlapping node detection (OND) problem.

OCDz−grouping method:

• For each possible number of communities c ∈ {2, . . . , n}:

(1) Obtain a fuzzy clustering of the network µ1, . . . , µc with c classes (e.g. by means of the
Zhang or the Wang algorithms).

(2) Determine the value of α for which the crisp covering C obtained from the previous

fuzzy clusters through the corresponding α-cut maximizes Q̃(C). Let us denote this optimal

modularity by Q̃c.

• Pick the number of classes c and the corresponding crisp covering C that provides the maxi-
mum modularity Q̃c.
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• From the (crisp) overlapping community detection solution determined in the previous step,
obtain the set of overlapping nodes.

Let us observe that the previous method produces as an output a fuzzy clustering of the net-
work and also a crisp clustering with overlapping communities in which the overlapping nodes are
identified in a crisp way. Also let us note that this method depends on the algorithm by which the
fuzzy clustering of the network is obtained for each fixed number of classes c (step 1).

Remark 2. Let us stress that two parameters has to be determined in the previous method: the
number of communities c and the value of α that provides the best crisp partition. Thus, the
OCD − z method has to solve a bi-level optimization problem in order to attain the overlapping
communities with optimal modularity. This procedure may be computationally expensive in dense
networks with a big number of nodes. A less computationally expensive alternative is to adopt a
lexicographic approach to approximate the solution of the previous bi-level optimization problem,
first obtaining the optimal number of fuzzy communities c, and then the optimal α-cut for such c. In
this way, the bi-level problem is transformed in a sequence of two single-level problems. Obviously,
better results are usually obtained by simultaneously optimizing both parameters of the bi-level
problem, although the significance of such improvement may not always compensate for the higher
computational costs derived of the bi-level optimization. Particularly, we have observed that in
practice both methods usually provide solutions with a similar number of clusters. To illustrate
both approaches (bi-level and lexicographic), in the following example we apply this lexicographic
alternative, while the bi-level approach will be used in the computational experiments described in
the next section.

Example 5.2. Identifying overlapping nodes and communities in the Zhang’s example.
Following with the example of the Zhang’s network, in Example 5.1 we reached to the conclusion
that c = 3 is the optimal number of communities (Q̃(C) = 0.37, as shown in Table 4), leading
to the corresponding fuzzy classification of the 13 nodes given in Table 1. From this last table,
it is possible to detect that nodes 5, 9, 2 or 13 are the most overlapping ones and may belong to
more than one community. However, together with this last classification, Table 5 also shows the
solution to the overlapping community detection problem obtained for α = 0.3, which for c = 3
leads to the maximum modularity QGN(C) = Q̃(C) = 0.4847. This modularity is associated to the
(crisp) partition C = {C1, C2, C3}, where C1 = {5, 6, 7, 8, 9}, C2 = {9, 10, 11, 12, 13} and C3 =
{1, 2, 3, 4, 5}. As a consequence, only nodes 5 and 9 are in this way identified as the overlapping
nodes of this network, since no other nodes are being assigned to more than one community. Let us
observe that most of the algorithms for (crisp) overlapping node detection as CONGA [22], NMF
[31] or CFINDER [30] with k = 3, 4 coincide with the previous results of our method, both in the
crisp clustering C as well as in the detected overlapping nodes.
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Table 5: Fuzzy classification using our algorithm in the Zhang’s network. In black color the overlapping nodes.

Nodes µC1(i) µC2(i) µC3(i) Crisp C

1 0 0 0.9898 (0,0,1)
2 0.0152 0.0189 0.9898 (0,0,1)
3 0.0017 0 0.9901 (0,0,1)
4 0.0017 0 0.9901 (0,0,1)
5 0.9774 0 0.9728 (1,0,1)
6 0.99 0 0 (1,0,0)
7 0.99 0 0 (1,0,0)
8 0.9898 0 0 (1,0,0)
9 0.9898 0.3463 0 (1,1,0)
10 0.0017 0.9901 0 (0,1,0)
11 0 0.9898 0 (0,1,0)
12 0.0017 0.9901 0 (0,1,0)
13 0.0173 0.9897 0.021 (0,1,0)

5.3. Ranking based on overlapping degree

In network analysis, the identification of intermediate nodes (overlapping nodes or bridge nodes)
is an important topic, since they have the power of intermediating between the groups to which
they belong. The identification of overlapping nodes has been useful in practical applications in
different areas as biology (overlapping nodes are the key nodes in proteins interaction networks),
communication networks (it has been proved that overlapping nodes spread information in a faster
way that other non-overlapping nodes, see for example viral marking problems or the general infor-
mation diffusion topic), disease spreading, transport problems or security problems among many
other disciplines [13, 26]. The practical relevance of overlapping nodes has led to the introduction
of the OND problem addressed above. Nevertheless, the OND problem classifies the set of nodes
just as overlapping or non-overlapping nodes, but there exist many situations in which it could be
useful to have a ranking of (all) the nodes based on its intermediation power. Betweeness central-
ity (or in general centrality measures) is commonly used for this kind of practical application as
it allows ranking the nodes from the most influential ones to the least influential ones. But in a
network in which a community structure has been identified such an intermediation power may be
better captured in terms of an overlapping−ness measure (since information spread with a higher
probability among members of the same community), quantifying the degree up to which a node
is an overlapping one. This motivates the problem of constructing a ranking of the nodes based on
such an overlapping − ness measure, i.e. the RON problem.

In this section, we will discuss how to obtain such an overlapping degree in order to rank the
nodes, from the most overlapping to the least. Given a fuzzy classification of the nodes, that is, a
solution of FCD, the simplest situation is that where we want to quantify the degree up to which a
node belongs to just two communities. Given two communities Cr and Cs, in order to obtain the
degree up to which a node i belong to both communities we should aggregate the values µCr

(i) and
µCs

(i). It seems logical to aggregate them by means of an overlap function, representing the extent
up to which node i simultaneously belongs to both communities, i.e. GO (µCr

(i), µCs
(i)). However,
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a node can be intermediary of any pair of communities Cr and Cs, so we again should aggregate
the value GO (µCr

(i), µCs
(i)) for all pairs r 6= s. As it is logical to expect that a node has a high

degree of bivariate overlapping if he belongs to at least two communities with a high degree, then

we can use a grouping function GG to aggregate these s =

(
c
2

)
values. Formally, we present the

following definition.

Definition 5.1. Given a network G = (V,E) and a fuzzy clustering of the network µC1 , . . . , µCc
:

V −→ [0, 1], we define the bivariate overlapping degree of node i as:

2− overlapµ(i) = GG ( GO (µCr
(i), µCs

(i)) ; 1 ≤ r < s ≤ c) ,

where GG : [0, 1]s −→ [0, 1] is a grouping function, and GO : [0, 1]2 −→ [0, 1] is a bivariate
overlap function.

Let us note that the previous definition only takes into account the bivariate intersection between
communities. In this sense, a node that belongs with degree 0.3 to three communities and 0 for the
remainder ones should have a low 2 − overlapµ(i). Nevertheless, it could be the most overlapping
node that simultaneously belongs to three (or more) communities. In other words, this node could
have an important role from a betweeness point of view, but this fact is not detected by the
2 − Overlaping degree measure just defined. Taking into account this, the following definition is
proposed:

Definition 5.2. Given a network G = (V,E) and a fuzzy clustering of the network µC1 , . . . , µCc
:

V −→ [0, 1], we define the k-variate overlapping degree of node i as:

k − overlapµ(i) = GG

(
GO

(
µCr1

(i), . . . , µCrk
(i)

)
; 1 ≤ r1 < r2 < . . . < rk ≤ c

)
,

where GG : [0, 1]s −→ [0, 1] is a grouping function, with s =

(
c
k

)
, and GO : [0, 1]k −→ [0, 1]

is a k-dimensional overlap function.

Let us note that for a given number c of classes, the k-overlapping degree is obtained after
the evaluation (by means of a grouping function) of all possible groups of k communities (k < c).

This is the reason why the grouping function ranges from [0, 1]





c
k





to [0,1]. Given k communities
C1, . . . , Ck, the degree up to which a node simultaneously belongs to these k communities is obtained
by means of an overlap function. For example, if the number of communities c is 5, and we want to
obtain the 3-overlapping degree (k = 3) of a node i, we have to evaluate the membership of node i

to the 10 =

(
5
3

)
different possible groups of 3 communities of the network. For each of these 10

possible groups, the degree up to which node i simultaneously belongs to the 3 communities in the
group is obtained through a 3-dimensional overlap function (ranging from [0, 1]3 to [0, 1]). After
that, these 10 degrees of membership are aggregated by means of a grouping function.

Example 5.3. Ranking overlapping nodes in the Zhang’s example. Let us once more
illustrate the previous notions through the Zhang’s example. Recall that in Examples 5.1 and 5.2 we
concluded that c = 3 is the optimal number of communities, and that for this number of communities,
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the crisp partition producing the maximum modularity has two (bivariate) overlapping nodes, 5 and
9. In this situation, now we could be interested in assessing whether 5 or 9 is the most overlapping
node. Moreover, we may be also interested in detecting those nodes acting as intermediaries between
more than two communities (i.e. between the c = 3 communities), and rank them similarly to the
bivariate case.

Table 6 extends the results of the previous examples by also showing the degrees of 2-overlap
and 3-overlap of each node. These last have been obtained by using the squared-root minimum as
the overlap function GO, and the maximum as the grouping function GG. Notice that node 5 leads
node 9 as the most bivariate overlapping node. Many other nodes, as nodes 2 and 13, also present a
positive 2-overlap, although they are scarcely significant in this role compared to nodes 5 and 9, the
only two that were identified as (crisp) overlapping nodes in Example 5.2. However, it is interesting
to note that on the other hand nodes 5 and 9 have degree 0 of 3-overlap (since they do not belong at
all to communities 2 and 3, respectively), whereas nodes 2 and 13 present a positive (though small)
3-overlap, as a consequence of belonging to all the three communities with a degree greater than 0.
Moreover, it is also possible to suggest that node 13 is slightly more important as a 3-overlapping
node than node 2.

Table 6: Ranking the nodes from our fuzzy classification in the Zhang’s network.

Nodes µC1(i) µC2(i) µC3(i) Crisp C 2-overlap 3-overlap

1 0 0 0.9898 (0,0,1) 0 0
2 0.0152 0.0189 0.9898 (0,0,1) 0.1341 0.1233
3 0.0017 0 0.9901 (0,0,1) 0.0412 0
4 0.0017 0 0.9901 (0,0,1) 0.0412 0
5 0.9774 0 0.9728 (1,0,1) 0.9863 0
6 0.99 0 0 (1,0,0) 0 0
7 0.99 0 0 (1,0,0) 0 0
8 0.9898 0 0 (1,0,0) 0 0
9 0.9898 0.3463 0 (1,1,0) 0.5885 0
10 0.0017 0.9901 0 (0,1,0) 0.0412 0
11 0 0.9898 0 (0,1,0) 0 0
12 0.0017 0.9901 0 (0,1,0) 0.0412 0
13 0.0173 0.9897 0.021 (0,1,0) 0.1449 0.1315

6. Computational results and final comments

Now, in order to test the effectiveness of the method proposed in the previous section for those
three problems, we will compare its performance with that of some widely used algorithms in two
well-known networks:

(i) The Karate Club network,

(ii) the Les Miserables network.
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Particularly, for this comparison we have chosen some classical, crisp (non-overlapping) com-
munity detection algorithms as GN, CNM and D&L (see [20]), some other algorithms that al-
low overlapping communities as NFM and CFINDER, and of course the proposed method in its
fuzzy (FCD-z) and overlapping (OCD-z) versions. Let us recall that all these methods (except
CFINDER) produce a dendogram on the set of nodes, in such a way that each level of the den-
dogram identifies a partition of the network with a different number of groups or communities. For
each method and each number of groups, the obtained partitions µ will be compared in terms of the
proposed modularity measure Q̃(µ). The squared root minimum and the maximum are respectively

the overlap and grouping functions used to compute Q̃.
Let us remark again that Q̃ coincides with the classical Girven-Newman modularity QGN both

for classical community detection and overlapping community detection problems, as stated by
Propositions 4.1 and 4.2. Therefore, as it is devised to deal with different scenarios (classical

communities, overlapping communities, fuzzy communities), the proposed modularity measure Q̃
enables to compare all the chosen methods through the same modularity measure, that behaves as
QGN outside the fuzzy framework of the FCD-z method.

6.1. The Karate Club network

One of the most well-known examples in the literature on social networks or community detection
problems is the Karate Club network defined by [39].

In this network, the nodes represent the members of a karate club and the edges represent the
friendship relationships between them. The network consists of the 34 members of a karate club
as nodes and 78 edges representing their friendship relations, as observed over a period of two
years. Due to a disagreement between the administrator and the instructor (nodes 1 and 34), the
club splits into two smaller clubs. The question we are concerned with is whether we can uncover
the potential behavior of the network, detecting the different communities or groups in which it
would split, and particularly identifying to which community each node will belongs to. From an
overlapping point of view, an interesting question is to discover the nodes that will belong to more
than one community in case the friendship network breaks.

Table 7 shows the performance of the chosen algorithms in terms of Q̃(µ), for the partitions µ
obtained by each method for different numbers of communities. The best result achieved by each
method is shown in bold. Notice that the best results are obtained with the OCD − z algorithm
proposed in this paper, for which it is obtained a covering of the set of nodes with 4 communities
achieving a modularity Q̃ = QGN = 0.4362. Let us note that this modularity is clearly better than
that of any solution found by the classical community detection methods, in which overlapping is
not allowed.

As it can be observed, the CFINDER algorithm only gives information for 15 groups. This
happens because CFINDER is actually an overlapping node detection (OND) algorithm, the output
of which only considers the communities with overlapping nodes. Therefore, when the output of
this algorithm is adapted to an OCD solution (in which all nodes must belong to some community),
the nodes that does not belong to an overlapping community are assumed to be isolated (which
is an unrealistic hypothesis). As a consequence of this assumption, this algorithm for overlapping
community detection problems usually reaches the optimum at a quite big number of communities,
with relatively bad values of modularity. Nevertheless, it is an interesting algorithm to detect
overlapping nodes.

Let us also observe that the optimal number of communities differs between the FCD − z and
the OCD − z methods, being attained at 3 and 4 communities respectively. This shows that, as

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

discussed in Section 5, the lexicographic version of OCD − z may produce worse results than the
bi-level version. In order to present the solution with a greater modularity (i.e. that of the OCD−z
method), we have chosen to describe the results of both methods (FCD − z and OCD − z) only
for the case of 4 communities. Indeed, Table 8 shows the fuzzy clustering solution given by the
FCD−z method when we choose four communities to break the network, together with the optimal
overlapping communities solution obtained through OCD − z for α = 0.3.

Finally, Table 9 shows the obtained 2-overlap and 3-overlap degrees based on the 4-communities
fuzzy clustering of the network. Again, the squared root minimum and the maximum are respec-
tively the overlapping and the grouping functions used to compute the k-overlap degrees. As it can
be observed, it is possible to rank the nodes based on their overlapping role. Let us note that the
top so-ranked nodes in Table 9 coincide with the overlapping nodes detected by standard OND
algorithms. In terms of the 2-overlapping degree, the top 5-nodes (from highest to lowest) given by
our RON procedure are nodes 29, 24, 10, 9 and 31. The overlapping nodes detected by our OND al-
gorithm are the first 4 nodes of these 5. The NFM or CFINDER algorithms identify as overlapping
the nodes 29, 24, 9 and 29, 24, 10, 31 respectively, but with lower modularity values. In general,
the results given by our ranking procedure are consistent with the solutions given by classical al-
gorithms as CFINDER, CONGA or NFM , but also permit to make a deeper analysis (as our
RON solution allows ranking the detected overlapping nodes in terms of their overlapping − ness,
and to refer this notion to different numbers of overlapping communities).

Figure 2: The Karate Club network and the optimal crisp cut given by Girvan and Newman.
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Table 7: The Karate Club network. Comparative results in terms of the modularity measure Q̃ and the number of
groups.

Communities GN CMN D&L OUR FUZZY OUR OCD NFM CFINDER

2 0.3599 0.3582 0.3148 0.2767 0.3392 0.3714

3 0.3487 0.3717 0.38533 0.34599 0.3990 0.2498

4 0.3632 0.3879 0.4155 0.3339 0.4362 0.2481

5 0.3850 0.3800 0.4126 0.2922 0.4340 0.2707

6 0.3517 0.3625 0.4063 0.2161 0.4049 0.1803

7 0.3762 0.3547 0.3984 0.0472 0.3096 0.2501

8 0.3583 0.3376 0.3885 0.0028 0.2151 0.2407

9 0.3417 0.3201 0.3767 0.0026 0.2125 0.2407

10 0.3247 0.3024 0.3624 0.0012 0.3176 0.2051

11 0.3159 0.2843 0.3512 0.0006 0.2302 0.2550

12 0.2986 0.2637 0.3344 0.0024 0.1196 0.2328

13 0.2804 0.2543 0.3173 0.0001 0.2209 0.2748

14 0.2628 0.2447 0.2999 0 0.2505 0.2223

15 0.2475 0.2348 0.2822 0 0.3463 0.2715 0.3057

16 0.2268 0.2246 0.2515 0 0.2084 0.1362

17 0.2089 0.2144 0.2308 0 0.1723 0.2715

18 0.1898 0.2034 0.2109 0 0.1665 0.2413

19 0.1812 0.1923 0.1846 0 0.2320 0.2728

20 0.1600 0.1755 0.1741 0 0.2239 0.2021

21 0.1469 0.1643 0.1637 0 0.1625 0.1694

22 0.1203 0.1476 0.1443 0 0.1702 0.2715

23 0.1081 0.1364 0.1116 0 0.1646 0.2944

24 0.0090 0.1250 0.0854 0 0.1259 0.2021

25 0.0080 0.1132 0.0762 0 0.3082 0.2021

26 0.0069 0.0747 0.0659 0 0.2445 0.2715

27 0 0.0563 0.0538 0 0.2128 0.1408

28 0 0.0356 0.0301 0 0.2475 0.2021

29 0 0.0265 0.0179 0 0.3048 0.2758

30 0 0.0038 0.0079 0 0.1430 0.1674

31 0 -0.008 -0.0027 0 0.1632 0.14
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Table 8: Fuzzy community detection with four classes and its crisp overlapping optimal solution with α = 0.3.

Nodes µC1 µC2 µC3 µC4 Crisp

1 0.1094 0.0894 0.0617 1 (0,0,0,1)

2 0.0187 0 0 1 (0,0,0,1)

3 0.1142 0 0.0509 1 (0,0,0,1)

4 0 0 0 1 (0,0,0,1)

5 0 1 0 0.0379 (0,1,0,0)

6 0 1 0 0.0016 (0,1,0,0)

7 0 1 0 0.0016 (0,1,0,0)

8 0 0 0 1 (0,0,0,1)

9 1 0 0 0.4282 (1,0,0,1)

10 1 0 0 0.6287 (1,0,0,1)

11 0 1 0 0.0379 (0,1,0,1)

12 0 0 0 1 (0,0,0,1)

13 0 0 0 1 (0,0,0,1)

14 0.0215 0 0 1 (0,0,0,1)

15 1 0 0 0 (1,0,0,0)

16 1 0 0 0 (1,0,0,0)

17 0 1 0 0 (0,1,0,0)

18 0 0 0 1 (0,0,0,1)

19 1 0 0 0 (1,0,0,0)

20 0.1251 0 0 1 (0,0,0,1)

21 1 0 0 0 (1,0,0,0)

22 0 0 0 1 (0,0,0,1)

23 1 0 0 0 (1,0,0,0)

24 0.7107 0 1 0 (1,0,1,0)

25 0 0 1 0 (0,0,1,0)

26 0 0 1 0 (0,0,1,0)

27 1 0 0 0 (1,0,0,0)

28 0.1136 0 1 0.1213 (0,0,1,0)

29 0.8937 0 0.7117 1 (1,0,1,1)

30 1 0 0.0255 0 (1,0,0,0)

31 1 0 0 0.2984 (1,0,0,0)

32 0.0931 0 1 0.1053 (0,0,1,0)

33 1 0 0.0007 0.0015 (1,0,0,0)

34 1 0 0.0167 0.0363 (1,0,0,0)
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Table 9: Ranking (between brackets) of nodes according to their overlapping degree.

Nodes 2-overlap 3-overlap

1 0.1094 (9) 0.0894 (4)

2 0.0187 (16) 0 (8-34)

3 0.1142 (8) 0.0507 (5)

4 0 (20-34) 0 (8-34)

5 0.0379 (11) 0 (8-34)

6 0.0016 (17-18) 0 (8-34)

7 0.0016 (17-18) 0 (8-34)

8 0 (20-34) 0 (8-34)

9 0.4281 (4) 0 (8-34)

10 0.6286 (3) 0 (8-34)

11 0.0379 (12) 0 (8-34)

12 0 (20-34) 0 (8-34)

13 0 (20-34) 0 (8-34)

14 0.02152 (15) 0 (8-34)

15 0 (20-34) 0 (8-34)

16 0 (20-34) 0 (8-34)

17 0 (20-34) 0 (8-34)

18 0 (20-34) 0 (8-34)

19 0 (20-34) 0 (8-34)

20 0.1250 (6) 0 (8-34)

21 0 (20-34) 0 (8-34)

22 0 (20-34) 0 (8-34)

23 0 (20-34) 0 (8-34)

24 0.7149 (2) 0 (8-34)

25 0 (20-34) 0 (8-34)

26 0 (20-34) 0 (8-34)

27 0 (20-34) 0 (8-34)

28 0.1226 (7) 0.1149 (2)

29 0.8938 (1) 0.7081 (1)

30 0.0254 (14) 0 (8-34)

31 0.2984 (5) 0 (8-34)

32 0.1066 (10) 0.0942 (3)

33 0.0015 (19) 0.0007 (7)

34 0.0363 (13) 0.0166 (6)

6.2. Les Miserables network

Another classical network for testing algorithms can be found in Les Miserables. Les Miserables
network is usually studied considering the graph associated to the relations among actors. In
http://www-personal.umich.edu/ mejn/netdata/, a valuation of these relations can be found,
that may be understood as the affinity or strength of such relations.
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Figure 3: LesMiserables network and the optimal crisp cut given by Girvan and Newman.

Table 10 shows the performance of the chosen methods in Les Miserables network in terms of the
proposed modularity measure Q̃ for each number of communities. Again, the best result achieved by
each method is shown in bold. Notice that the best results (among these algorithms) are obtained
for the OCD − z method proposed in this paper, that leads to a covering of the set of nodes in 7
communities achieving a modularity Q̃ = QGN = 0.5641. Particularly, again the proposed OCD−z
method obtains better results than the CCD algorithms, in which overlapping is not allowed. Let
us remark that in this network there are some famous nodes (as for example Cossete) that clearly
belong to more than one community. Thus, by allowing overlapping communities and nodes it is
possible to improve in a significant way both the performance and the adequacy of the solution.

Notice that once more both FCD − z and OCD − z reach their optimum at different numbers
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of groups, 5 and 7 respectively. As in the previous experiment, we decided to present the FCD− z
clusters only for the number of groups leading to the best OCD − z solution, that is for 7 groups.
Table 11 shows the 7 fuzzy clusters provided by FCD − z, from which the corresponding optimal
solution of OCD − z can be easily obtained by taking the alpha-cut corresponding to α = 0.4.
The degrees of 2-overlap and 3-overlap derived from the previous clusters are shown in Table 12,
again obtained with the squared root minimum and the maximum. Let us observe that, as in the
previous KarateClub example, the top-ranked nodes (i.e. those with the highest 2-overlap degree)
in Table 12 coincide with the overlapping nodes detected by OND algorithms. Again, the results
given by this rank are consistent with (and extend) the solutions given by classical algorithms as
CFINDER, CONGA or NFM . Also, notice that some nodes with a quite great 2-overlap degree
(as node 45 MotherInnocent) however obtain a null or very low 3-overlap degree, while other nodes
(as node 49 Gavroche) with a not-so-clear 2-overlap importance are however relatively important
3-overlapping nodes (notice also that, consistently with what we advanced in last paragraph, node
27 Cosette presents the greatest degree of 3-overlapping). This shows the relevance of extending
the notion of overlapping node to also consider potential overlaps of k (more than 2) communities.

Table 10: Les Miserables network. Comparative results in terms of the modularity measure Q̃ for each number of
groups.

Communities GN CMN D&L OUR FUZZY OUR OCD NFM CFINDER

2 0.0746 0.3697 0.3718 0.2245 0.2331 0.0746

3 0.2604 0.4421 0.4642 0.2353 0.2636 0.0819

4 0.2660 0.4569 0.5110 0.3263 0.4939 0.2168

5 0.4154 0.4468 0.5519 0.4539 0.5526 0.4740

6 0.4587 0.4472 0.5542 0.4138 0.5564 0.4760

7 0.4554 0.4545 0.5561 0.4218 0.5641 0.5081

8 0.4536 0.4523 0.5556 0.1740 0.2764 0.5214

9 0.4518 0.4501 0.5533 0.0019 0.2598 0.5186

10 0.4524 0.4479 0.5508 0.0024 0.1130 0.5115

11 0.5380 0.4457 0.5482 0.0008 0.2326 0.5168

12 0.5347 0.4434 0.5455 0.0007 0.1741 0.5108

13 0.5314 0.4412 0.5426 0.0004 0.1147 0.5071

14 0.5281 0.4390 0.5396 0.0004 0.0607 0.5055

15 0.5248 0.4367 0.5364 0.0001 0.0409 0.5032
...

44 0.4469
...
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Table 11: Fuzzy community detection with seven classes. The optimal crisp overlapping solution is reached with
α = 0.4.

Names Nodes µC1
µC2

µC3
µC4

µC5
µC6

µC7
Myriel 1 1 0 0 0 0 0.0062 0

Napoleon 2 1 0 0 0 0 0 0

MlleBaptistine 3 1 0 0 0 0 0.6069 0

MmeMagloire 4 1 0 0 0 0 0.6069 0

CountessDeLo 5 1 0 0 0 0 0 0

Geborand 6 1 0 0 0 0 0 0

Champtercier 7 1 0 0 0 0 0 0

Cravatte 8 1 0 0 0 0 0 0

Count 9 1 0 0 0 0 0 0

OldMan 10 1 0 0 0 0 0 0

Labarre 11 0 0 0 0 0 0.875 0

Valjean 12 0.0022 0.0057 0.0073 0.01107 0.0043 0.875 0.0219

Marguerite 13 0 0.1743 0 0 0 0.875 0

MmeDeR 14 0 0 0 0 0 0.875 0

Isabeau 15 0 0 0 0 0 0.875 0

Gervais 16 0 0 0 0 0 0.875 0

Tholomyes 17 0 1 0 0.0354 0 0.0381 0

Listolier 18 0 1 0 0 0 0 0

Fameuil 19 0 1 0 0 0 0 0

Blacheville 20 0 1 0 0 0 0 0

Favourite 21 0 1 0 0 0 0 0

Dahlia 22 0 1 0 0 0 0 0

Zephine 23 0 1 0 0 0 0 0

Fantine 24 0 1 0.1381 0 0 0.4775 0.3569

MmeThenardier 25 0 0.02391 0 0 0.0175 0.1509 1

Thenardier 26 0 0.0179 0 0.0308 0.0131 0.1118 1

Cosette 27 0 0.2517 0 0.3560 0.6635 0.875 0.498

Javert 28 0 0.04020 0.0323 0.0689 0 0.5216 1

Fauchelevent 29 0 0 0 0 0 0.3964 1

Bamatabois 30 0 0.0285 1 0 0 0.0705 0.036

Perpetue 31 0 0.6247 0 0 0 0.875 0

Simplice 32 0 0.1681 0 0 0.875 0.5670

Scaufflaire 33 0 0 0 0 0 0.875 0

Woman1 34 0 0 0 0 0 0.875 0.2862

Judge 35 0 0 1 0 0 0.0030 0

Champmathieu 36 0 0 1 0 0 0.0030 0

Brevet 37 0 0 1 0 0 0.0030 0

Chenildieu 38 0 0 1 0 0 0.0030 0

Cochepaille 39 0 0 1 0 0 0.0030 0

Pontmercy 40 0 0 0 0.0822 1 0 0.0830

Boulatruelle 41 0 0 0 0 0 0 1

Eponine 42 0 0 0 0.03097 0 0 1

Anzelma 43 0 0 0 0 0 0 1

Woman2 44 0 0 0 0 0 0.875 0.2355

MotherInnocent 45 0 0 0 0 0 0.875 0.9970

Gribier 46 0 0 0 0 0 0 1

Jondrette 47 0 0 0 0 0 0.125 0

MmeBurgon 48 0 0 0 0.9830 0 0.125 0

Gavroche 49 0 0 0 1 0 0.4609 0.42690

Gillenormand 50 0 0 0 0.0171 1 0.0219 0

Magnon 51 0 0 0 0 1 0 0.4201

MlleGillenormand 52 0 0 0 0.01117 1 0.0127 0

MmePontmercy 53 0 0 0 0 1 0 0

MlleVaubois 54 0 0 0 0 1 0 0

LtGillenormand 55 0 0 0 0.0014 1 0.0017 0

Marius 56 0 0.2744 0 1 0.431 0.7380 0.4445

BaronessT 57 0 0 0 0.0386 1 0 0

Mabeuf 58 0 0 0 1 0 0 0.0056

Enjolras 59 0 0 0 1 0 0.0293 0.0245

Combeferre 60 0 0 0 1 0 0 0

Prouvaire 61 0 0 0 1 0 0 0

Feuilly 62 0 0 0 1 0 0 0

Courfeyrac 63 0 0 0 1 0 0 0.00167

Bahorel 64 0 0 0 1 0 0 0

Bossuet 65 0 0 0 1 0 0.00291 0

Joly 66 0 0 0 1 0 0 0

Grantaire 67 0 0 0 1 0 0 0

MotherPlutarch 68 0 0 0 1 0 0 0

Gueulemer 69 0 0 0 0.0060 0 0.0156 1

Babet 70 0 0 0 0.006001214 0 0.0156 1

Claquesous 71 0 0 0 0.0057 0 0.0152 1

Montparnasse 72 0 0 0 0.0088 0 0.022 1

Toussaint 73 0 0 0 0 0 0.875 0.235

Child1 74 0 0 0 1 0 0 0

Child2 75 0 0 0 1 0 0 0

Brujon 76 0 0 0 0.03007 0 0 1

MmeHucheloup 77 0 0 0 1 0 0 0
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Table 12: Ranking (between brackets) of nodes according to its overlapping degree.

Names Nodes 2-overlap 3-overlap

Myriel 1 0.078 (34) 0 (21-77)

Napoleon 2 0 (44-77) 0 (21-77)

MlleBaptistine 3 0.7791 (5-6) 0 (21-77)

MmeMagloire 4 0.7791 (5-6) 0 (21-77)

CountessDeLo 5 0 (44-77) 0 (21-77)

Geborand 6 0 (44-77) 0 (21-77)

Champtercier 7 0 (44-77) 0 (21-77)

Cravatte 8 0 (44-77) 0 (21-77)

Count 9 0 (44-77) 0 (21-77)

OldMan 10 0 (44-77) 0 (21-77)

Labarre 11 0 (44-77) 0 (21-77)

Valjean 12 0.1480 (29) 0.1050(14)

Marguerite 13 0.4177 (16) 0 (21-77)

MmeDeR 14 0 (44-77) 0 (21-77)

Isabeau 15 0 (44-77) 0 (21-77)

Gervais 16 0 (44-77) 0 (21-77)

Tholomyes 17 0.1951 (23) 0.1883(9)

Listolier 18 0 (44-77) 0 (21-77)

Fameuil 19 0 (44-77) 0 (21-77)

Blacheville 20 0 (44-77) 0 (21-77)

Favourite 21 0 (44-77) 0 (21-77)

Dahlia 22 0 (44-77) 0 (21-77)

Zephine 23 0 (44-77) 0 (21-77)

Fantine 24 0.6909 (9) 0.5974 (4)

MmeThenardier 25 0.3881 (17) 0.1545(12)

Thenardier 26 0.3340 (19) 0.1754(10)

Cosette 27 0.8126 (3) 0.7059 (1)

Javert 28 0.7213 (8) 0.2624(7)

Fauchelevent 29 0.6293(12) 0 (21-77)

Bamatabois 30 0.2653 (21) 0.1907(8)

Perpetue 31 0.7906 (4) 0 (21-77)

Simplice 32 0.7535 (7) 0.4102 (5)

Scaufflaire 33 0 (44-77) 0 (21-77)

Woman1 34 0.5357 (13) 0 (21-77)

Judge 35 0.0556 (36) 0 (21-77)

Champmathieu 36 0.0556 (37-40) 0

Brevet 37 0.0556 (37-40) 0 (21-77)

Chenildieu 38 0.0556 (37-40) 0 (21-77)

Cochepaille 39 0.0556 (37-40) 0 (21-77)

Pontmercy 40 0.2894 (20) 0.2881(6)

Boulatruelle 41 0 (44-77) 0 (21-77)

Eponine 42 0.17602 (24) 0 (21-77)

Anzelma 43 0 (44-77) 0 (21-77)

Woman2 44 0.4855 (14) 0 (21-77)

MotherInnocent 45 0.9354 (1) 0 (21-77)

Gribier 46 0 (44-77) 0 (21-77)

Jondrette 47 0 (44-77) 0 (21-77)

MmeBurgon 48 0.3535 (18) 0 (21-77)

Gavroche 49 0.6788 (10) 0.65332 (3)

Gillenormand 50 0.1496 (27) 0.1322 (13)

Magnon 51 0.6498(11) 0 (21-77)

MlleGillenormand 52 0.1118 (33) 0.1047(15)

MmePontmercy 53 0 (44-77) 0 (21-77)

MlleVaubois 54 0 (44-77) 0 (21-77)

LtGillenormand 55 0.04216 (42) 0.0391 (20)

Marius 56 0.8591 (2) 0.6668 (2)

BaronessT 57 0.1977 (22) 0 (21-77)

Mabeuf 58 0.0751 (35) 0 (21-77)

Enjolras 59 0.1713 (26) 0.1566(11)

Combeferre 60 0 (44-77) 0 (21-77)

Prouvaire 61 0 (44-77) 0 (21-77)

Feuilly 62 0 (44-77) 0 (21-77)

Courfeyrac 63 0.0409 (43) 0 (21-77)

Bahorel 64 0 (44-77) 0 (21-77)

Bossuet 65 0.0539 (41) 0 (21-77)

Joly 66 0 (44-77) 0 (21-77)

Grantaire 67 0 0 (21-77)

MotherPlutarch 68 0 0 (21-77)

Gueulemer 69 0.1254 (30) 0.0776 (17-18)

Babet 70 0.1254 (31) 0.0776 (17-18)

Claquesous 71 0.1237 (32) 0.0762 (19)

Montparnasse 72 0.1494 (28) 0.0939 (16)

Toussaint 73 0.4855 (15) 0 (21-77)

Child1 74 0 (44-77) 0 (21-77)

Child2 75 0 (44-77) 0 (21-77)

Brujon 76 0.1735 (25) 0 (21-77)

MmeHucheloup 77 0 (44-77) 0 (21-77)
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Remark 3. It is important to remark that the (crisp) overlapping solutions derived from the fuzzy
ones have been obtained by choosing the best alpha-cut in terms of modularity (following the bi-
level approach exposed in Section 5.2). In all the examples we have analyzed, we have always found
an alpha-cut such that modularity increases from the FCD solution to the OCD one. A question
to be explored is whether this is always the case, that is, whether always an alpha-cut exists or not
that increases the modularity of the FCD solution. .

To conclude this paper, we would like to emphasize once again the importance of allowing
the usage of overlap and grouping functions to define the proposed modularity measure, which
naturally extends the classical Girvan-Newman modularity to the context of fuzzy communities
without imposing a Ruspini partition of the set of nodes. As a consequence of this greater flexibility
the methods proposed in this paper are able to deal with the following three problems at the
same time and using the same modularity measure: the fuzzy community detection problem, the
problem of ranking the overlapping nodes and the crisp identification of the overlapping nodes.
Simultaneously addressing these three problems represents a clear advantage with respect to other
approaches. Furthermore, the computational examples carried out on the classical KarateClub and
LesMiserables networks shows that the proposed method obtains promising results. Last but not
least, it is important to remark that the proposed modularity measure allows comparing partitions
of different nature, as those provided by CCD, OCD and FCD methods.
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[32] K. Rojas, D. Gómez, J.T. Rodŕıguez, J. Montero, Some properties of consistency in the families
of aggregation functions. Advances in Intelligent and Soft Computing 107:169-176 (P. Melo-
Pinto, P. Couto, C. Serodio, J. Fodor, B. De Baets, Eds.) Springer, Berlin (2011).
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