
Binary max-sum for multi-team task allocation
in RoboCup Rescue

Marc Pujol-Gonzalez1, Jesus Cerquides1, Alessandro Farinelli2, Pedro Meseguer1, and Juan A.
Rodriguez-Aguilar1

1 IIIA-CSIC
Campus de la UAB, E-08193 Bellaterra, Spain

{mpujol,cerquide,pedro,jar}@iiia.csic.es
2 Department of Computer Science, University of Verona

Strada Le Grazie, 15 37134 Verona, Italy
alessandro.farinelli@univr.it

Abstract. Coordination of agents involved in rescue missions is an important open research
problem. We focus on the RoboCup Rescue Simulation (RCS) challenge, where different teams
of agents perform urban rescue operations. Previous approaches typically cast such coordination
problem as separate single-team allocation problems, and solve them separately. Our first key
contribution is to focus on the max-sum approach, which has been successfully applied in this
setting. We show that it is possible to reduce the computational complexity associated to max-
sum from exponential to polynomial time. Our empirical evaluation shows that, by using our
approach, the fire brigades team obtains significantly better results when compared to state-of-
the-art approaches. Our second key contribution is a methodology that allows teams in RCS
to make joint allocations. Specifically, our approach supports a modular design, where teams
are independently modeled and subsequently connected via well-defined coordination points.
To the best of our knowledge, this is the first task-assignment approach in the literature that
enables teams in RCS to make simultaneous joint allocations. Experiments with fire brigades
and police agents show that teams employing inter-team coordination are significantly more
effective than uncoordinated teams.

1 Introduction

In many practical applications, such as rescue, surveillance and environmental monitoring, agents
with different capabilities must form teams that cooperate in dynamic and unpredictable environ-
ments. For example, in rescue missions, agents with different capabilities must join forces to mitigate
damages and help civilians [13]. Hence, how to allocate tasks to agents so that their performance is
maximized is a crucial issue in these scenarios.

A standard model for the task allocation problem in the context of rescue agent teams is the
Extended Generalized Assignment Problem (EGAP) [12]. This model considers situations where
each agent can perform several tasks, subject to its own resource constraints (e.g., a fire brigade
can be in charge of several fires if it has enough water to work on all of them). It also includes
execution constraints for groups of tasks (e.g., k agents must work simultaneously on the same fire
to extinguish it). Moreover, the model can capture the dynamic nature of these domains, where tasks
can enter and exit the system during the mission execution (e.g., fires can spread or be extinguished).

In this paper we also focus on dynamic task allocation, but we do not cast our problem as an
EGAP. The key element that differentiates our work is that the (E)GAP model cannot fully capture
the synergies among rescue agents working on the same task. It can express that agents should some-
how synchronize their task execution for the solution to be valid. However, while it can represent

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45448442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Pujol-Gonzalez et. al.

that exactly (or no more than) k agents should be allocated to a task, it cannot represent that having
k + 1 agents is still a valid solution, even though less desirable.

Capturing such synergies is essential for effective cooperation in rescue missions. One way to do
so is to address the problem as a coalition formation problem, where agents must form coalitions to
work on tasks [11]. Nonetheless, this approach focuses on domains where task deadlines constrain
the number of agents that can be useful for a task (i.e., which can reach the task before its dead-
line) and would not scale in scenarios (such as the fire brigades task allocation problem) where the
deadline for a task is not easy to foresee and all agents can potentially be useful on every task.

Consequently, here we take a different approach, and model our task allocation problem as social
welfare maximization problem where the objective function is the sum of utility for each task, and
the utility for a task is a function of the agents assigned to the task. Moreover, while all previous
approaches focus on task allocation for agents belonging to the same rescue team (i.e., fire fighters),
here we consider task allocation across multiple teams.

We propose the use of the max-sum approach as a solution technique. Max-sum has been recently
applied to a significant variety of application domains with successful results, such as UAVs task
assignment [2], Radar coordination [4], and the RoboCup Rescue [10,6]. However, in its basic form,
max-sum exhibits an exponential complexity in the number of agents that must directly coordinate
their actions.

Recently, it has been shown [14] that the computation associated to max-sum can be reduced
to polynomial time (between O(n) and O(n2) time) for some specific types of functions (called
Tractable Higher Order Potentials, or THOPS in short). A distinctive feature of this approach is that
it only uses binary variables, and hence it is typically named Binary Max-Sum (BMS). Such efficient
version has been used to model a number of application domains with very good results [3,8,9].

Against this background, we propose a novel formalization of the rescue coordination problem
based on BMS and only using THOPs, hence reducing the computational complexity of the solu-
tion process from exponential to polynomial time. Our approach independently represents each team
and then makes them interface through well-defined coordination points, enabling agents of differ-
ent teams to coordinate by sharing only relevant information. We evaluate our approach using the
RoboCup Rescue Simulator through the RMASBench [6] benchmarking platform. In more detail,
this paper makes the following contributions:

1. We first build a THOP version of the model designed in [6] for the coordination of the fire
brigades team, showing how different coordination situations can be modeled as THOPs.

2. We empirically show that BMS with THOPs is much more efficient than standard max-sum,
and therefore can operate quicker and provide better results. This is shown by using only the
fire brigades team and comparing with the results with the approach proposed in [6] on standard
scenarios (i.e., Paris and Kobe) used for the latest RoboCup Rescue competition. Specifically, in
the best case our approach is able to save 50% more of the city than the state-of-the-art max-sum
version.

3. We show how, by using the concept of coordination points, inter-team coordination can be
achieved without altering the single team models. This allows a designer to tackle large problems
without dealing with an explosion of design complexity.

4. We empirically validate the inter-team coordination between fire brigade and police agents. We
show that by using our approach for inter-team coordination, rescue forces achieve significant
improvements in the overall performance across a wide range of scenarios. For example, in the
Paris scenario our approach saves up to 5 times as many buildings than with teams operating
separately.

The rest of the paper is organized as follows. Section 2 provides background on max-sum. Sec-
tion 3 presents the problem we tackle. Section 4 describes how the BMS approach can be applied

Binary max-sum for multi-team task allocation in RoboCup Rescue 3

to task allocation within a rescue team, and reports our empirical findings. Section 5 details our ap-
proach for inter-team coordination along with its empirical evaluation. Finally, Section 6 concludes
the paper.

2 Background

Max-sum is an approximate optimization algorithm for unconstrained optimization that has been
applied in different coordination problems. We review max-sum, and we see how, in some specific
scenarios, its computational complexity can be reduced from exponential to polynomial. We also
present a simple technique to transform constrained optimization problems into unconstrained ones.

2.1 Max-sum

Let X = 〈x1, . . . , xn〉 be a sequence of variables, with each variable xi taking states in a finite
set Di known as its domain. The joint domain DX is the cartesian product of the domain of each
variable. We use xi to refer to a possible state of xi, that is xi ∈ Di and X to refer to a possible
state for each variable in X , that is X ∈ DX . We say that X is an assignment. Given a sequence
of variables Y ⊆ X , a factor f is a function f : DY → [−∞,∞). We refer to the variables in the
scope of f as Xf . The set of factors of the problem is denoted by F .

The max-sum algorithm provides an approximate solution to the problem of maximizing a func-
tion that decomposes additively as a sum of functions with smaller scope.

maximize
∑
f∈F

f(Xf) (1)

subject to xi ∈ Di ∀i ∈ {1, . . . , n} , (2)

where Xf contains the states assigned by X to the variables in the scope of factor f .
Max-sum provides an approximate solution in two steps. First, messages are sent from variable

to factor and from factor to variable. This step is repeated until the messages no longer change or
until a specified number of iterations is reached. After that, max-sum determines the best state for
each variable independently.

At the first stage, max-sum assesses the message from variable x to factor f as

µx→f (x) =
∑

g∈N (x)\{f}

µg→x(x) , (3)

whereN (x) stands for the factors that have variable x in its scope, x stands for a state of x, and µg→x
stands for the last message received by variable x from factor g. Max-sum assesses the message from
f to x as follows:

µf→x(x) = max
Y

f(x,Y) +
∑
y∈Y

µy→f (y)

 , (4)

where Y is the set of variables in the scope of factor f excluding x, and Y is the joint state for all
the variables in Y .

At the second stage, max-sum assesses the preferred states for each variable as arg maxxi

∑
f∈N (xi)

µf→xi(xi).

4 Pujol-Gonzalez et. al.

2.2 Binary max-sum

The complexity of max-sum is driven by equation 4, that takes time exponential in the number
of variables in the scope of the factor. Recently, several works [8,9,14] have shown that for some
specific types of factors, called Tractable Higher Order Potentials (THOPS) in [14], this time can be
reduced to polynomial provided that all the variables in the scope are binary. In the following we
assume that variables are binary and say that in an assignment a variable is active (resp. inactive) if
it takes value 1 (resp. 0).

Cardinality potentials (CPs) are factors whose value for an assignment depends on how many
variables are active in that assignment, but does not depend on which particular variables are active.
In general a CP can be expressed as

f(Xf) = g(nf (Xf)) , (5)

where nf (Xf) =
∑
xi∈Xf

xi stands for the number of active variables in assignment Xf . Tarlow et
al. [14] shows that for CPs, messages from equation 4 can be assessed in time O(N logN), where
N is the number of variables in the scope of the factor.

Particular cases of CPs are strict cardinality constraints. Tarlow et al. [14] note that for some of
these strict cardinality constraints, even more efficient algorithms to assess the messages are avail-
able. OneAndOnlyOne factors3 enforce that one and only one of the variables in the factor should
be active. Pujol-Gonzalez et al. [9] show that for this THOP the messages can be assessed in time
O(N). Tarlow et al. [14] also propose a technique for the composition of THOPs that allows to ef-
ficiently assess messages for any factor that can be constructed by the context-specific composition
of smaller THOPs. These THOPs are known as composite potentials.

2.3 Max-sum for constrained optimization

Let us consider the optimisation problem expressed in section 2.1 by equations 1 and 2. Say now
that, for instance, we add a side constraint to that problem to impose that one and only one of the
variables in X has to be active (

∑
x∈X x = 1). To apply max-sum, we need to transform the new

constrained optimization problem into an unconstrained optimization one. We can do that by making
the side constraint part of the objective function. If so, the objective function will decompose again
additively as a sum of factors so the conditions for max-sum will apply.

Formally, we can represent the side constraint above by means of a factor OneAndOnlyOne that
takes value 0 when the condition is satisfied and −∞ otherwise, namely:

OneAndOnlyOne(X) =

{
0 if

∑
x∈X x = 1

−∞ otherwise
.

Now we can reformulate the problem as the following unconstrained optimization one:

maximize
∑
f∈F f(Xf) +OneAndOnlyOne(X)

subject to xi ∈ Di ∀i ∈ {1, . . . , n} .

3 Problem description

The RoboCup Rescue Simulation Platform (RSP) is a benchmarking environment that simulates an
urban search and rescue scenario where rescue forces (police patrols, ambulances and fire brigades)

3 OneAndOnlyOne factors are named selection functions in [9].

Binary max-sum for multi-team task allocation in RoboCup Rescue 5

�1

�2'1

'2

↵2↵1
�3

�4⇢1

⇢2

Fig. 1. Example scenario.

must coordinate their actions. Specifically, police patrols can unblock roads, fire brigades can ex-
tinguish fires, and ambulance agents can rescue trapped civilians. RSP creates a realistic simulation
environment that presents significant aspects of dynamism (e.g., fires spread across a city), uncer-
tainty (e.g., the behavior of fires is determined by a number of factors that may not be perfectly
sensed or modeled), and issues of scale (e.g., tens of rescue agents and possibly hundreds of fires
and blockades in a large urban area) [5].

In this paper we focus on the coordination problem of fire brigades, police patrols, and their in-
teractions. On the one hand, regarding the coordination of fire brigades, a first element to consider is
travel time: the closer a fire brigade is to a fire, the sooner they will be able to work on it. Moreover,
the more fire brigades acting on one fire, the faster they will contain it. However, past a certain num-
ber of fire brigades, the contribution of each additional one is less significant. Now, a key issue for
the fire fighting activity is that fires evolve and spread over time. A crucial insight on fire spreading
is that new fires are more likely to extend than older ones, and older fires are fierier. Hence, fire
brigades should try to prioritize new fires to prevent them from spreading as much as possible. Over-
all, fire brigades must cooperate to ensure that an adequate number of agents is allocated to each
fire considering fire fieriness and travel time. On the other hand, considering the actions of police
patrols, a key element is that blockades on roads do not evolve over time. Moreover, unlike in the fire
fighting situation, having more police agents working on the same blockade is not beneficial. Hence
police patrols should spread out as much as possible to free roads as fast as they can.

When we consider the whole picture, police patrols and fire brigades should coordinate their
actions so that fire brigades can tackle important fires, which might be not reachable due to block-
ades, and police patrols should focus on blockades that might be far away but crucial for the fire
fighting activity. For example, consider the scenario depicted in Figure 1, which will serve as a run-
ning example throughout our paper. In this scenario we have: i) two police patrols P = {ρ1, ρ2}; ii)
two fire brigades A = {α1, α2}; iii) four blockades B = {β1, β2, β3, β4} that prevent agents from
transiting the road they are blocking; and iv) two ignition points F = {ϕ1, ϕ2} which are buildings
that are on fire at the beginning of the simulation. When considering the police patrol coordination
problem without taking the fire fighting activity into account, a good allocation for this scenario
would be (ρ1 → β4), (ρ2 → β3) because both agents work on their closest blockade. However, if
we consider the overall goal of the rescue agents (including fire fighters) a better allocation would be
(ρ1 → β2), (ρ2 → β1) so that fire brigade agents α1 and α2 can work on fires φ1 and φ2 respectively.

6 Pujol-Gonzalez et. al.

4 Coordinating a rescue team

In this section we cast the coordination problem faced by a team of rescue agents as an optimization
problem. Then we show that this optimization problem can be efficiently solved by means of binary
max-sum. First, section 4.1 formalizes the fire brigade coordination problem as an optimization
problem. Next, section 4.2 shows that it is possible to encode such optimization problem into a binary
form, by means of THOPs, so that binary max-sum can efficiently solve it. Finally, in Section 4.3 we
empirically show that binary max-sum (with THOPS) is much more efficient that standard max-sum,
and therefore can operate faster and provide better results.

4.1 Coordinating a team of fire brigades

In this section we formalize the fire brigade coordination problem as a problem of maximizing
the joint utility of the whole team of fire brigades. The formalization is inspired by the informal
description introduced in [6]. Solving the coordination problem amounts to deciding to which fire
assign each fire brigade. Thus, these decisions can be encoded by a set of decision variables Y =
{ya|a ∈ A}, where each variable ya takes values in F. Thus, yα1 = ϕ2 means that brigade α1 is
assigned to fire ϕ2. Our objective is finding an assignment Y that maximizes the team utility u(Y).

We model the utility of the fire brigade as a sum with a utility term per fire. Thus, u(Y) =∑
f∈F uf (Y), where uf (Y) represents the utility obtained from extinguishing fire f by means of

assignment Y. Furthermore, uf (Y) can be split in two terms, namely uf (Y) = ef (Y) − rf (Y).
The first term, ef (Y), represents the utility that stems from extinguishing fire f . The second term,
rf (Y), evaluates the amount of resources (the cost) expended on extinguishing fire f . Obviously,
we are interested in extinguishing each fire in the best possible way whilst minimizing the cost.

To assess ef (Y) notice that not all fires are equally relevant. We assign a value vf to each fire
f , corresponding to the utility obtained by assigning a brigade to put it out. Moreover, observe that
more than one brigade can be assigned to the very same fire. A simple model for ef is to multiply
vf by the number of brigades that are assigned to fire f , namely nf (Y). Nonetheless, there is a limit
in the number of fire brigades that can successfully cooperate in extinguishing a particular fire. This
is because, beyond some point, involving more fire brigades has a slight effect on the outcome of
the extinguishing activity. Such limit depends on a number of factors, including the fierceness of a
fire as well as the area of the building burning in flames. Here we refer to this threshold as tf . Thus,
we will consider that an assignment of fire brigades to a fire f is penalized when more than tf fire
brigades are assigned to fire f . Moreover, we consider that this penalty increases with the number of
additional agents beyond the threshold. By combining the previous arguments we propose to assess
ef (Y) as

ef (Y) = vf · nf (Y)− κ · [max(0, nf (Y)− tf)]γ (6)

where κ ≥ 0 and γ ≥ 1 are arbitrary coefficients that control the penalty increase.
As to rf (Y), the cost expended in extinguishing fire f , stems simply from the addition of the

costs of those brigades that are assigned to it:

rf (Y) =
X
a∈A

raf (ya) (7)

Since in our problem all brigades are considered equivalent except in their location, we will evaluate
the cost of assigning a brigade to a fire as proportional to the square of the distance between them4

4 We normalize distances so that the largest distance between any two points in a scenario is 1.

Binary max-sum for multi-team task allocation in RoboCup Rescue 7

raf (ya) =

(
νd2

af if ya = f

0 otherwise.
(8)

where daf is the normalized distance between brigade a and fire f, and ν ≥ 0 is an arbitrary
coefficient. Thus, the closer the brigade, the smaller the cost of assigning it.

We can readily apply max-sum by creating a factor encoding for each fire f (encoding uf)
and exchanging messages between those factors and the variables in Y . However, since each uf
takes as inputs all of the variables of the problem, the assessment of the messages from factors
to variables takes exponential time. In order to solve this problem, Kleiner et al. [6] proposed to
heuristically reduce the set of fires to which a brigade can be assigned. In that way, each factor uf
will only have in its scope the variables of those agents that can help extinguish it. This reduces the
complexity of the algorithm but: (i) it does also reduce the set of assignments under consideration;
and (ii) it requires heuristic knowledge that can make it difficult to apply a similar solution in other
coordination scenarios. In the following section we show that by encoding the problem into binary
form and making use of THOPs we can accrue a further reduction in the time complexity without
reducing the assignments under consideration and without requiring any heuristic knowledge.

4.2 Binarization

In order to binarize our problem, we simply split each decision variable ya into |F | binary variables
zaf . Variable zaf is active (set to 1) in a solution whenever we assign brigade a to fire f and is
inactive (set to 0) otherwise. Unlike our representation above, with this set of binary variables we
can encode that a single brigade is assigned to two or more different fires simultaneously. Since this
is not possible in our simulation, we need to add a constraint for each brigade, guaranteeing that it
can only be assigned to a single fire. Therefore, the following set of consistency constraints have to
be satisfied: X

f∈F

zaf = 1 ∀a ∈ A. (9)

Now, we need to encode the utility function u(Z). As in the previous section, this function breaks as
a sum with a utility term per fire, and thus u(Z) =

∑
f∈F uf (Z). It is relevant to note that uf (Z),

the utility obtained from extinguishing fire f by assignment Z, only depends on which brigades
are assigned to fire f . Thus, it does not depend on all of the variables in Z, but only on the set of
variables that relate to fire f , namely Z.f = {zaf |a ∈ A}. Hence, the scope of each factor uf can
be reduced to Z.f , and we can talk of uf (Z.f). Along the lines of the non-binary formalization, we
have now that uf (Z.f) = ef (Z.f)− rf (Z.f), where

ef (Z.f) = vf · nf (Z.f)− κ · [max(0, nf (Z.f)− tf)]γ , (10)

rf (Z.f) =
∑
a∈A

raf (zaf), and raf (zaf) = νd2
afzaf .

Now we are ready to cast the coordination problem faced by the fire brigades as the following
constrained optimization problem:

maximize
∑
f∈F ef (Z.f)−

∑
f∈F

∑
a∈A raf (zaf)

subject to
∑
f∈F zaf = 1 ∀a ∈ A

zaf ∈ {0, 1} ∀a ∈ A ∀f ∈ F

8 Pujol-Gonzalez et. al.

In order to apply max-sum, we need to transform the problem above into an unconstrained binary
problem. However, note that each of the consistency constraints in equation 9 can be readily repre-
sented by a OneAndOnlyOne factor, as described in section 2.2 and thus, its corresponding max-sum
messages can be efficiently assessed.

For each fire f , factor ef does only depend on the number of variables active in its domain, but
it does not depend on which of those variables are active. This can be readily noticed by analyzing
the expression of ef in equation 10. We observe that the dependence from Z.f is always through
nf (Z.f), and hence the condition to be a CP shown in equation 5 is fulfilled. As a consequence, the
messages out of factor ef can be efficiently assessed following the procedure described in [14].

To summarize, it is possible to assess an approximate solution to our problem, without heuristi-
cally discarding assignments, by applying binary max-sum. Furthermore, each iteration of the algo-
rithm can be executed in time O(|F ||A| log |A|).

4.3 Empirical evaluation

In this section we empirically evaluate the performance of our task allocation mechanism for a team
of fire brigades. With this aim, we compare our Binary Max-Sum (BMS) method with the state-
of-the-art algorithms in [6], namely the Distributed Stochastic Algorithm (DSA) [15] and Max-
Sum (MS) on standard scenarios used in the 2013 RoboCup competitions, namely Paris and Kobe.
However, we discard the scenarios’ elements that are irrelevant for our empirical evaluation, i.e.,
everything except for ignition points and fire brigades.

DSA: is essentially a greedy local search algorithm, executed in parallel by the participant agents.
However, DSA introduces a stochastic parameter, DSAp, to control the amount of parallelism al-
lowed when running the algorithm. Basically, agents throw a dice before trying to perform any local
improvement. If the dice is lower than DSAp, then they can try to improve. Otherwise, they must
not switch targets in the current iteration. In our case, there is an agent for each fire brigade. Ini-
tially, all brigades randomly choose some fire as their target and communicate their choices to all
other brigades. Thereafter, the algorithm runs a number of greedy improvement iterations. During
these iterations, each brigade receives the choices of the others. Then, provided it passed the dice
throw, the brigade re-evaluates all its options considering the choices that others have made. If there
is some target that yields a higher utility, it changes its target and communicates this new choice
to other brigades. The greedy improvement iterations terminate when either a maximum number
of them has been run, or no brigade is willing to change anymore. This simple algorithm provides
surprisingly good results in many different problems, and its main advantage is that it requires very
low computation and communication efforts.

Max-sum: is the algorithm explained in Section 2.1. The difference between MS and BMS is
that MS executes the non-binarized model, and therefore does not use any of the THOPs presented
in the above sections. However, the implementation provided by RMASBench employs a particular
function encoding (based on [10]), which exploits the factors’ structure to reduce the computational
effort from O(dn) to O(2n). To clarify, this implementation is computationally more efficient than
standard max-sum. Nonetheless, even with this improvement, agents are not able to compute a so-
lution within the time interval of our simulation step (i.e., 3 seconds), because the computational
requirements are still exponential. To overcome this limitation we relax the problem by removing
some of the dependencies between functions and variables. Following [6], we only consider k fire
brigades per fire as options during the allocation process. Hence, the computational effort for the
MS algorithm is not exponential in the number of agents present in the system, but only in k (i.e.,
O(2k)).

For each algorithm, we keep track of the best global solution (assignment) it has found during
all the iterations, and use that as the final result. This is possible because in RMASBench all agents

Binary max-sum for multi-team task allocation in RoboCup Rescue 9

Metric DSA Max-sum Binary max-sum

Score 6.92% [±1.00%] 5.45% [±0.61%] 3.64% [±0.37%]
Utility wins7 20.51% [±1.46%] 8.88% [±0.78%] 73.91% [±1.65%]
NCCCs 3.88k [±0.04k] 145,216k [±1,256k] 125.77k [±1.07k]
Num. msgs 69.02k [±0.83k] 11.67k [±1.01k] 395.14k [±4.26k]
Total bytes 552.16Kb [±6.70Kb] 319.72Kb [±2.37Kb] 3,161.16Kb [±34.04Kb]

Table 1. Statistics for DSA, MS and BMS averaged over 30 runs in the Paris scenario (agents start acting after
35 iterations). The best result for each metric is in bold. Numbers in brackets report the standard error of the
mean.

can communicate with each other. Along the same line, we introduce a final sequential optimization
procedure where each fire brigade is given the opportunity to make a single target switch based on
the allocations of other brigades5.

As for the parameters of the utility function for both DSA and MS, after an extensive empirical
evaluation, we set κ=2, γ=2, and ν=10. Moreover, the utility of each fire is vf=4-If , where If ∈
{1, 2, 3} is the fieriness of fire f as reported by the simulator, and tf is the area of fire f divided by
100. Intuitively, the fierier a fire is, the longer a building has been burning, and the less valuable it is
to contain. Regarding algorithms’ parameters we set the number of maximum iterations6 for all the
algorithms to 100. We set DSAp = 0.6 because it yielded the best results in our tests. Additionally,
we set k = 4 for the MS algorithm because this is the largest value allowing it to provide results
within the simulation step.

Finally, we use the following metrics to evaluate the performance of the algorithms: i) Score: is
the main performance metric used by the RoboCup simulator. It evaluates the percentage of damage
suffered by the city, with 100% meaning that it has been completely destroyed; ii) Utility wins:
counts the percentage of iterations where each algorithm obtains the best configuration in terms of
utility; iii) NCCCs [7]: captures the per-iteration average amount of non-parallelizable computation
performed by the agents; iv) Num msgs: tracks the average number of messages sent between all
agents in a single iteration; and v) Total bytes: is the average number of bytes per iteration sent
between all agents.

Results. Table 1 shows results obtained on the Paris map with a start time of 35 simulation steps8

averaged over 30 simulations. BMS achieves the best results in both quality measures, i.e. Score and
Utility wins. Particularly, BMS’s result indicates that 3.6% of the city has been damaged. In contrast,
5.4% of the city is destroyed when using MS (50% more than BMS), and 6.9% of the buildings are
destroyed when using DSA (91.7% more than BMS). Additionally, BMS fins the allocation with
highest utility (out of the three) in 73.9% of the iterations. Unsurprisingly, these gains in quality
come at a cost. DSA, being the simplest algorithm, obtains the worst results in quality, but it requires
few computational resources and relatively low communications. MS’s increase in quality requires
a large increase in computational power. In contrast, BMS computes more than DSA, yet requires
substantially more bandwidth than the other algorithms. Nonetheless, taking into account that an
iteration of the RoboCup Simulator represents one minute of real time, all these costs are within an

5 Notice that any given city has a relatively small number of fire brigades, so the number of steps for this
procedure is not a bottleneck for the approach.

6 Previous work shows that typically such algorithms reach good solutions within the first 50 iterations for
problems of similar scale[1].

7 Adds to >100% because ties count as wins for both algorithms.
8 This means we allow fire brigades to execute any action after 35 time steps. This parameter allows us to tune

the difficulty of a scenario leaving the main elements (i.e., map, fire brigades, ignition points) fixed

10 Pujol-Gonzalez et. al.

acceptable range. For instance, the 3, 161Kb sent by BMS amounts to a bandwidth requirement of
10.5Kbps.

We also experimented with a higher starting time for the agents. The results (omitted for space
reasons) are very similar to those in Table 1, maintaining the same proportions and best/worst algo-
rithms for each metric. Finally, we experimented with 2013’s Kobe scenario. This scenario is much
easier for the fire brigades, because there is only one fire focus and the map is small and easy to
navigate. BMS is still the best method quality-wise, but the results are much tighter, with MS and
DSA being only 3% worse.

To summarize, BMS provides the highest quality solutions. Given its affordable resource re-
quirements, and the fact that higher quality means saving buildings in this scenario, BMS stands as
the method of choice for single-team task allocation in the settings where we experimented.

5 Inter-team coordination

At this point we have shown that binary max-sum is valuable to solve a single-team coordination
problem. However, it is rather unrealistic to think that a team can make its own decisions. In gen-
eral, teams depend on each other to accomplish their tasks. Consider again our example in Figure 1.
We know that fire brigades try to avoid blocked fires when coordinating. However, this completely
disregards the fact that police agents will be removing blockades in the meantime so that the fire
brigades may be able to reach blocked fires in the near future. Therefore, to capture the interdepen-
dencies between teams’ decisions, we argue that it is necessary to enable teams to perform inter-team
coordination.

In this section we present a methodology to enact inter-team coordination that enables the teams
involved to make their decisions considering a shared goal. With this aim, our methodology is in-
tended to help the designer build a representation of the complete inter-team coordination problem
as a single utility function. This is not an easy endeavor because, as the number of ”teams” grows,
the global utility function becomes more and more complex, possibly becoming unmanageable. To
overcome this challenge, our methodology proposes a modular construction of the global utility
function following the next steps:

1. Define single-team coordination models for each team involved in the inter-team coordination.
Section 4 has already illustrated this step by showing how fire brigades coordinate between
themselves.

2. Identify a common language. At this step the designer must identify the coordination objects
capturing the interdependencies between teams. Such objects will serve to create coordination
variables, which are meant to act as interfaces between single-team coordination models.

3. Extend single-team coordination models to embed the common language. The next step for the
designer is to embed coordination variables into each single-team coordination model defined
by step 1.

At the end of this process, the global utility function is readily obtained by simply adding up
the extended single-team coordination models into a single function. Since, as we show below, the
resulting global utility function decomposes additively as a sum of functions, the teams involved will
be able to apply max-sum to assess their decisions.

A distinctive advantage of our methodology is that, once coordination variables are defined,
the designer does not need to consider the whole inter-team coordination problem anymore. That is,
each team independently connects its intra-team coordination model with the coordination variables.
Therefore, our methodology avoids the design complexity explosion.

In the rest of this section we exemplify the application of our methodology to the coordination
of a team of fire brigades and a team of policemen.

Binary max-sum for multi-team task allocation in RoboCup Rescue 11

5.1 Define single-team coordination models

The first step in our methodology consists in separately defining the coordination models for each
individual team involved in inter-team coordination. In section 4.2 we already introduced a coor-
dination model for a team of fire brigades. We start by extending this model to take into account
blocked roads, and then we focus on defining a coordination model for a team of policemen.

Including blockades in the fire brigades model. Since a blockade may prevent fire brigade a from
attending fire f , we should apply a penalizing factor to fire brigades allocated to blocked fires. That
is, when fire brigade a is being prevented from reaching fire f by blockade b we have to introduce a
penalty −M whenever a is assigned to f . Thus, whenever a blockade is in the way from a to f we
add to the cost raf an additional factor

r′af (zaf) =

{
0 if zaf is inactive,
−M otherwise.

Defining the police team model. Recall from section 3 that police patrols can remove blockades
from roads, freeing the paths for other types of agents to move along. Hence, it is critical that police-
men coordinate between them to remove blockades as quickly as possible. Thus, the coordination
problem faced for the policemen team is to decide the assignment of patrols to blockade removal
tasks. As in the case of fire brigades and fires, we encode an allocation of patrols to blockades using
a set of binary variables X = {xpb|p ∈ P, b ∈ B} where xpb is active if patrol p is assigned to
blockade b and inactive otherwise.

Additionally, a patrol can not remove more than one blockade at a time. Therefore, the goal of
the police team coordination problem is to compute the best allocation of patrols to blockades where
each patrol is assigned to at most one blockade. Thus, the following constraint needs to be enforced:X

b∈B

xpb ≤ 1 ∀p ∈ P . (11)

Similar to the case of fire brigades, the utility of an allocation (u(X) in this case) takes a factor
for each blockade, u(X) =

∑
b∈B ub(X.b). Furthermore, the blockade factors can be broken as

ub(X.b) = eb(X.b)−rb(X.b). An important limitation in RoboCup Rescue is that policemen efforts
do not stack up. That is, two patrols working together will not be any better at removing a blockade
than a single one. Since all patrols are assumed to be equivalent in their ability to remove blockades
and blockades do not have distinguishing characteristics, we assign a utility vB > 0 to attending
any blockade b. This utility is obtained whenever one or more patrols are assigned to remove that
blockade. Thus

eb(X.b) =

{
vB if nb(X.b) ≥ 1
0 otherwise

,

where nb(X.b) is the number of patrols assigned to blockade b.
Similarly to what we did for the fire brigades team with blockades, when measuring the cost

of assigning a patrol p to servicing blockade b, we consider two different options. On one hand, if
the blockade is directly accessible to the patrol (that is, when no other blockade appears in the path
between p and b) then the cost is proportional to the square of the distance between them, namely
dpb. On the other hand, if the blockade is not directly accessible we sum an additional penalty Q

12 Pujol-Gonzalez et. al.

to the squared distance. Thus, the evaluation of the amount of resources spent on some blockade b
becomes rb(X·b) =

∑
p∈P rpb(xpb) , where

rpb(xpb) =

0 if xpb is inactive,
ηd2
pb if xpb is active and blockade b is accessible from p,

ηd2
pb +Q otherwise

and η is a proportionality constraint.
To be able to apply max-sum to the above problem, we need to incorporate the constraints as part

of the objective function, such as described in section 2.2. For each patrol p we have a constraint
enforcing that the patrol can be assigned to at most one of the blockades, that is

∑
b∈B xpb ≤ 1.

Each of those constraints can be transformed into a factor defined as

AtMostOnep(X.p) =

{
0 if

∑
b∈B xpb ≤ 1

−∞ otherwise.
(12)

Although no reference to the AtMostOne factor as being a THOP appears in the literature, the ex-
pressions for the messages going out from it are simple and can be derived similarly to those of
the OneAndOnlyOne factor in [9]. The assessment of the messages for an AtMostOne factor in a
max-sum iteration can then be done efficiently in time O(|B|).

5.2 Identifying a common language

The second step in our methodology consists in identifying the coordination objects capturing the
interdependencies between teams. At this point it should be clear that the coordination objects in our
RoboCup example are blockades. On the one hand, police forces should prioritize blockades that
are actually preventing fire brigades from performing their duties. On the other hand, fire brigades
would like to know which blockades will be removed in the near future to make better decisions.
Therefore, we create a binary coordination variable cb for each blockade b as a means of representing
the coordination objects relating police patrols and fire brigades. The coordination variable for a
blockade bmust become active whenever the blockade is to be removed in the near future, or inactive
if that is not the case. In our particular example, these variables are already enough to represent
everything our police forces and fire brigades need to know to coordinate with each other. In other
words, the coordination variables can be understood as representing the common language between
our individual teams.

Such common language is intended to enable the fire brigades team and the policemen team to
exchange information about their inter-dependencies regarding blockades.

After establishing that common language, in the next section we show how to modify the existing
fire brigades team binary model to include blockades, and to take into account these coordination
variables. Later on we provide a model for police team coordination that also incorporates blockades
and coordinates by means of those variables.

5.3 Extending single-team coordination

The third step in our methodology consists in extending individual team models to embed coordi-
nation variables. Hereafter we extend both the fire brigades team model and the police patrols team
model introduced in section 5.1 to take coordination variables into account.

Binary max-sum for multi-team task allocation in RoboCup Rescue 13

Extending the fire brigades team model. Fire brigades can modify their utility function provided
that they know which blockades will be removed by police patrols. In particular, the penalty asso-
ciated to a blocked fire should be removed whenever they know that the police patrols are planning
to remove the blockade that prevents the fire brigade from accessing it. The interface between the
fire brigades model and the coordination variables can be done by simply adding an additional factor
safb whenever fire brigade a is being prevented from reaching fire f by blockade b.

safb(zaf , cb) =

{
M if cb is active and zaf is active
0 otherwise.

(13)

For instance, in the example in Figure 1, blockade β1 is preventing brigade α1 from reaching fire
ϕ1. Therefore, a new factor sα1ϕ1β1 is required to introduce a penalty if blockade β1 is not being
attended (and thus cβ1 is inactive). Notice that the interface variables cβ2 and cβ3 are not connected
to any factor. This represents the fact that, in our example, fire brigades do not care about these
blockades at all.

Extending the police team model. In the case of the police team, their internal variables should be
consistent with the semantics of the coordination variables cb above. Specifically, cb should be active
when some police agent is attending b, or inactive otherwise. That is, variable cb is an indicator of
whether any of the variables in X.b are active. We can enforce this by adding a new Indicator factor
Ib(cb,X.b) for each blockade, defined as

Ib(cb,X.b) =

0 if all of the variables in X.b and cb are inactive, or

at least one variable in X.b is active and cb is active
−∞ otherwise

This factor is not known to be a THOP, but we can derive expressions for its messages by noticing
that it is a composite factor [14] where cb defines two partitions, the first one when cb is active and
the second one when cb is inactive. In the first partition, the factor is an AtLeastOne between the
variables in X.b, which we have just shown that it is a THOP. In the second partition, the factor is an
AllInactive9 factor between the variables in X.b. Since the Indicator potential is a composite factor
and we have a THOP in each of the partitions defined by cb, we can assess the messages of this factor
in O(|B|) time.

At this point, we are ready to construct the global utility function for our inter-team coordination
problem. This results from adding the objective function that results from extending the fire brigades
team coordination model with the objective function that results from extending the policemen team
coordination model. Notice that such global utility function represents the whole problem. Since
this function has been built as an additive composition of functions, we can readily apply binary
max-sum to solve the inter-team coordination problem. The execution of binary max-sum yields
an exchange of information from team to team regarding coordination variables. Messages from
brigades to patrols will represent how much interested brigades are in police forces removing a
blockade, whereas messages from patrols to brigades convey the the police team’s cost of removing
a blockade. Binary max-sum convergence ends up with an agreement between teams. In the next
section we empirically evaluate the benefits of our inter-team coordination approach.

5.4 Empirical evaluation

In this section we pursue to experimentally validate the methodology described above, by evaluating
the performance of the inter-team coordination mechanism developed. With this aim, we performed

9 A trivial derivation shows that the messages sent by an AllInactive are simply −∞.

14 Pujol-Gonzalez et. al.

Coordinated teams Independent teams

20 25 30 35
Start time

0

5

10

15

20

25

30
%

 o
f

d
a
m

a
g
e
d
 c

it
y

Increasing difficulty

(a) Increasing difficulty

(40,25) (33,20) (27,15) (21,10) (15,5)
(Firefighters,Police forces)

0
10
20
30
40
50
60
70
80
90

%
 o

f
d
a
m

a
g
e
d
 c

it
y

Decreasing resources

(b) Decreasing resources

Fig. 2. Performance comparison between independent teams and coordinated teams in the Paris map. Results
are averaged over 30 runs and error bars represent the standard error of the mean.

a number of experiments to check the differences in performance between coordinated and indepen-
dent teams.

We run the experiments on the same scenarios used in Section 4.3. However, in this case we
they also include police agents as defined in the official competition. Additionally, we randomly
block 5% of the roads at the beginning of the simulation. Hence, the order in which police forces
remove these blockades may have a noticeable impact on the results, depending on how well the
coordination mechanism works.

We also employ the same parameters presented in Section 4.3. This includes both the algorithm’s
parameters and the parameters for the fire brigades utility model. Additionally, we set the η propor-
tionality constant to 10−3. This gives more relevance to the fire brigades team than to the police
agents team. With the same objective, we set M = 100, and Q = 50, so that blockades preventing
fire brigades from reaching fires are more important than blockades in the path of police agents.

Results. Our first experiment evaluates performance of the coordinated teams (CTs) and indepen-
dent teams (ITs) as the scenario becomes harder. We use the official Paris scenario, which has 40
brigades and 25 patrols, and test with starting times of 20, 25, 30, and 35 iterations (the longer the
start time, the harder the scenario becomes because fires have more time to spread). Figure 2(a)
shows that the percentage of the city damaged by fire is smaller for CTs on all the scenarios. De-
pending on the difficulty of the scenario, the burned area with ITs is from 2.2 times up to 5 times
larger than with CTs. Also, CTs seem to be able to cope better with more difficult scenarios. Again,
the increase in preserved area comes at a cost: the CTs approach requires up to twice (in the worst
case) as much communication as the ITs, albeit it uses about the same amount of computation.

Along the same lines, our next experiment tested the performance of both approaches when the
available number of rescue agents decreases (there are less rescuing resources). Figure 2(b) shows
that there is a similar trend in this case. In fact, the CTs are able to outperform ITs even with a lower
number of rescue agents (e.g., 18.05% of the city damaged when 33 fire brigades and 20 patrols
operate using ITs versus 12.28% when 27 fire brigades and 15 patrols operate in coordination).

Similar tests were also conducted in the Kobe scenario leading to very similar results, showing
significant differences between using ITs and CTs.

6 Conclusions

We have shown that in some complex task allocation scenarios it is possible to reduce the com-
putational complexity associated to MS from exponential to polynomial time. We have empirically

Binary max-sum for multi-team task allocation in RoboCup Rescue 15

evaluated this approach using the RoboCup Rescue simulator, where BMS achieves better results
than other state-of-the-art methods.

Additionally, we have presented a methodology that allows multiple teams to make joint al-
locations by enabling them to coordinate during the task allocation process. Experiments with fire
brigades and police agents show that teams employing inter-team coordination are significantly more
effective than uncoordinated teams.

Acknowledgments. Work funded by projects RECEDIT (TIN2009-13591-C02- 02), AT (CSD2007-
0022), COR (TIN2012-38876-C02-01), MECER (201250E053), the Generalitat of Catalunya grant
2009-SGR-1434, and the Ministry of Economy and Competitivity grant BES-2010-030466.

References

1. A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coordination of low-power embed-
ded devices using the max-sum algorithm. In Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems-Volume 2, pages 639–646. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2008.

2. D. Fave et al. Deploying the max-sum algorithm for decentralised coordination and task allocation of
unmanned aerial vehicles for live aerial imagery collection. In 2012 IEEE International Conference on
Robotics and Automation, pages 469–476, 2012.

3. B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315(5814):972–
976, 2007.

4. Y. Kim, M. Krainin, and V. Lesser. Application of max-sum algorithm to radar coordination and scheduling.
In Workshop on Distributed Constraint Reasoning, 2010.

5. H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, and S. Shimada. Robocup
rescue: Search and rescue in large-scale disasters as a domain for autonomous agents research. In IEEE
International Conference on Systems, Man, and Cybernetics, 1999., volume 6, pages 739–743. IEEE, 1999.

6. A. Kleiner, A. Farinelli, S. Ramchurn, B. Shi, F. Maffioletti, and R. Reffato. Rmasbench: benchmarking
dynamic multi-agent coordination in urban search and rescue. In Proceedings of the 2013 international
conference on Autonomous agents and multi-agent systems, pages 1195–1196. International Foundation
for Autonomous Agents and Multiagent Systems, 2013.

7. A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance of distributed constraints
processing algorithms. In Workshop on distributed constraint reasoning DCR 2002, pages 86–93, 2002.

8. T. Penya-Alba, J. Cerquides, J. A. Rodriguez-Aguilar, and M. Vinyals. A Scalable Message-Passing Algo-
rithm for Supply Chain Formation. In AAAI, pages 1436–1442, 2012.

9. M. Pujol-Gonzalez, J. Cerquides, P. Meseguer, J. A. Rodriguez-Aguilar, and M. Tambe. Engineering the
decentralized coordination of UAVs with limited communication range. In CAEPIA, 2013.

10. S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R. Jennings. Decentralized coordination in robocup
rescue. The Computer Journal, 53(9):1447–1461, 2010.

11. S. D. Ramchurn, M. Polukarov, A. Farinelli, N. Jennings, and C. Trong. Coalition formation with spa-
tial and temporal constraints. In International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2010), pages 1181–1188, 2010.

12. P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe. Allocating tasks in extreme teams. In Proc. of AAMAS
05, pages 727–734, Utrecht, Netherland, 2005.

13. N. Schurr, J. Marecki, P. Scerri, J. P. Lewi, and M. Tambe. Programming Multiagent Systems, chapter The
DEFACTO System: Coordinating Human-Agent Teams for the Future of Disaster Response, page 296.
Springer, 2005.

14. D. Tarlow, I. E. Givoni, and R. S. Zemel. HOP-MAP: Efficient Message Passing with High Order Po-
tentials. In International Conference on Artificial Intelligence and Statistics, volume 9, pages 812–819,
2010.

15. W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed stochastic search and distributed breakout:
properties, comparison and applications to constraint optimization problems in sensor networks. Artificial
Intelligence, 161(1):55–87, 2005.

	Binary max-sum for multi-team task allocationin RoboCup Rescue

