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Abstract

Belief functions are the measure theoretical objects Dempster-Shafer
evidence theory is based on. They are in fact totally monotone capacities,
and can be regarded as a special class of measures of uncertainty used to
model an agent’s degrees of belief in the occurrence of a set of events by
taking into account different bodies of evidence that support those beliefs.
In this chapter we present two main approaches to extending belief func-
tions on Boolean algebras of events to MV-algebras of events, modelled
as fuzzy sets, and we discuss several properties of these generalized mea-
sures. In particular we deal with the normalization and soft-normalization
problems, and on a generalization of Dempster’s rule of combination.

1 Introduction and motivations

Dempster-Shafer theory of evidence [13, 50] is a generalization of Bayesian prob-
ability theory in which degrees of uncertainty are evaluated by belief functions,
rather than by probability measures. Belief functions [50, 52] can be regarded
as a special class of measures of uncertainty used to represent an agent’s de-
grees of confidence in the occurrence of events of interest by taking into account
different bodies of evidence that support these beliefs [50]. Such evidence plays
a pivotal role in determining the agent’s beliefs. Indeed, as we will recall in a
while, although any belief function on the Boolean algebra 2X of subsets of a
finite set X might be seen as a particular probability, its associated distribu-
tion (called mass in Dempster-Shafer theory) maps the whole algebra 2X into
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[0, 1], and not only its atoms. Every set Y ⊆ X with a strictly positive mass
represents a particular body of evidence and is called a focal element.

Given the relevance that Dempster-Shafer theory has in real-world situa-
tions, we may argue that usually, when a person is asked to provide an evidence
about a fact she were witness of, her description of the facts would be affected
not only by uncertainty regarding the statements, but also by a possible impre-
cision in the statements themselves. Therefore the classical framework would
be insufficient to model the analysis provided by a witness.

Fuzzy sets were introduced by Zadeh [57] as an extension of classical sets:
given a referential set X, a fuzzy subset of X can be identified with a function
f from X into the real unit interval [0, 1]. Given a fuzzy sets f , the idea is
to interpret, for every x ∈ X, the value f(x) ∈ [0, 1] as the degree of mem-
bership of x to f . Adopting this interpretation, fuzzy set theory has become a
basic mathematical model to represent imprecision and vagueness, but of course
many other different interpretations are also possible. A typical example which
explains how fuzzy sets can be used in order to deal with imprecision is about
the height of a person (we will turn back to this example in the last section of
this chapter). Indeed, when we are asked whether an individual x belongs to
the set of tall persons, the classical truth values 1 (true) and 0 (false) might be
insufficient. On the other hand, values in the real unit interval [0, 1] provide a
wider spectrum with which one can evaluate to what extent an individual can
be considered as tall. In this prospective the fuzzy set of tall persons becomes
a function µtall : X → [0, 1] from the set X of individuals to [0, 1], assigning to
each individual x its degree µtall(x) of being tall. We refer the reader e.g. to
[20, 32, 39] for monographs on the topic.

In the literature several attempts to extend belief functions on fuzzy events
can be found. The first extensions of Dempster-Shafer theory to the general
framework of fuzzy set theory was proposed by Zadeh in the context of in-
formation granularity and possibility theory [59] in the form of an expected
conditional necessity, and by Smets who proposed in [51] to extend a classical
belief function Bel on 2X to fuzzy subsets A of X as the lower expectation of
the characteristic function of A with respect to the class of probability measures
lower bounded by Bel. After Zadeh and Smets, several further generalizations
were proposed depending on the way a measure of inclusion among fuzzy sets
is used to define the belief functions of fuzzy events based on fuzzy evidence.
Indeed, given a mass assignment m for the bodies of evidence {A1, A2, . . .}, and
a measure I(A ⊆ B) of inclusion among fuzzy sets, the belief of a fuzzy set B
can be defined in general by the value: Bel(B) =

∑
i I(Ai ⊆ B) ·m(Ai). We

refer the reader to [37, 55, 56] for exhaustive surveys, and to [2] for another
approach through fuzzy subsethood.

Belief functions on distributive lattices were studied in [33] and [61] where
the authors define, starting from a given mass assignment m : L → [0, 1], the
belief degree Bel(a) of an element a of a distributive lattice L to be Bel(a) =∑
x∈IL,x≤am(x), where IL denotes the set of all join-irreducible elements of

L. Notice that, although the framework of distributive lattices is much more
general than the framework we are going to discuss in this chapter (we invite
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the reader to consult Section 3), the inclusion operator used in [33, 61] is crisp
and hence it does not take into account a graded notion of inclusion.

Different definitions were also introduced by Dubois and Prade [19] and by
Denœux [15, 16] to deal with belief functions ranging over intervals or fuzzy
numbers.

Of course, moving from classical sets to fuzzy sets conveys non trivial com-
plications in the description of the algebraic model aimed at representing the
available evidence. In particular, although we start with a finite set X, while
the Boolean algebra 2X is finite and hence atomic, the class [0, 1]X of the fuzzy
subsets f : X → [0, 1] of X contains uncountably many elements and hence it is
not always trivial to define a mass m over them. Moreover there are several dif-
ferent ways to generalize Boolean algebras to algebras of fuzzy sets. Usually the
generalization of belief functions to this frame, is done in the algebraic context
of the so called De Morgan triples (or Zadeh-algebras) over classes of fuzzy sets,
and where intersection, union, and complementation, are replaced in [0, 1]X by
the pointwise extensions of the operations in [0, 1] of min, max, and standard
negation ¬ : x 7→ 1− x respectively (see for instance [60, §2.1]).

In [25, 41, 42], to further generalize belief functions on fuzzy sets, the authors
frame their investigation in the algebraic setting of MV-algebras [7, 45] (in fact
in every MV-algebra a Zadeh-algebra is obtainable as a reduct) and, since a
belief function can be equivalently represented by a probability measure Pm :

22
X → [0, 1] such that P ({∅}) = 0, they replace the usual probability measures

by the notion of state on MV-algebras [44]. Indeed MV-algebras are the algebraic
structures for fuzzy sets enabling the most natural treatment of many-valued
probability theory. The reason is in the formula for a probability of a fuzzy
event proposed already by Zadeh [58]. His definition — the expected value of
the membership function of the fuzzy set w.r.t. a probability measure on its
domain — later turned out to be a consequence of the axiomatic treatment
of MV-probability. We will provide a more detailed introduction about these
topics in Subsection 3.1.

In this chapter we will survey recent developments on belief functions on
MV-algebras of fuzzy sets, mainly following the lines of the already above cited
papers [25, 28, 41, 42]. The paper is organized as follows. In Section 2 we recall
how belief functions are defined on Boolean algebras and in particular we will
present a first definition based on mass assignments, and a second (equivalent)
one based on probability measures. Then, in Section 3 we introduce the main
algebraic structures we will need along the paper, namely MV-algebras. In the
same section we also introduce states on MV-algebra (in Subsection 3.1) and
we recall some basic results we are going to use later. Section 4 contains two
main approaches to define belief functions on MV-algebras: we will deal with
a first approach in which belief functions on fuzzy sets are built up over crisp,
Boolean focal elements (Subsection 4.1), and a second, more general approach,
in which belief functions on fuzzy sets are defined in a way to allow for focal
elements to be fuzzy as well (Subsection 4.2). Belief functions on MV-algebras
are not necessarily normalized measures, in the sense of the belief of the empty
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set being zero. We will discuss the normalization problem in Section 5 and the
case of a soft-normalization of mass assignments, and hence of belief functions,
in Subsection 6. Then in Section 7 we present a generalization of Dempster rule
of combination, we discuss some particular cases and we provide an example
aimed at clarifying the use of such a construction in the general frame of fuzzy
sets. We will end this chapter with Section 8 where we present some concluding
remarks and we also suggest alternative readings about the topic.

2 Belief functions on Boolean algebras

Consider a finite set X whose elements can be regarded as mutually exclusive
(and exhaustive) propositions of interest, and whose powerset 2X represents all
combinations of such propositions. The set X is usually called the frame of
discernment, and every element x ∈ X represents the lowest level of discernible
information we can deal with.

A map m : 2X → [0, 1] is said to be a basic belief assignment, or a mass
assignment whenever

m(∅) = 0 and
∑
A∈2X

m(A) = 1.

Given such a mass assignment m on 2X , for every A ∈ 2X , the belief of A is
defined as

Belm(A) =
∑
B⊆A

m(B). (1)

Every mass assignment m on 2X is in fact a probability distribution on 2X that

naturally induces a probability measure Pm on 22
X

. Consequently, the belief
function Belm corresponding to m can be equivalently described as follows: for
every A ∈ 2X ,

Belm(A) = Pm({B ∈ 2X : B ⊆ A}). (2)

Therefore, identifying the set {B ∈ 2X : B ⊆ A} with its characteristic function

on 22
X

defined by

βA : B ∈ 2X 7→
{

1 if B ⊆ A,
0 otherwise,

(3)

it is easy to see that, for every A ∈ 2X , and for every mass assignment m :
2X → [0, 1], we have

Belm(A) = Pm(βA). (4)

This easy characterization will be important when we discuss the extensions of
belief functions on MV-algebras. The following is a trivial observation about the
map βA that can be useful to understand our generalization: for every A ∈ 2X ,
βA can be regarded as a map evaluating the (Boolean) inclusion of B into A,
for every subset B of X.
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A subset A of X such that m(A) > 0 is said to be a focal element. Every
belief function is characterized by the value that m takes over its focal elements,
and therefore, the focal elements of a belief function Belm contain the pieces
of evidence that characterize Belm itself. For every set X and for every mass
assignment m, call Fm the set of focal elements of 2X with respect to m. It is well
known that several subclasses of belief functions can be characterized just by the
structure of their focal elements. In particular, when Fm ⊆ {{x} : x ∈ X}, it is
clear that Belm is indeed a probability measure. Moreover, if the focal elements
are nested subsets of X, i.e. Fm is a chain with respect to the inclusion relation
between sets, then Belm is a necessity measure [19, 50]; this means e.g. that
in such a case, it holds that Belm(A1 ∩ A2) = min{Belm(A1), Belm(A2)} for
eveary A1, A2 ∈ 2X .

The whole class of belief functions on Boolean algebras is characterized by
the property of non-decreasing differences of all possible orders. This property
can be formulated for any function v : L → R defined on a distributive lattice
L [33, 61]. We say that v is totally monotone if, for every n ≥ 2 and every
a1, . . . , an ∈ L, we have

v

(
n∨
i=1

ai

)
≥

∑
∅6=I⊆{1,...,n}

(−1)|I|+1v

(∧
i∈I

ai

)
.

Shafer [50] has shown that the following assertions are equivalent for a function
v : 2X → [0, 1] such that v(∅) = 0 and v(X) = 1:

• v is a belief function,

• v is a totally monotone function on the distributive lattice 2X .

As we will see in the following sections, this property does not characterize, in
general, belief functions on fuzzy sets.

3 MV-algebras: an algebraic frame for many-
valued events

In the same way Boolean algebras are the algebraic structures related to classical
logic, MV-algebras are the algebras naturally associated to infinitely-valued  Lu-
kasiewicz logic.

The language of  Lukasiewicz logic  L (cf. [7, 35]), consists of a countable set
of propositional variables {p1, p2, . . .}, the binary connective →, and the truth
constant ⊥. Formulas are defined by the usual inductive clauses. The following
formulas provide an axiomatization for  L:

( L1) ϕ→ (ψ → ϕ)

( L2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

( L3) ((ϕ→ ⊥)→ (ψ → ⊥))→ (ψ → ϕ)
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( L4) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

The rule of inference of  L is modus ponens: from ϕ and ϕ→ ψ, deduce ψ.
Further connectives in  L are definable as follows: ¬ϕ = ϕ → ⊥; ϕ ⊕ ψ =

¬ϕ → ψ; ϕ � ψ = ¬(ϕ → ¬ψ); ϕ ∨ ψ = (ϕ → ψ) → ψ; ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ);
> = ¬⊥.

 Lukasiewicz logic is an algebraizable logic in the sense of Blok and Pigozzi [3],
and its equivalent algebraic semantics is constituted by the class of MV-algebras
[6, 7]. In algebraic terms, an MV-algebra is a structure A = (A,⊕,¬, 0) of type
(2, 1, 0) satisfying the following equations, for every a, b, c ∈ A:

(MV1) a⊕ (b⊕ c) = (a⊕ b)⊕ c,

(MV2) a⊕ b = b⊕ a,

(MV3) a⊕ 0 = a,

(MV4) ¬¬a = a,

(MV5) a⊕ ¬0 = ¬0,

(MV6) ¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a.

Further (definable) operations can be defined from ⊕,¬ and 0 in a similar way
as for the logical connectives above. In particular: a → b = ¬a ⊕ b, a � b =
¬(¬a⊕ ¬b); a ∨ b = ¬(¬a⊕ b)⊕ b; a ∧ b = ¬(¬a ∨ ¬b); 1 = ¬0.

For every MV-algebra A = (A,⊕,¬, 0, 1), the structure L(A) =
(A,∧,∨, 0, 1), where ∧ and ∨ are defined as above, is a bounded distributive
lattice and moreover the order relation ≤ defined by the stipulation: for all
a, b ∈ A

x ≤ y iff x→ y = 1,

coincides with the lattice order of L(A). An MV-algebra whose order ≤ is linear
is called an MV-chain. The class of MV-algebras forms a variety that we denote
by MV.

Let A be an MV-algebra. Then a non empty subset f of A is said to be a
filter of A iff: (i) 1 ∈ f, (ii) if a, b ∈ f, then a � b ∈ f, and (iii) if a ∈ f and
b ≥ a, then b ∈ f. A filter f of an MV-algebra A is said to be proper, if f 6= A. A
filter m is said to be a maximal filter (or an ultrafilter) whenever for any proper
filter f such that f ⊇ m, either f = A, or f = m. The set of all ultrafilters of
an MV-algebra A will be henceforth denoted by M(A), or, when there is no
danger of confusion, simply by M. For every MV-algebra A, the set M(A)
is non-empty and it can be endowed with a compact Hausdorff topology, the
so-called spectral topology: for an arbitrary filter f of A, any set of the form
Of = {m ∈M(A) : m 6⊇ f} is open in this topology.

Observe that an intersection of a family of filters is a filter. The intersection
of the family of all maximal filters of an MV-algebra A is called the radical of
A and it is usually written Rad(A). An MV-algebra A is semisimple whenever
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Rad(A) = {1}. It is well-known (see [7] for instance) that the congruences
lattice and the filters lattice of any MV-algebra A are mutually isomorphic, via
the isomorphism which associates to every congruence1 θ the filter fθ = {a ∈
A | (a, 1) ∈ θ}.

Example 3.1. The following are four relevant examples of MV-algebras:

(1) Every Boolean algebra is an MV-algebra, and moreover for every MV-
algebra A, the set B(A) = {a ∈ A : a⊕a = a} of its idempotent elements
is the domain of the largest Boolean subalgebra of A. The algebra having
B(A) as universe is usually called the Boolean skeleton of A.

(2) Define on the real unit interval [0, 1] the operations ⊕ and ¬ as follows:
for all a, b ∈ [0, 1],

a⊕ b = min{1, a+ b}, and ¬a = 1− a.

Then the structure [0, 1]MV = ([0, 1],⊕,¬, 0) is an MV-algebra. The MV-
algebra [0, 1]MV is generic for the variety of MV-algebras (i.e. it generates
the whole variety MV) and it is usually called the standard MV-algebra.
In equivalent terms,  Lukasiewicz logic is complete with respect to the
semantics defined by the standard MV-algebra.

(3) Fix k ∈ N, and let F (k) be the set of all the McNaughton functions (cf.
[7]) from the hypercube [0, 1]k into [0, 1]. In other words, F (k) is the set of
all the functions f : [0, 1]k → [0, 1] which are continuous, piecewise linear
and such that each linear piece has integer coefficients only. The following
pointwise operations defined on F (k),

(f ⊕ g)(x) = min{1, f(x) + g(x)}, and (¬f)(x) = 1− f(x),

make the structure F(k) = (F (k),⊕,¬, 0) into an MV-algebra, where 0
clearly denotes the function constantly equal to 0. Actually, F(k) is the
free MV-algebra over k generators [7].

(4) Let X be a non-empty set, and let A = [0, 1]X the set of all functions from
X into [0, 1], endowed with operations defined by the pointwise application
of those in [0, 1]MV . The structure [0, 1]X is clearly an MV-algebra, which
we will henceforth call MV-algebra of fuzzy sets in order to point out that
every fuzzy subset of X is indeed included into A. Every MV-subalgebra
of [0, 1]X is called an MV-clan or simply a clan (cf. [4, 46]). Notice that,
for a finite non-empty set X, the Boolean skeleton of the MV-algebra of
fuzzy sets [0, 1]X coincides with the power set 2X of X.

1A congruence θ in a MV-algebra A is an equivalence relation on A respecting the opera-
tions, i.e. if (x, y) ∈ θ then (¬x,¬y) ∈ θ, and if (x, y), (x′, y′) ∈ θ then (x⊕ x′, y ⊕ y′) ∈ θ.
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Notation 1. As already recalled in the introduction, MV-algebras, and MV-
clans in particular, constitute the algebraic framework on top of which we will
define belief functions. Indeed, elements of an MV-algebra A will be always
intended to be the fuzzy sets we will work with. Therefore, although in the
previous sections we used the notation f, g, . . . to indicate fuzzy sets, we will
henceforth denote them by a, b, c, . . . without danger of confusion. At the same
time, the notation f, g, . . . will be reserved to indicate functions in general.
Moreover, in order to distinguish fuzzy sets from crisp sets, the latter will be
indicated using capitals letters. So, for example, for any MV-algebra A we will
denote the elements of B(A) by C,D, . . ., while for generic elements of A we
will use the notation a, b, c, . . ..

It is worth noticing that in [0, 1]MV , the interpretation of the lattice op-
erations of ∧ and ∨ is, respectively, in terms of the min and max operators.
Therefore, we will henceforth use both the notations ∧ and min, and ∨ and
max, without danger of confusion.

Roughly speaking the class of MV-algebras can be divided into semisimple
and non-semisimple MV-algebras. This is, in particular, a key point of distinc-
tion between MV and Boolean algebras. Remember, in fact, that every Boolean
algebra is semisimple, and that all MV-algebras of fuzzy sets A = [0, 1]X are
semisimple as well.

A semisimple MV-algebra A ⊆ [0, 1]X is said to be separating provided that
for each x1 6= x2 ∈ X, there is a a ∈ A such that a(x1) 6= a(x2). Hence,
the MV-algebras of fuzzy sets A = [0, 1]X are both separating and semisimple.
The following theorem provides a representation of semisimple MV-algebras by
algebras of continuous functions.

Theorem 3.2 (Chang [6], Belluce [1]). Up to isomorphism, every semisimple
MV-algebra A is a separating algebra of continuous [0, 1]-valued functions over
the compact Hausdorff space M(A) of ultrafilters of A.

The following result, which we state for the particular case of MV-algebras
of fuzzy sets, holds in a much more general setting. We invite the interested
reader to consult [7] for a more exhaustive treatment.

Theorem 3.3. For every MV-algebra A = [0, 1]X , there exists a one-to-one
correspondence between the points of X and the class Hom(A, [0, 1]MV ) of ho-
momorphisms of A into the standard MV-algebra [0, 1]MV .

Thanks to the above Theorem 3.3 we will henceforth identify points in X
with homomorphisms of A in the standard MV-algebra [0, 1]MV without loss of
generality. Moreover, the following holds:

Corollary 3.4. Let {τ1, . . . , τs} be a finite subset of an MV-algebra A = [0, 1]X .
Then

{〈h(τ1), . . . , h(τs)〉 ∈ [0, 1]s : h ∈ Hom(A, [0, 1]MV )} =

{〈τ1(x), . . . , τs(x)〉 : x ∈ X}.
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In this paper we will mainly concentrate on MV-algebras which are MV-
clans [0, 1]X defined over a finite set X. Such MV-algebras can be identified
with finite direct products of copies of [0, 1]MV .

3.1 States on MV-algebras

States on MV-algebras have been introduced by Mundici in [44] as averaging
processes for the infinitely-valued  Lukasiewicz calculus.

Definition 3.5. Let A be an MV-algebra. A state on A is a map s : A→ [0, 1]
such that:

(s1) s(1) = 1,

(s2) For all a, b ∈ A such that a� b = 0, s(a⊕ b) = s(a) + s(b).

A state s on an MV-algebra A is said to be faithful if s(x) = 0 implies x = 0.

For a given MV-algebra A, the class of all states on A is denoted by S(A).
States play the same role on MV-algebra as probability measures do on Boolean
algebras: indeed, the two properties (s1) and (s2) characterize each state on A
as a [0, 1]-valued map that is normalized (s1) and additive (s2) with respect to
the MV-algebraic operations. Moreover, it is easy to see that, for every MV-
algebra A and for every s ∈ S(A), the restriction of s to the Boolean skeleton
B(A) of A is a finitely additive probability measure. The following theorem,
independently proved in [40] and [47], shows an integral representation of states
by Borel probability measures defined on the σ-algebra B(X) of Borel subsets
of X, where X is any compact Hausdorff topological space.

Theorem 3.6. Let A ⊆ [0, 1]X be a separating clan of continuous functions
over a compact Hausdorff space X. Then there is a one-to-one correspondence
between the class S(A) of states on A, and the regular Borel probability measures
on B(X). In particular, for every state s on A, there exists a unique regular
Borel probability measure µ on B(X) such that for every a ∈ A,

s(a) =

ˆ
X

a dµ. (5)

In the next example we consider a particular case of states on MV-algebras
of fuzzy sets, focusing on the integral representation presented above.

Example 3.7. Let X be a finite non empty set. Let A = [0, 1](2
X) be the MV-

algebra of fuzzy sets consisting of all functions from 2X to [0, 1] (i.e. A is the
MV-algebra of all fuzzy subsets of the powerset 2X of X). We will henceforth

deal with those states on [0, 1](2
X) satisfying s(χ{∅}) = 0 (where χ{∅} denotes

the characteristic function of ∅ ∈ 2X). The above Theorem 3.6 ensures that
for each such state s, there exists a unique finitely additive probability measure

µ : 2(2
X) → [0, 1] such that, for every a ∈ [0, 1](2

X),

s(a) =
∑
A⊆X

a(A) · µ({A}),
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and µ({∅}) = 0.

Obviously the class S(A) is non-empty since Hom(A, [0, 1]MV ) ⊆ S(A).
Moreover S(A) is a convex subset of the compact Hausdorff space [0, 1]A whose
set of extremal points coincides with Hom(A, [0, 1]MV ). For every subset X of
a topological vector space, let us write co(X) to denote the closure of the convex
hull of the set X [21]. Then, Krein-Mil’man Theorem [31] gives the following
result.

Theorem 3.8. For every MV-algebra A, S(A) = co(Hom(A, [0, 1]MV )).

The following example is obtained by applying the above Theorem 3.8 to
the particular case of MV-algebras of fuzzy sets, and it will be needed in the
remaining of part of this chapter.

Example 3.9. As in Example 3.7, let X be finite and let S0 be the subset of

S([0, 1](2
X)) of those states s : [0, 1](2

X) → [0, 1] further satisfying s(χ{∅}) = 0.

The set S0 is a convex subset of the (2|X| − 1)-dimensional Euclidean space.

Since the correspondence between S0 and the set of all probabilities µ on 2(2
X)

satisfying µ({∅}) = 0 is a one-to-one affine mapping, the set S0 is a (2|X| − 2)-
simplex as well. Regarding the extreme points of S0, we can observe that they
are in one-to-one correspondence with the non-empty subsets of X, and hence

every state sA, with A ∈ 2X \{∅}, such that sA(a) = a(A) for each a ∈ [0, 1](2
X)

is an extreme point of S0.

4 Belief functions on MV-algebras of fuzzy sets

In this section we are going to discuss two main MV-algebraic generalizations
of belief functions. Our approach is to generalize the definition (4), where

Belm is derived from a probability measure Pm on 22
X

. Therefore, we need to
generalize both the inclusion map βA and the probability measure Pm. In the
following subsections we investigate two directions in which these notions can
be generalized.

4.1 The case of crisp focal elements

Let X be a finite nonempty set, and let, for each element a in the MV-algebra
[0, 1]X , the map ρ̂a : 2X → [0, 1] be defined by the following stipulation: for all
B ∈ 2X ,

ρ̂a(B) =

{
minx∈B a(x) if B 6= ∅,
1 if B = ∅. (6)

Remark 4.1. ρ̂a generalizes the map βA we discussed in Section 2 in the
following sense: whenever A ∈ B(A) = 2X , then ρ̂A = βA. Indeed, for every
A ∈ B(A), ρ̂A(B) = 1 if B ⊆ A, and ρ̂A(B) = 0, otherwise.
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Definition 4.2 (Crisp Focal Elements). Let X be a finite nonempty set. Then

a map b̂ : [0, 1]X → [0, 1] is a crisp-focal element belief function, if there exists

a state s : [0, 1](2
X) → [0, 1] such that, for all a ∈ [0, 1]X

b̂(a) = s(ρ̂a).

The state s defining b̂ will be henceforth called the state assignment of b̂.

The integral representation theorem for states (Theorem 3.6) can be gen-
eralized to crisp-focal belief functions. This requires the introduction of the
Choquet integral (cf. [14]). Let f be any function from a finite nonempty set
X to [0, 1], and let σ be a set function σ : 2X → [0, 1] such that σ(∅) = 0. Then
the Choquet integral of f with respect to σ is defined as

C
ˆ
f dσ =

ˆ 1

0

σ(f−1([t, 1])) dt.

Since X is finite, the integral Ć f dσ exists and takes the form of a finite sum.
In fact, without loss of generality let X = {x1, . . . , xn}, where the numbers
yi = f(xi) satisfy y1 ≥ · · · ≥ yn. Put yn+1 = 0 and for each i = 1, . . . , n,
Si = {x1, . . . , xi}, then

C
ˆ
f dσ =

n∑
i=1

(yi − yi+1)σ(Si).

Proposition 4.3. For every crisp-focal belief function b̂ : [0, 1]X → [0, 1] there
exists a unique belief function Bel : 2X → [0, 1] such that, for each a ∈ [0, 1]X ,

b̂(a) = C
ˆ
a d(Bel).

Proof. Let s be the state assignment on [0, 1](2
X) which defines b̂. According to

Example 3.7 there is a unique finitely additive probability measure µ on 2(2
X)

such that, for each f ∈ [0, 1](2
X), one has s(f) =

∑
A⊆X f(A) · µ({A}) and

µ({∅}) = 0. Therefore, the crisp-focal belief function b̂ is expressed as follows:
for every a ∈ [0, 1]X ,

b̂(a) = s(ρ̂a) =
∑
A⊆X

ρ̂a(A) · µ({A}). (7)

Recalling the definition (3) of the map βA, we have ρ̂a(A) = min{a(x) : x ∈
A} = Ć a dβA, for every a ∈ [0, 1]X and for every A ⊆ X. Equation (7) together
with the linearity of Choquet integral with respect to the integrating set function
βA yields

b̂(a) =
∑

A∈2X\{∅}

µ({A}) · C
ˆ
a dβA = C

ˆ
a d

 ∑
A∈2X\{∅}

µ({A}) · βA

 .
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The claim then follows noticing that the function Bel : 2X → [0, 1] such that
for each B ⊆ X,

Bel(B) =
∑

A∈2X\{∅}

µ({A}) · βA(B) = µ({A ⊆ X | A ⊆ B})

is a belief function on 2X .

With X being finite, despite the previous representation theorem for crisp-
focal belief functions in terms of Choquet integral, Theorem 3.6 and Example

3.7 yields a unique probability measure µ : 2(2
X) → [0, 1] such that for every

a ∈ [0, 1]X

s(ρ̂a) =
∑
C∈2X

ρ̂a(C) · µ({C}). (8)

Moreover, it is easy to see that, for every C ⊆ 2X , µ({C}) = s({C}), where
s({C}) is a succint expression for s(χ{C}). Since µ({∅}) = 0, the probability
measure µ induces a mass assignment m such that m(C) = µ({C}). This remark
explains the name crisp-focal for the belief functions as in Definition 4.2. In fact,
from (8), each crisp-focal belief function b̂ assigns, to each element a ∈ [0, 1]X ,

the value b̂(a) =
∑
C⊆X ρ̂a(C) ·m(C). Therefore b̂(a) is only determined by the

crisp elements C ⊆ X for which m(C) > 0, i.e. Boolean (crisp) focal elements.
In Dempster-Shafer theory, given a belief function Bel : 2X → [0, 1], the

mass m that defines Bel can be recovered from Bel by the Möbius transform
[50] of Bel:

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B).

In case of crisp-focal belief functions, the situation is analogous.

Proposition 4.4. Let b̂ : [0, 1]X → [0, 1] be a crisp-focal belief function, defined

as b̂(a) = s(ρa) for some state s on [0, 1](2
X) such that s({∅}) = 0 and s({C}) >

0 iff C(x) ∈ {0, 1}, where C 6= ∅. Then

s({A}) = m(A) =
∑
B⊆A(−1)|A\B|b̂(B)

for each A ⊆ X.

Proof. Definition (4.2) directly gives that ρ̂A(C) ∈ {0, 1} for each pair of crisp
sets A,C ⊆ X and thus

b̂(A) =
∑
C∈2X ρ̂A(C) · s({C}) =

∑
B⊆A s({B}) =

∑
B⊆Am(B).

This implies that the restriction of b̂ to 2X is a classical belief function. See
[42] for further details.

As a corollary, observe that, in the hypothesis of the above proposition, the
values b̂(a) for non-crisp a ∈ [0, 1]X are fully determined by the values of b̂ over
the crisp sets of 2X . Indeed, Proposition 4.3 proves that, for any a ∈ [0, 1]X ,

b̂(a) is the Choquet integral of a with respect to the restriction of b̂ over 2X .
In this way we arrive at another characterization of crisp-focal belief functions.
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Theorem 4.5. A function b̂ : [0, 1]X → [0, 1] is a crisp-focal belief function iff
its restriction onto 2X is a totally monotone function, i.e., for every natural n
and every A1, . . . , An ∈ 2X , the following inequality holds:

b̂

(
n∨
i=1

Ai

)
≥

∑
∅6=I⊆{1,...,n}

(−1)|I|+1 · b̂

(∧
k∈I

Ak

)
.

The geometrical structure of the set of all crisp-focal belief functions on
[0, 1]X is completely determined by the associated simplex of state assignments

on [0, 1](2
X). For each A ⊆ X, a crisp focal belief function b̂A(a) = min{a(x) :

x ∈ A} for a ∈ [0, 1]X corresponds to the state assignment sA (see Example
3.9). Consequently, we obtain the following characterization of the set of all
crisp focal belief functions.

Proposition 4.6. The set of all crisp focal belief functions on [0, 1]X is a

(2|X| − 2)-simplex whose set of extreme points is {b̂A | A ∈ 2X \ {∅}}.

4.2 The case of fuzzy-focal elements

The notion of belief function on MV-algebras we are going to introduce in this
section (cf. [25]) generalizes crisp-focal belief function by introducing, for every
a ∈ A = [0, 1]X , a more general inclusion map ρa associating with each fuzzy
set b ∈ A the degree of inclusion of the fuzzy set b into the fuzzy set a as follows:

ρa(b) = min{b(x)⇒ a(x) : x ∈ X}, (9)

where ⇒ is Lukasiewicz implication in the standard algebra [0, 1]MV defined as
u ⇒ v = (¬u) ⊕ v = min(1, 1 − u + v), for all u, v ∈ [0, 1]. The choice of ⇒
in the above definition is clearly due to the MV-algebraic setting, but different
choices could be made in other fuzzy logic settings.

The mapping ρa can be indeed regarded as a generalized inclusion operator
between fuzzy sets (cf. [25] for further details) since the following intuitive
properties are satisfied by such mappings:

• ρa(b) = 1 iff b(x) ≤ a(x), for all x ∈ X;

• ρa(b) ≥ ρa(b′), whenever b(x) ≤ b′(x), for all x ∈ X;

• ρa(b) = 0 iff there is x ∈ X such that b(x) = 1 and a(x) = 0.

Next proposition shows that the mapping ρa generalizes both the previously
introduced mappings βA and ρ̂a.

Proposition 4.7. (i) For all a, a′ ∈ A, ρa∧a′ = min{ρa, ρa′}, and ρa∨a′ ≥
max{ρa, ρa′}.

(ii) For every a ∈ A, the restriction of ρa to B(A) coincides with the trans-
formation ρ̂a defined by (6).

(iii) For every A ∈ B(A), the restriction of ρA to B(A) coincides with the
transformation βA defined by (3).
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Proof. (i) In every MV-chain, and in particular in the standard chain [0, 1]MV

the equation ¬c⊕ (a∧ b) = (¬c⊕ a)∧ (¬c⊕ b) holds:, i.e. (c⇒ (a∧ b)) = (c⇒
a) ∧ (c⇒ b). Therefore, for every a, a′, b ∈ A,

ρa∧a′(b) = min{b(x)⇒ (a ∧ a′)(x) : x ∈ X}
= min{b(x)⇒ (a(x) ∧ a′(x)) : x ∈ X}
= min{(b(x)⇒ a(x)) ∧ (b(x)⇒ a′(x)) : x ∈ X}
= min{ρa(b), ρa′(b)}.

An easy computation shows that ρa∨a′ ≥ max{ρa, ρa′}.

(ii) For every B ∈ B(A), ρa(B) = min{B(x) ⇒ a(x) : x ∈ X}. Whenever
x 6∈ B, B(x) = 0, and hence B(x)⇒ a(x) = 1 for all those x 6∈ B. On the other
hand for all x ∈ B, B(x) = 1, and so B(x) ⇒ a(x) = 1 ⇒ a(x) = a(x) for all
x ∈ B. Consequently, ρa(B) = min{a(x) : x ∈ B}.

(iii) It follows immediately from (ii) together with Remark 4.1.

For every A ∈ 2X (i.e. whenever A is identified with a vector in [0, 1]X having
integer coordinates), the map ρA : [0, 1]X → [0, 1] is a pointwise minimum of
finitely many linear functions with integer coefficients, and hence ρA is a non-
increasing McNaughton function [7].

Lemma 4.8. The MV-algebra R2 generated by the set %2 = {ρA : A ∈ 2X}
coincides with the free MV-algebra over n generators F(n), where n is the car-
dinality of X.

Proof. By [8, Theorem 3.13], if a variety V of algebras is generated by an al-
gebra A, then the free algebra over a cardinal n > 0 is, up to isomorphisms,

the subalgebra of AAX

generated by the projection functions θi : AX → A.
Therefore, in order to prove our claim it suffices to show that the projection
functions θ1, . . . , θn belong to %2.

For every i = 1, . . . , n, let the vector i ∈ {0, 1}X be defined as

i(j) =

{
0, if j = i
1, otherwise.

Then ρi = 1 − θi. In fact, for every b ∈ [0, 1]X , and for every i, j ∈ X such
that j 6= i, we have b(j) → i(j) = 1, and b(i) → i(i) = 1 − b(i), so that
1− ρi(b) = θi(b) = b(i). This actually shows that the MV-algebra R¬2 generated

by the set ¬%2 = {1− ρA : A ∈ 2X} is isomorphic to F(n). Clearly R2 and R¬2
are isomorphic through the map g : a ∈ R2 7→ 1− a ∈ R¬2 .

Therefore, if we consider the MV-algebra RX generated by the set % = {ρa :
a ∈ [0, 1]X} we obtain a semisimple MV-algebra that properly extends F(n), and
whose elements are continuous functions from [0, 1]X into [0, 1]. This implies,
in particular, that RX is separating.
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Definition 4.9 (Fuzzy-Focal Belief Function). Let X be a finite set and let
A = [0, 1]X . A map b : A → [0, 1] will be called a (fuzzy-focal) belief function
on the finite domain MV-clan A provided there exists a state s : RX → [0, 1]
such that for every a ∈ A,

b(a) = s(ρa). (10)

We will denote by Bel(A) the class of all the (fuzzy-focal) belief functions over
the finite domain MV-clan A.

In analogy with the case of crisp-focal belief functions, the state s defining
b will be henceforth called the state assignment of b.

As in the previous section, we will identify the mass of a belief function
b with the unique Borel regular probability measure µ over B([0, 1]X) that
represents the state s via Theorem 3.6.

Remark 4.10. Note that if the set {b ∈ [0, 1]X | µ({b}) > 0} is countable then
the above Definition 4.9 yields

b(a) =
∑
b∈A

ρa(b) · µ({b}). (11)

In this case, a focal element is any b ∈ A such that µ({b}) > 0 and hence,
in contrast with the case of crisp-focal belief functions, it is clear that focal
elements of b can be proper fuzzy sets.

We showed in Theorem 4.5 that the property of total monotonicity charac-
terizes crisp focal belief functions on MV-algebras. As for the case of fuzzy-focal
belief functions, the problem of characterizing those belief functions in terms of
(a variant of) total monotonicity is open, but the following implication holds.

Proposition 4.11. For every finite-domain MV-clan A and for every b ∈
Bel(M), b is totally monotone on the lattice reduct of A.

Proof. Since for every a ∈ A, ρa is monotone, and every state s is monotone, b
is monotone as well. Moreover, for every n and for every a1, . . . , an ∈ A, from
(10) and Proposition 4.7 (i) we have the following chain of inequalities:

b (
∨n
i=1 ai) = s(ρa1∨...∨an)

≥ s(ρa1 ∨ . . . ∨ ρan)
=

∑
∅6=I⊆{1,...,n}(−1)|I|+1 · s

(∧
k∈I ρak

)
=

∑
∅6=I⊆{1,...,n}(−1)|I|+1 · s

(
ρ(

∧
k∈I ak)

)
=

∑
∅6=I⊆{1,...,n}(−1)|I|+1 · b

(∧
k∈I ak

)
.

Since belief functions on [0, 1]X are defined by states on RX and differ-
ent states s1 and s2 determine different belief functions b1 and b2, the set
Bel([0, 1]X) of belief functions on [0, 1]X is in 1-1 correspondence with the set
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S(RX) of all states on RX . Moreover, this correspondence is an affine map-

ping. Hence Bel([0, 1]X) is a compact convex subset of [0, 1]([0,1]
X). Therefore

Krein-Mil’man theorem shows that Bel([0, 1]X) is in the closed convex hull of
its extremal points. The following result characterizes the extremal points of
Bel([0, 1]X).

Proposition 4.12. For every x ∈ [0, 1]X , the belief function bx defined by

bx(a) = sx(ρa) = ρa(x), a ∈ [0, 1]X , (12)

is an extremal point of Bel([0, 1]X).

Proof. A belief function b ∈ Bel([0, 1]X) is extremal iff its state assignment is
extremal in S(RX). In fact s is not extremal iff there exist s1, s2 ∈ S(RX) and
a real number λ ∈ (0, 1) such that s = λs1 + (1− λ)s2. In particular, for every
a ∈ [0, 1]X ,

b(a) = s(ρa) = λs1(ρa) + (1− λ)s2(ρa) = λb1(a) + (1− λ)b2(a),

whence b would not be extremal as well.

As recalled above, RX is separating. Therefore from Proposition 4.12 the
extreme points of its state space are MV-homomorphisms sx, for each x ∈
[0, 1]X . Hence the following holds due to (12).

Theorem 4.13. Every belief function b is a pointwise limit of a convex com-
bination of some functions ρ.(a

1),. . . , ρ.(a
k), where a1,. . . , ak ∈ [0, 1]X .

Remark 4.14. Consider the restriction b− of a fuzzy-focal belief function b to
the Boolean skeleton 2X of its domain [0, 1]X . Then, although it has fuzzy-focal
elements, the map b− actually is a classical belief function since, by Proposition
4.11, b− keeps being total monotone. Therefore, there exists a mass assignment
on crisp subsets of X giving the same b−. In other words there exists a mass
assignment m− : 2X → [0, 1] such that, for every A ∈ 2X one has:

b(A) = b−(A) =
∑
B⊆A

m−(B)

In the framework of finitely-valued fuzzy sets on the scale Sk =
{0, 1/k, . . . , (k − 1)/k, 1}, an interesting question is how to compute the mass
m− from the mass µ giving b, that is, what is the map m− : 2X → [0, 1] fulfilling
the constraints ∑

a∈(Sk)X

ρA(a) · µ(a) =
∑
B⊆A

m−(B)

for each A ∈ 2X . In fact, following [18, 55], to find the solution the idea is to
decompose the mass µ(a) of each fuzzy-focal element a into its level cuts aαi

,
with αi ∈ Sk, as follows:
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ma(aαi) = µ(a) · (αi − αi−1)

where αi = i/k, for i = 0, 1, . . . , k. Finally, since it may be the case that two
(or more) level sets of different fuzzy-focal elements coincide, we define for each
A ∈ 2X :

m−(A) =
∑
{ma(aα) | a ∈ (Sk)X , α ∈ Sk such that aα = A}.

5 On normalized belief functions

The height of a fuzzy set a ∈ [0, 1]X is defined in the literature as

h(a) = max{a(x) : x ∈ X}. (13)

The value h(a) can be interpreted as the degree of normalization of a. As a
matter of fact, a fuzzy set a is called normalized whenever h(a) = 1, otherwise
it is called non-normalized. A non-normalized fuzzy set represents a partially
inconsistent information.

The map ρ0 evaluating the degree of inclusion of any fuzzy set b ∈ [0, 1]X in
the empty fuzzy set 0 (constantly zero function) does not coincide, in general,
with 0 itself. In fact, whenever b is a non-normalized fuzzy set (i.e. h(b) < 1),
ρ0(b) > 0. Therefore, if s is a faithful state on RX , the fuzzy-focal belief function
defined through s satisfies b(0) > 0.

Definition 5.1. A (fuzzy-focal) belief function b : [0, 1]X → [0, 1] is said to be
normalized provided that

b(0) = s(ρ0) = 0. (14)

In this section we will focus on normalized fuzzy-focal belief functions. In-
deed it is worth noticing that crisp-focal belief functions are normalized, i.e.
they always satisfy (14).

In classical Dempster-Shafer theory, the notion of focal element is crucial
for classifying belief functions. Whenever X = {1, . . . , n} is a finite set, the
Boolean algebra 2X is finite, and hence the mass assignment m : 2X → [0, 1]
obviously defines only finitely many focal elements. On the other hand, the
MV-algebra [0, 1]X has uncountably many elements, and hence we cannot find
in general a mass assignment µ defined over B([0, 1]X) and supported by an at
most countable set only. This observation leads to the following definition.

Definition 5.2. Let K be the set of all compact subsets of an MV-algebra of
fuzzy sets [0, 1]X . For every regular Borel probability measure µ defined on
B([0, 1]X), we call the set

spt µ =
⋂
{K|K ∈ K, µ(K) = 1}

the support of µ.
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By Theorem 3.6 we can regard spt µ as the support of the state s defined
from µ via (5). In particular, the following holds:

b(a) =

ˆ
[0,1]X

ρa dµ =

ˆ
spt µ

ρa dµ. (15)

Therefore, for a belief function b on [0, 1]X whose state assignment s is rep-
resented by a regular Borel probability measure µ, we will henceforth refer to
spt µ as the set of focal elements of b.

Proposition 5.3. The set S0 of all states on RX satisfying (14) is a nonempty
compact convex subset of [0, 1]RX considered with its product topology.

Proof. S0 is nonempty: let s1 be defined by

s1(ρ) = ρ(1),

for every ρ ∈ RX , where 1 : X → [0, 1] is the constant function of value 1. This
gives in particular s1(ρ0) = ρ0(1) = 0 and thus s1 ∈ S0. Let s, s′ ∈ S0 and
α ∈ (0, 1). Then the function given by

αs+ (1− α)s′

is a state on RX which clearly satisfies (14). Hence S0 is a convex subset of the
product space [0, 1]RX . Since the space [0, 1]RX is compact, we only need to
show that S0 is closed (in its subspace product topology). To this end, consider
a convergent sequence (sm)m∈N in S0 whose limit is s. As the set of all states
on RX is closed, s is a state. That s satisfies (14) follows from the fact that
s(ρ0) = limm→∞ sm(ρ0) = 0.

The family of states S0 can be characterized by employing the integral rep-
resentation of states. Namely, we will show that a state assignment s ∈ S0 iff s
is “supported” by normal fuzzy sets in [0, 1]X , i.e. fuzzy sets a ∈ [0, 1]X such
that a(x) = 1 for some x ∈ X. We will denote by NF(X) the set of normalized
fuzzy sets from [0, 1]X , i.e.

NF(X) = {a ∈ [0, 1]X | a(x) = 1 for some x ∈ X}.

The following result characterizes normalized fuzzy-focal belief functions in
terms of the support of their state assignment.

Theorem 5.4. Let s be a state assignment on RX and µ be the regular Borel
probability measure associated with s. Then spt µ ⊆ NF(X) if and only if
s ∈ S0.

Proof. Let µ be a probability measure on Borel subsets of [0, 1]X such that
spt µ ⊆ NF(X). Put

s(a) =

ˆ
[0,1]X

a dµ, a ∈ RX . (16)
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Since ρ0(a) = 0 for each a ∈ spt µ, it follows that

s(ρ0) =

ˆ
spt µ

ρ0 dµ = 0,

hence s ∈ S0. Conversely, assume that

s(ρ0) =

ˆ
[0,1]X

ρ0 dµ = 0,

which implies ρ0 = 0 µ-almost everywhere over [0, 1]X . Since ρ0(a) = 0 iff
a ∈ [0, 1]X is such that a(x) = 1, for some x ∈ X, we obtain µ(NF(X)) = 1.

In particular, every state assignment of a crisp-focal belief function belongs
to S0.

6 Soft-normalization for fuzzy-focal belief func-
tions

Throughout the rest of the paper, we stipulate the following:

We always assume a mass µ such that its support spt µ is countable.

Consider a belief function b with a state assignment s supported by spt µ.
Assume that there exists a focal element a ∈ spt µ that is a non-normalized
fuzzy set. Since spt µ is countable, we have neccesarily µ({a}) > 0,2 and b is
associating a positive degree of evidence to a (partially) inconsistent informa-
tion, which is reflected on the value that b assigns to the empty fuzzy set 0.
Indeed, in this case we have ρ0(a) > 0, and hence

b(0) = s(ρ0) =
∑

b∈spt µ

ρ0(b)µ({b}) ≥ ρ0(a) · µ({a}) > 0.

Notice that the more inconsistent the focal elements of b are, the greater is
the value b(0). When events and focal elements are crisp sets (and hence the
unique possible non-normalized focal element is 0), normalization consists in
redistributing the mass that µ assigns to 0 to the other focal elements of µ (if
any).

Dealing with fuzzy-focal elements makes it possible to introduce a notion of
soft normalization for belief functions. In particular, this construction allows
for a finer redistribution of the masses, which depends on two thresholds. Recall
the notion of height h(a) of a fuzzy set a introduced in (13). Then we introduce
the following definition of α-normalization.

Definition 6.1. A mass assignment µ : [0, 1]X → [0, 1] is said to be α-
normalized provided that inf{h(a) : a ∈ spt µ} = α.

2If spt µ is not countable, the condition a ∈ spt µ does not guarantee µ({a}) > 0.
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In other words, a mass is α-normalized provided that each focal element of µ
has at least height α. In particular, for a belief function b we define the degree
of normalization of b as the value

inf{h(a) : a ∈ spt (µ)},

where µ is the mass associated to b.
Let now µ : [0, 1]X → [0, 1] be an α-normalized mass assignment, and assume

that there exists a focal element b for m such that h(b) = β > α.
The mass µ can be renormalized to the higher degree β by defining a new

mass µβ as follows: for every a ∈ [0, 1]X ,

µβ({a}) =

{
0, if h(a) < β
µ({b})
1−K , otherwise

(17)

where K =
∑
h(l)<β µ({l}).

The idea of this β-normalization, similarly to the classical normalization,
consists in fixing the value β as a new level of consistency for the mass we are
considering. Since α < β ≤ 1, the class of focal elements of height lower then
β is not empty. Then the process of β-normalization consists in redistributing
all the mass which µ assigns to the fuzzy sets of height lower than β, i.e. K =∑
h(l)<β µ({l}), to those focal elements of height greater of (or equal to) β.
Clearly, every mass µ can be renormalized up to a maximum value given by

βmax = sup{h(a) : a ∈ spt (µ)}.

We will make use of β-normalization in the next section where we discuss a
generalization of the Dempster rule of combination.

7 Generalized Dempster’s rule of combination

The power of Dempster-Shafer theory is in the possibility of combining all the
available evidences about an event. In order to describe this aggregation process,
Dempster introduced in [13] the so called Dempster rule of combination, briefly
recalled next. Given a frame of discernment X, consider two masses m1 and m2

on 2X encoding the beliefs about evidences coming from two (possibly different)
sources. Then the new mass assignment m on 2X is obtained from m1 and m2

according to the Dempster rule is as follows: for every Y ⊆ X,

m(Y ) =
∑

A∩B=Y

m1(A) ·m2(B) (18)

This rule may result in a non-normalized mass assignment as soon as there
exist focal elements A and B for m1 and m2 respectively such that A ∩B = ∅.
The normalized version of the rule yields the mass assignment m′ defined as
m′(∅) = 0 and for every ∅ 6= Y ⊆ X,
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m′(Y ) =
m(Y )

1−

( ∑
C∩D=∅

m1(C) ·m2(D)

) . (19)

Let us illustrate this situation with the following well known example due
to Smets [52] (see also [49]): Mr Jones has been murdered, and we know the
murderer was in the set X = {Peter, Paul,Mary}. The only evidence we have
is that Mrs Jones, who saw the killer leaving the scene of the murder, is 80%
sure that the murderer is a man. Hence all the available evidence is expressed
as Prob(Man) = 0.8.

As recalled, within Dempster-Shafer theory each piece of evidence is encoded
by a mass assignment m : 2X → [0, 1], assigning a value to each subset of X
such that

∑
A∈2X m(A) = 1 and m(∅) = 0 (i.e. there is no belief on the empty

set).
Turning back to the case of Mr. Jones’ murder, and since we know that

Prob(Man) = 0.8, the set {Paul, Peter} is a focal element of mass m1, and
in particular we assign m1({Paul, Peter}) = 0.8. We know nothing about the
remaining probabilities, so we allocate the remaining mass 0.2 to the whole
frame of discernment X (i.e. m1(X) = 0.2). Therefore, the only focal elements
in this example are X = {Peter, Paul,Mary} and {Paul, Peter}.

Consider a possible second piece of evidence providing an alibi for Peter with
confidence 0.6. This new information is hence encoded in the model with a new
mass assignment m2 such that m2({Paul,Mary}) = 0.6 and m2(X) = 0.4.

The Dempster rule of combination given by (18) then provides a new mass
assignment m resulting from the combination of m1 and m2:

m({∅}) = 0;
m({Paul}) = 0.48;

m({Paul,Mary}) = 0.12;
m({Peter, Paul}) = 0.32;

m({X}) = 0.08.

Notice that this mass is normalized and hence it coincides with the mass re-
sulting from (19). From the combined mass assignment m we can compute the
resulting belief function bm : 2X → [0, 1] as follows: for every Y ⊆ X

bm(Y ) =
∑
Z⊆Y

m(Z). (20)

The previous formula yields for instance:

bm({Paul}) = 0.48;
bm({Paul,Mary}) = 0.6;
bm({Paul, Peter}) = 0.8;

bm(X) = 1.

In the example of Mr Jones’ murder, the masses m1 and m2 were assigned
to statements expressing precise properties regarding the individuals in the set

21



of hypothesis X. On the other hand, we may argue that usually a description of
the witness would be affected not only by uncertainty regarding the statements,
but also by the imprecision of the statements. Therefore the classical framework
would be insufficient to analyse the facts provided by the witness.

In [25] the authors present a generalization of the Dempster rule in order to
combine the information carried by two belief functions b1,b2 ∈ Bel([0, 1]X)
into a single belief function b1,2 ∈ Bel([0, 1]X). In the rest of this section we
will recall the basic steps of that construction and we will conclude with some
remarks about the procedure. We start with an easy result about the defini-
tion of states in a product space needed in the construction of the generalized
Dempster rule.

Proposition 7.1. For every MV-algebra A, and for every pair of states s1, s2 :
A → [0, 1], there exists a state s1,2 defined on the direct product A × A such
that for every (b, c) ∈ A×A, s1,2(b, c) = s1(b) · s2(c).

Let now A = [0, 1]X , and let RX be the MV-algebra defined in Section 4.2.
Further, let s1, s2 be two state assignments on RX such that b1(a) = s1(ρa)
and b2(a) = s2(ρa) for all a ∈ A. Assume that µ1, µ2 : B(A) → [0, 1] are
the two regular probability measures of support spt µ1 and spt µ2, respectively,
such that for i = 1, 2,

si(f) =

ˆ
spt µi

f dµi, f ∈ RX .

Let
µ1,2 : B(A×A)→ [0, 1]

be the product measure on Borel subsets generated by A ×A and s1,2 be the
state on the MV-algebra of all measurable functions A × A → [0, 1] that is
defined as an integral with respect to µ1,2.

Notice that s1,2 actually coincides with the state s1,2 on RX ×RX defined
as in Proposition 7.1 through the identification

s1,2(g, h) =

ˆ
B(A)

g dµ1 ·
ˆ
B(A)

h dµ2 =

ˆ
B(A×A)

g · h dµ1,2 = s1,2(g · h).

Hence, in particular, for any g, h : A → [0, 1] and f such that f(x, y) =
g(x) · h(y), then Proposition 7.1 yields s1,2(f) = s1(g) · s2(h).

Finally, for every a ∈ A, consider the map ρ∧a : A×A→ [0, 1] defined by

ρ∧a (b, c) = ρa(b ∧ c).

Then we are ready to define the following combination of belief functions.

Definition 7.2 (Generalized Dempster rule). Given b1,b2 ∈ Bel(A) as above,
define its min-conjunctive combination b1,2 : A→ [0, 1] as follows: for all a ∈ A,

b1,2(a) = s1,2(ρ∧a ). (21)
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Regarding the support of the combined measure, it is worth noticing that
by [29, Theorem 417C (v)], spt µ1,2 = spt µ1 × spt µ2, and hence, if µ1 and µ2

are normalized in the sense that their support is included into NF(X), then
spt µ1,2 ⊆ NF(X) as well. Therefore, by Proposition 5.4 one might deduce that,
if b1 and b2 are normalized belief functions, then b1,2 is normalized as well.
The following example shows that this is not the case, since in the definition of
b1,2, together with the product measure µ1,2, we also use the map ρ∧ which, in
fact, is not a genuine fuzzy-inclusion operator.

Example 7.3. Consider two belief functions b1 and b2 on [0, 1]2 with masses
concentrated as follows:

µ1(1, 0) = 1/4; µ1(1, 1) = 3/4; µ2(0, 1) = 1/2; µ2(1, 1) = 1/2.

Then, the product measure µ1,2 has support in the cartesian product of the
supports of the two masses:

{((1, 0), (0, 1)), ((1, 0), (1, 1)), ((1, 1), (0, 1)), ((1, 1), (1, 1))},

and it takes the following values:

µ1,2((1, 0), (0, 1)) = 1/8,
µ1,2((1, 0), (1, 1)) = 1/8,
µ1,2((1, 1), (0, 1)) = 3/8,
µ1,2((1, 1), (1, 1)) = 3/8.

So, µ1,2 is normalized in the sense that each of its focal elements can be re-
garded as a normal fuzzy set in [0, 1]2 × [0, 1]2. On the other hand, b1,2

is non-normalized: indeed, since (0, 0) = (1, 0) ∧ (0, 1), ρ(0,0)(0, 0) = 1 and
ρ(0,0)(b, c) = 0 for focal (b, c) 6= (0, 0), we have

b1,2(0, 0) =
∑

b,c:b∧c=(0,0)

ρ(0,0)(b ∧ c)) · µ1,2(b, c) = µ1,2((1, 0), (0, 1)) = 1/8 > 0.

The example we presented at the beginning of this section —the murder of
Mrs Jones [52]— can be adapted to the context of belief functions on fuzzy sets
as follows.

Example 7.4. Recall the 3 suspects of Mr. Jones’ murder: Peter, Paul, and
Mary. Consider the information provided by Mrs. Jones, she heard his husband
yelling and the person she saw running was a man . It turns out that Mary has
short hair, so she may be mistaken for a man at first sight, and hence the set of
suspects looking like a man can be considered fuzzy as well, with membership
function:

µman-like(Peter) = 1, µman-like(Paul) = 1, µman-like(Mary) = 0.5.

The evidence supplied by Mrs Jones may be represented by a mass assignment
m1 : [0, 1]X → [0, 1] such that m1(man-like) = α > 0, m1(X) = 1 − α and
m1(a) = 0 for any other a ∈ [0, 1]X .
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A second piece of evidence is provided by the janitor living in the same
house, who reports that he saw in the darkness a small person quickly leaving
the scene of the crime. Paul and Mary are not tall while Peter is taller (Paul is
1.65 m tall, Mary is 1.60 m tall and Peter is 1.85 m). So, actually, the subset of
small suspects of X = {Peter, Paul,Mary} can be also considered as a fuzzy
set, with membership function µsmall given by, say,

µsmall(Peter) = 0, µsmall(Paul) = 0.7, µsmall(Mary) = 0.9.

The evidence supplied by the janitor may be represented by a second mass
assignment m2 : [0, 1]X → [0, 1] such that m2(small) = β > 0, m2(X) = 1 − β
and m2(a) = 0 for any other a ∈ [0, 1]X .

Let us compute the resulting mass by combining m1 and m2 by means of
the generalized Dempster rule according to Definition 7.2:

b∧1,2(a) =
∑

b,c∈{man-like,small,X}

ρa(b ∧ c) ·m1(b) ·m2(c) .

Here, the membership function of small ∧ man-like (interpreting ∧ by the
min) is given by

µsmall∧man-like(Peter) = 0;
µsmall∧man-like(Paul) = 0.7;
µsmall∧man-like(Mary) = 0.5.

Suppose we are interested in computing the belief that the suspect is Paul.
We then need to compute:

ρ∧{Paul}(small ∧man-like) = min
x∈X
{µsmall∧man-like(x)⇒ µPaul(x)}

= min{0⇒ 0, 1⇒ 1, 0.5⇒ 0}
= min{1, 0.5} = 0.5

ρ∧{Paul}(small ∧X) = min
x∈X
{µsmall(x)⇒ µPaul(x)}

= min{0⇒ 0, 0.7⇒ 1, 0.9⇒ 0}
= min{1, 0.1} = 0.1

ρ∧{Paul}(X ∧man-like) = min
x∈X
{µman-like(x)⇒ µPaul(x)}

= min{1⇒ 0, 1⇒ 1, 0.5⇒ 0}
= min{0, 1, 0.5} = 0
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and ρ∧{Paul}(X) = 0. Finally, we have

b∧1,2({Paul}) =
∑

a∈[0,1]X
ρ∧{Paul}(b ∧ c) ·m1(b) ·m2(c)

= ρ∧{Paul}(small ∧man-like) ·m1(man-like) ·m2(small) +

ρ∧{Paul}(small) ·m1(X) ·m2(small)

= 0.5 · α · β + 0.1 · (1− α) · β > 0.

Hence, we get a positive belief degree of Paul being the murderer. This is in
contrast with the results we would obtain, in case we assume Mary can be
mistaken for a man, with both the classical model and the crisp-focal model,
where focal elements are only allowed to be classical subsets of X. Indeed, in
that case, we would be forced to take as focal element for m1, besides X itself,
the set man-like = {Paul,Mary}, and since there would be no focal element
included in {Paul}, we would get b∧1,2({Paul}) = 0. �

The above min-conjunctive combination can easily be extended to well-
known MV-operations on fuzzy sets, such as max-disjunction ∨, strong con-
junction � and strong disjunction ⊕, by defining

(b1 ~ b2)(a) = s1,2(ρ~a ),

for ~ being one of these operations, and defining

ρ~a (b, c) = ρa(b~ c).

In this generalized case, the map b~
1,2 resulting from the respective combination

rule will be called the ~-combination of b1 and b2.
Whenever the supports of µ1 and µ2 are countable, it is easy to prove that

b~
1,2 is a belief function in the sense of Definition 4.9. In fact, in this case

Definition 7.2 yields

b~
1,2(a) =

∑
b,c∈A

ρa(b~ c) · µ1({b}) · µ2({c}). (22)

Notice that (22) reduces to

b~
1,2(a) =

∑
d∈A

∑
b,c∈A
b~c=d

ρa(d) · (µ1({b}) · µ2({c})) =
∑
d∈A

ρa(d) · µ∗({d}),

where
µ∗({d}) =

∑
b,c∈A
b~c=d

µ1({b}) · µ2({c})

is indeed a mass assignment and hence b~
1,2 ∈ Bel([0, 1]X). Therefore, turning

back to the above Example 7.3 and Proposition 5.4, there exists a mass µ 6= µ1,2

for b~
1,2 such that spt µ 6⊆ NF(X).
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8 Conclusions and further reading

In this chapter we have discussed several ways to define belief functions on MV-
algebras of fuzzy sets based on some previous results by the authors [41, 42, 25,
28]. In particular we have surveyed two main frames in which belief functions
on fuzzy sets are characterized by the fact that focal elements are either crisp
or fuzzy sets. We have then studied the normalization and soft-normalization
problem together with a generalization of Dempster’s rule of combination.

Another logical-based approach, extending the one in [30] for classical events,
has been introduced in [27], where a modal logic for belief functions on an MV-
algebra has been presented.

Belief functions on Boolean algebras can also be described in geometrical
terms: in [9, 10] the author presents several results in this directions. In a
similar way, the problem of extending a partial assignment over formulas of  Lu-
kasiewicz logic can be characterized in geometrical terms by combining tropical-
idempotent convex geometry and classical Euclidean convex geometry as well.
The paper [22] studies this geometrical foundation for belief functions on MV-
algebras.

The problem of extending a partial assignment to a probability measure is
well known in the literature as de Finetti’s coherence criterion [11, 12]. As for
belief functions on Boolean events, a similar interpretation of belief functions in
terms of betting scheme has been presented in [38] and there is some ongoing
work for the case of fuzzy events [23].
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