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Abstract	
  	
  
Retinitis pigmentosa (RP), a genetically heterogeneous group of diseases together 

with age-related macular degeneration (AMD), are the leading causes of permanent 

blindness and are characterized by the progressive dysfunction and death of the 

light sensing photoreceptors of the retina. Due to the limited regeneration capacity 

of the mammalian retina the scientific community has invested significantly in trying 

to obtain retinal progenitor cells from embryonic stem cells (ESC). These represent 

an unlimited source of retinal cells, but it has not yet been possible to achieve 

specific populations, such as photoreceptors, efficiently enough to allow them to be 

used safely in the future as cell therapy of RP or AMD. In this study we generated a 

high yield of photoreceptors from directed differentiation of mouse ESC (mESC) by 

recapitulating crucial phases of retinal development. We present a new protocol of 

differentiation, involving hypoxia and taking into account extrinsic and intrinsic cues. 

These include niche-specific conditions as well as the manipulation of the signaling 

pathways involved in retinal development. Our results show that hypoxia promotes 

and improves the differentiation of mESC towards photoreceptors. Different 

populations of retinal cells are increased in number under the hypoxic conditions 

applied, such as Crx positive cells, S-Opsin positive cells and double positive cells 

for Rhodopsin and Recoverin, as shown by immunofluorescence analysis. For the 

first time this manuscript reports the high efficiency of differentiation in vivo and the 

expression of mature rod photoreceptor markers in a large number of differentiated 

cells, transplanted in the sub-retinal space of wild type mice.  
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  is	
  the	
  most	
  important	
  part	
  of	
  the	
  work.”	
  	
  

―	
  Plato,	
  The	
  Republic	
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Retinal degenerative diseases such as RP and AMD are the leading causes of 

incurable blindness. They affect more than 2 million individuals of the worldwide 

population (Berger et al., 2010b). Photoreceptor loss commonly occurs due to 

dysfunction of the supportive layer of RPE. In many cases of retinal degeneration, 

the inner retina remains intact allowing for a window of opportunity for 

photoreceptors or RPE replacement treatments. Although it has been reported the 

possibility of using gene therapy approaches to treat patients with inherited RDs, 

before their vision is completely compromised, this will not restore vision into those 

whose photoreceptors or RPE have already degenerated (Bainbridge, 2009; Cai et 

al., 2009; Caplen, 2000; Dejneka et al., 2003; Dinculescu et al., 2005; Hauswirth et 

al., 2000; Hosch et al.; Kohno et al., 2005; McClements and Maclaren; Prentice et 

al.; Stout and Francis; Townes-Anderson; Zaneveld et al.). Stem cell therapy 

constitutes an alternative for such patients where existing pharmacological and 

surgical therapies are inadequate. Furthermore, embryonic stem cell biology holds 

the unique potential to provide comprehensive model systems to investigate the 

earliest stages of cellular ontogenesis. Nevertheless, the established methods to 

obtain early retinal cells typically present a low efficiency and result in a 

heterogeneous population. Therefore, we developed a protocol of differentiation 

yielding to a highly enriched population of retinal cells, which also mimics the 

stepwise fashion by which the retina is formed during normal development. 

1.1	
  Early	
  eye	
  development	
  

In mammals, eye development initiates at the moment of gastrulation, when the eye 

primordium is organized as a single eye field in the center of the proencephalon in 
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the anterior neural plate. During the formation of the midline this eye field, separates 

giving rise to two optic areas (Figure 1.1A.). In the neurulation stage (E 8.5 in the 

mouse), these two optic pits are formed as a consequence of the bilateral 

evagination of the neural tube corresponding to the first morphological sign of eye 

formation. Only 12 hours after, these two optic pits elongate to form the optic 

vesicles (Figure 1.1B.). The evagination will continue until the optic vesicles come in 

close contact with the surface ectoderm, driven by the surrounding mesenchyme 

from both sides. Thanks to the interaction with the OV, the surface ectoderm 

thickens and becomes the lens placode (Figure 1.1C. and D.), which progressively 

invaginates into the optic vesicle giving rise to the lens vesicle and forming the optic 

cup (Figure 1.1E. and F.). In the mouse this process begins at E10 and as a result 

two epithelial layers are formed, the inner most layer of the optic cup gives rise to 

the retina whereas its outer most layer will form the RPE (Figure 1.2; (Adler and 

Canto-Soler, 2007). 

During this phase the inmature RPE encapsulates the inner layer, narrowing the 

ventral part of the OV and forming the choroid fissure. The complete closure of the 

choroid fissure allows the formation of the optic nerve, through which ganglion cell 

axons transmit information to the brain. The ciliary body and the iris derive from the 

anterior margin of the optic cup, in the junction where NR and RPE meet. The 

remaining structures in particular the muscles are formed from cells in the 

surrounding mesenchyme, the same type of cells found in the neural crest. The 

surface ectoderm, henceforth in contact with the lens vesicle will form the cornea 

(Figure 1.2). In summary the major ocular structures derive from three major 

sources: neural ectoderm forms the retina, surface ectoderm gives rise to the lens 

and part of the cornea, and neural crest cells form the central part of the cornea 
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(Graw, 2010). 

 
Figure 1.1 Scanning electron microscopy images of mouse embryoes describing structural 
changes in early eye development. A. The optic grooves (arrows) are the first morphological signs of 
the eye primordium in the eye field region. B. Development expands the eye primordial to form the optic 
vesicles, where the presumptive neural retina (NR) comes in contact with the lens placode (LP, C. and 
D.) E and F. Contact with the LP promotes the invagination on the optic vesicle (OV) to form the the lens 
vesicle and the Optic cup (OC). Electron micrographs reproduced and modified from 
http://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eyetoc.htm. Diagram in C. taken from 
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Graw J, Eye development, chapter ten. 

	
  

Figure 1.2 Scanning electron microscopy images of mouse embryoes describing structural 
changes in early eye development. A. At E14 the anterior chamber of the eye (purple) forms as a 
space developed between the lens and its closely associated iridopupillary membrane (green) and the 
cornea (orange). B. Amplification of the section marked in A. with a green square that allows observing 
the very distinct structure of RPE and NR. Electron micrographs reproduced and modified from 
http://syllabus.med.unc.edu/courseware/embryo_images/unit-eye/eyetoc.htm. 

	
  

1.1.1	
  Inductive	
  interactions	
  

The development of the eye field and the optic vesicles depends of the combined 

action of exogenous factors and transcription factors. These inductive signals 

actually start well before the first morphological indications of OV development 

(Kessler and Melton, 1994). Nearly half a century ago, it was shown that neural 

tissue from the salamander, isolated prior to OV formation, could initiate eye 

development in vitro (Lopashov and Stroeva, 1964). Hence the specification of the 

NR and RPE within the OV appears to be determined by inductive signals 

originating from the surface ectoderm and in the surrounding mesenchyme 

(Fuhrmann et al., 2000). 

Nowadays it is well accepted that the cellular differentiation is a result of the 
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reciprocal action of extrinsic and intrinsic factors, which act in a spatiotemporal 

fashion that is tightly controled by the genome (Cepko et al., 1996; Edlund and 

Jessell, 1999; Harris, 1997) 

1.1.2	
  Exogenous	
  factors	
  

The main secreted factors involved in the regulation of eye development include 

only a few gene families, including Hedgehog molecules (Sonic, Indian and Desert), 

the molecules of Wnt family, morphogens molecules such as BMP and different 

growth factors (TGFB, FGF, EGF, etc). Many of these factors are present at 

different stages of eye development orchestrating different developmental events. 

Table 1 summarizes the role of some of these extracellular factors. Some factors 

will be described later in another chapter of the present thesis. FGF and the non 

canonical pathway of Wnt have long been considered to regulate the 

morphogenetic movements that allow the eye field specification in Xenopus (Lee et 

al., 2006; Moody, 2004; Moore et al., 2004). In vertebrates, Wnt introduce an 

element of complexity, while the activation of its non canonical pathway is required 

for the eye primordium formation, its canonical pathway has opposite effects and 

should be antagonized by Dickkopf (Dkk1) or secreted Frizzled proteins for eye field 

specification (Cavodeassi et al., 2005) 

Eye field specification 
The different gradients of factors ensure the eye field specification. The dorso-

ventral specification of the eye field involves signals coming from FGF and Wnt 

which ventralize the field whereas BMP molecules exert a dorsalising effect (Lee et 

al., 2006; Moody, 2004; Moore et al., 2004). Molecules such as Noggin, Chordin 

and Follistatin play a role in the formation of the antero-posterior axis. The non-

canonical Wnt pathway (Wnt11, Wnt 5) activates the eye field specification by 
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promoting the proliferation of progenitor cells within the eye field (Cavodeassi et al., 

2005). Instead the canonical/β-catenin Wnt pathway (Wnt1, Wnt10b and Wnt8b) 

must be downregulated or inhibited (Dickkopf or secreted Frizzled related proteins) 

in order to observe differentiation towards eye field from the diencephalon (Esteve 

and Bovolenta, 2006).  

Optic vesicle/optic cup 

The eye field separation relies on Nodal signaling as it was discovered in zebrafish 

mutants for cyclops (cyc), a secreted Nodal-related molecule, when all display 

cyclopia (Muller et al., 2000; Varga et al., 1999). Nodal effect is possibly acting 

through the induction of SHH expression (Chow and Lang, 2001; Marti and 

Bovolenta, 2002) since it was found in zebrafish and chick that the morphogen Shh 

is downstream to Nodal signaling, as it was absent in the early ectoderm of cyc 

mutants. It was also found that Shh promoter was activated in response to cyc 

signals and Shh enhancer elements were identified as cyc targets (Muller et al., 

2000). Shh is also required for patterning along eye development. During early 

stages Shh controls the ventral fates of the neural tube, as a consequence its 

overexpression expands the forebrain and the optic stalk at the cost of neural retina. 

Later in development, Shh controls the dorso-ventral patterning of the optic vesicle 

and the optic cup instead (Peters, 2002; Zhang and Yang, 2001b). 

As already mentioned the patterning of OV into NR and RPE depends on the 

inductive signals form the surface ectoderm and mesenchyme, making obvious the 

very tight relationship between tissue tissue inductive signals and optic cup 

patterning. FGF family members are expressed in the surface ectoderm and 

induced the neural retina formation (Bharti et al., 2006; Chow and Lang, 2001; 

Martinez-Morales et al., 2004). In Addition, upon contact with the surface ectoderm 

the prospective neural retina itself expresses FGF8 and FGF9 both of which play a 
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role defining the boundary between NR and RPE (Adler and Canto-Soler, 2007; 

Crossley et al., 2001).  Extraocular mesenchyme promotes RPE differentiation, on 

the other hand, possibly through an activin-like signal (Fuhrmann et al., 2000). 

BMP7 expression in the prospective RPE promotes the identity of this tissue by 

antagonizing effect of FGF (Adler and Canto-Soler, 2007) BMPs and RA also play 

an important role in the transformation of optic vesicle to the optic cup(Cvekl and 

Wang, 2009). Experiments with mouse embryos lacking RA synthesis in the optic 

vesicle showed a failure in optic vesicle invagination, (Duester, 2009; Mic et al., 

2004; Molotkov et al., 2006) 

 

Table	
   1.	
   Extracellular	
   molecules	
   involved	
   in	
   eye	
   development	
   through	
  
early	
  optic	
  cup	
  stages.	
  Modified	
  from	
  Adler	
  and	
  Canto-­‐Soler,	
  2007	
  
	
  

Events	
  during	
  eye	
  

development	
  

Extracellular	
  

molecules	
  

References	
  

Specification	
  of	
  the	
  eye	
  
field	
  	
  

FGFs;	
  Wnts;	
  BMPs	
  	
   (Cavodeassi	
  et	
  al.,	
  2005;	
  Esteve	
  and	
  
Bovolenta,	
  2006;	
  Lee	
  et	
  al.,	
  2006;	
  
Moody,	
  2004;	
  Moore	
  et	
  al.,	
  2004;	
  
Wilson	
  and	
  Houart,	
  2004)	
  

Splitting	
  of	
  the	
  eye	
  field	
  
and	
  
proximo-­‐distal	
  patterning	
  
of	
  the	
  OV	
  

Cyclops;	
  SHH	
  	
   (Chow	
  and	
  Lang,	
  2001;	
  Ekker	
  et	
  al.,	
  
1995;	
  Li	
  et	
  al.,	
  1997;	
  Macdonald	
  et	
  al.,	
  
1995;	
  Marti	
  and	
  Bovolenta,	
  2002;	
  
Muller	
  et	
  al.,	
  2000)	
  

Patterning	
  of	
  the	
  OV	
   SHH;	
  FGFs;	
  Activin;	
  
BMP7;	
  
RA	
  
	
  

(Martinez-­‐Morales	
  et	
  al.,	
  2004)	
  

Invagination	
  of	
  the	
  optic	
  
vesicle	
  into	
  an	
  optic	
  cup	
  

RA	
   (Hyer	
  et	
  al.,	
  2003;	
  Matt	
  et	
  al.,	
  2005;	
  
Mic	
  et	
  al.,	
  2004;	
  Molotkov	
  et	
  al.,	
  2006)	
  

Antero-­‐posterior	
  and	
  
Dorso-­‐Ventral	
  patterning	
  
of	
  the	
  optic	
  cup	
  
	
  

FGFs;	
  SHH;	
  BMPs;	
  
RA;	
  Ventroptin;	
  
Follistatin,	
  
Chordin,	
  
Noggin;	
  DAN	
  
	
  

(Adler	
  and	
  Belecky-­‐Adams,	
  2002;	
  
Belecky-­‐Adams	
  and	
  Adler,	
  2001;	
  
Huillard	
  et	
  al.,	
  2005;	
  Koshiba-­‐Takeuchi	
  
et	
  al.,	
  2000;	
  Morcillo	
  et	
  al.,	
  2006;	
  
Peters	
  and	
  Cepko,	
  2002;	
  Sakuta	
  et	
  al.,	
  
2001;	
  Sakuta	
  et	
  al.,	
  2006;	
  Yang,	
  2004)	
  

BMPs:	
  bone	
  morphogenetic	
  proteins;	
  DAN:	
  DAN	
  domain	
  family	
  members;	
  FGFs:	
  fibroblast	
  growth	
  
factors;	
  RA:	
  retinoic	
  acid;	
  SHH:	
  sonic	
  hedgehog;	
  Wnts:	
  members	
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of	
  the	
  Wnt	
  family.	
  
	
  
 

1.1.3	
  Transcription	
  factors	
  

Several transcription factors have been associated to each major stage of 

retinogenesis. The effect exerted by different transcription factor sets on the 

morphogenetic events necessary for the normal eye formation, are probably caused 

by the influence of extracellular molecules, as the ones describe in the previous 

section. Table 2 summarizes the transcription factors frequently involved in early 

eye development. 

1.1.3.1	
  Eye	
  field	
  specification	
  
Transcription factors involved in the early events of eye formation have long been 

known as eye field transcription factors (EFTF). On this regard, Otx2, Rax, Pax6, 

Six3, Lhx12, Six6, ET and tll appear essential for the specification of the eye field 

(Chow and Lang, 2001; Crossley et al., 2001; Zuber et al., 2003). Different 

publications dealing with knockout mice and missexpression experiments have 

postulated the regulatory network formed by these genes, where they regulate each 

other’s expression (Chow and Lang, 2001; Crossley et al., 2001; Swaroop et al., 

2010; Zuber et al., 2003). Interestingly, genes regulating forebrain development, 

such as Otx2 and Hes1, which are not present in the eye field, indirectly regulate 

early eye development (Bailey et al., 2004). 

 

1.1.3.2	
  Optic	
  vesicle	
  evagination	
  
Optic vesicle formation or optic vesicle evagination findings come from different 

knockout experiments. Rax mouse mutants fail to form optic vesicles and Pax6 
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mouse mutants presented abnormal formation through mechanisms still unknown, 

(Bailey et al., 2004; Chow and Lang, 2001) but it has been hypothesised from 

experiments with zebrafish that the effect is provoked by an impaired cell migration 

from the eye field (Loosli et al., 2003; Rembold et al., 2006) 

1.1.3.3	
  Optic	
  vesicle	
  patterning	
  
All the cells forming the adult retina derive form a common multipotent progenitor 

and the optic vesicle is not an exception in this matter. All the neuroepithelial cells of 

the early optic vesicle co-express Rax, Pax6, Hes1, Otx2, Lhx2, Six3, and Six9 

while they are still capable of differentiating towards optic stalk, neural retina and 

RPE (Martinez-Morales et al., 2004). The patterning of the optic vesicle into NR or 

RPE progenitors depends of the differential expression of the above mentioned 

transcription factors as well as Chx10 and Mitf. The regulatory interaction between 

Chx10 and Mitf expression is mandatory for the establishment of boundaries 

between the developing territories. Cells expressing only Mitf and Pax6 will give rise 

to RPE while cells expressing Chx10 and Pax6 will give rise to the neural retina 

(Bharti et al., 2008; Horsford et al., 2005; Hyer et al., 2003; Rowan et al., 2004). 

1.1.3.4	
  Optic	
  vesicle	
  invagination	
  into	
  optic	
  cup	
  
One of the most amazing morphogeneticc events during eye formation is the 

invagination of the optic vesicle to give rise to the bilaminated optic cup. As it has 

been discussed in the previous section, this event is promoted by signalling 

molecules from the surface ectoderm, mainly by bFGF signalling pathway. In terms 

of transcription factors involved, Pax6, Hes1 and Lhx2 expression mediate the 

outgrowth of the optic vesicle and its conversion into an optic cup (Adler and Canto-

Soler, 2007; Fuhrmann, 2010). The optic cup inner layer will form the mature retina 

while the outer layer will give rise to the RPE. 
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1.1.3.5	
  Neural	
  retina	
  patterning	
  

 
Table	
  2.	
  Transcription	
  factors	
   involved	
  in	
  eye	
  development	
  through	
  early	
  
optic	
  cup	
  stages.	
  Modified	
  from	
  Adler	
  and	
  Canto-­‐Soler,	
  2007	
  
 

Events	
  during	
  eye	
  

development	
  

Transcription	
  

factors	
  

References	
  

Specification	
  of	
  the	
  eye	
  
field	
  	
  

Rx;	
  Pax6;	
  Six3;	
  
Lhx2;	
  Six6/Optx2;	
  
ET;	
  tll;	
  Hes1;	
  Otx2	
  	
  

(Bailey	
  et	
  al.,	
  2004;	
  Chow	
  and	
  Lang,	
  
2001;	
  Esteve	
  and	
  Bovolenta,	
  2006;	
  
Viczian	
  et	
  al.,	
  2006;	
  Wilson	
  and	
  Houart,	
  
2004;	
  Zuber	
  et	
  al.,	
  2003)	
  

Optic	
  vesicle	
  evagination	
  	
   Rx;	
  Pax6;	
  tll	
  	
  
	
  

(Bailey	
  et	
  al.,	
  2004;	
  Chow	
  and	
  Lang,	
  
2001;	
  Hollemann	
  et	
  al.,	
  1998;	
  Loosli	
  et	
  
al.,	
  2003;	
  Loosli	
  et	
  al.,	
  2001;	
  Rembold	
  
et	
  al.,	
  2006)	
  	
  

Optic	
  vesicle	
  dorso-­‐ventral	
  
patterning	
  

Pax6;	
  Rx;	
  Lhx2;	
  
Chx10;	
  Otx2;	
  Mitf;	
  
Pax2;	
  Vax	
  

(Adler	
  and	
  Canto-­‐Soler,	
  2007;	
  Bharti	
  et	
  
al.,	
  2006;	
  Chow	
  and	
  Lang,	
  2001;	
  
Horsford	
  et	
  al.,	
  2005;	
  Martinez-­‐
Morales	
  et	
  al.,	
  2004;	
  Schwarz	
  et	
  al.,	
  
2000)	
  

Optic	
  vesicle	
  naso-­‐
temporal	
  patterning	
  

BF1/Foxg1;	
  
BF2/Foxd2;	
  Pax6	
  

(Baumer	
  et	
  al.,	
  2002;	
  Hatini	
  et	
  al.,	
  
1994;	
  Yuasa	
  et	
  al.,	
  1996)	
  

Optic	
  vesicle	
  invagination	
  
into	
  an	
  optic	
  cup	
  

Pax6;	
  Lhx2;	
  Hes1	
   (Adler	
  and	
  Canto-­‐Soler,	
  2007;	
  Chow	
  
and	
  Lang,	
  2001;	
  Lee	
  et	
  al.,	
  2006;	
  Porter	
  
et	
  al.,	
  1997;	
  Tomita	
  et	
  al.,	
  1996)	
  

Neural	
  retina	
  dorso-­‐ventral	
  
patterning	
  
	
  

Pax6,	
  Pax2,	
  Vax,	
  
Tbx5;	
  Xbr1	
  
	
  

(Adler	
  and	
  Canto-­‐Soler,	
  2007;	
  Chow	
  
and	
  Lang,	
  2001;	
  Leconte	
  et	
  al.,	
  2004;	
  
Mui	
  et	
  al.,	
  2005;	
  Peters,	
  2002;	
  Peters	
  
and	
  Cepko,	
  2002)	
  

Neural	
  retina	
  naso-­‐
temporal	
  patterning	
  
	
  

Pax6;	
  BF1/Foxg1;	
  
BF2/Foxd2;	
  
SOHo1;	
  GH6	
  

(Baumer	
  et	
  al.,	
  2002;	
  Chow	
  and	
  Lang,	
  
2001;	
  Peters,	
  2002;	
  Takahashi	
  et	
  al.,	
  
2003;	
  Yuasa	
  et	
  al.,	
  1996)	
  

 

1.2	
  Retinogenesis	
  

The retina is a highly laminated structure comprised by seven different cell types 

distributed in three nuclear strata and two synaptic layers. (Figure1.3).  
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Figure 1.3 Histological section of an adult wild type mouse retina. The retina is organised in three 
nuclear ONL, INL and GCL and two synaptic strata, the outer plexiform layer and the inner plexiform 
layer.  
	
  
As it was mentioned its development is a complex multistep process starting at the 

inner most layer of the optic cup. And this is the case for most of the vertebrates, 

nevertheless there are some differences between mice and human that can be 

sumarize as follows.  

In mice, cell proliferation commences around embryonic day (E10) and continues 

into the post-natal day (P14) week of life, when the principal retinal structure is 

completed (Sidman 1961; (Young, 1985a, b), nevertheless further condensation of 

photoreceptor cromatin and changes in cone opsin expression patterns carry on 

into adulthood (Solovei et al., 2009; Szel et al., 1994). The retinogenesis takes an 

extremely long period of time considering the whole gestation of small rodents such 

as mice lasts aproximately 20 days. 
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On the other hand, human retinal development is completed before birth and there 

is none or little evidence of neural regeneration in the post-mitotic mammal retina 

(Lamba et al., 2009b). 

	
  
Figure 1.4 Structural and Functional circuitry of the retina. Organization of retinal circuits. Rod (R) 
and cone (C) photoreceptors cell bodies are located in the outer nuclear layer (ONL) and extend inner 
and outer segments (IS and OS), towards the RPE. Photoreceptor axons terminate in the outer plexiform 
layer (OPL) where they synapse onto horizontal (H) and bipolar (B) cells in the inner nuclear layer (INL), 
which also contains Müller glial (M) and amacrine (A) cells. Bipolar cells connect to amacrine and 
ganglion (G) cells in the inner plexiform layer (IPL). Ganglion cell axons form the optic nerve and carry 
signals to the brain. Rod (orange) and Cone (blue) pathways are represented. Modified from (Swaroop et 
al., 2010) 
 
On this regard, long-term DNA labelling studies have shown that the different retinal 

cells are born in a stepwise but overlapping sequence which is conserved across 

many vertebrates (Prada et al., 1991; Rapaport et al., 2004). 

Hence, Retinal ganglion cells (G), cone photoreceptors (C), as well as horizontal (H) 

and amacrine (A) cells are born embryonicaly, while bipolar cells (B), rod 

photoreceptors (R) and Müller cells (M) develop postnatally. When lineage tracing 

experiments were performed in retinal progenitor cells (RPC) of rat (Turner and 
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Cepko, 1987), mouse (Turner et al., 1990) and frog developing retinae, (Holt et al., 

1988; Wetts and Fraser, 1988) absence of lineage-restricted progenitors was 

observed and it was concluded that all cell types derived from multipotent RPCs 

influenced by external cues (Cepko et al., 1996). These cells exit the mitotic cycle in 

a characteristic, stereotyped sequence that is highly conserved across vertebrates 

(Holt et al., 1988; Spence and Robson, 1989; Young, 1985a). 

 
Figure 1.5. Order of birth of retinal cells in the mouse retina during normal development. Taken form 
(Klassen et al., 2004)  
 

However, from co-cultures experiments it was established that RPCs must undergo 

a sequential process of intrinsic molecular changes throughout retinogenesis to give 

rise to all cell types (Harris, 1997; Livesey and Cepko, 2001). Yet, retinogenesis 

occurs thanks to an orchestrated balance between intrinsic signals and instructive 

extracellular cues, exemplified by some diffusible molecules modulating cell fate. 

On this regard, using P1 conditioned medium when culturing RPCs, Shh role in 

regulating ganglion cell genesis was discovered (Zhang and Yang, 2001a) and 

different publications determined the involvement of taurine, retinoic acid (RA) and 
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tyroid hormone (TH) on photoreceptor fate decision (Altshuler et al., 1993; Hyatt 

and Dowling, 1997; Kelley et al., 1995; Young and Cepko, 2004). 

Interestingly, some factors may have different effects in different species; such is 

the case of ciliary neurotrophic factor (CNTF), which in chick promotes the 

differentiation of rod photoreceptors over bipolar cells (Fuhrmann et al., 1995),  

while in rat the opposite effect is observed (Ezzeddine et al., 1997). Fibroblast 

growth factor (FGF) and epidermal growth factor (EGF) signalling postpone a late 

rod photoreceptor towards the final Müller glia fate (Ahmad et al., 1998; Lillien and 

Cepko, 1992; McFarlane et al., 1998). 

Nowadays, it is recognized the critical role played by Notch signaling pathway in 

gliogenesis and neurogenesis of RPCs. On this aspect, Notch activation through its 

ligand Delta in the retina, favors the differentiation towards Müller glia on expense of 

neurons, while a reduced activation of Notch signaling promotes the differentiation 

towards ganglion cells, reducing the number of glial cells. The mechanism by which 

Delta-Notch signaling seems to exert this effect is by the transactivation of specific 

downstream targets such as Hes1 and Hes5, which in turn induce the 

downregulation of proneural basic helix-loop-helix (bHLH) transcription factors 

(Dorsky et al., 1997; Rapaport and Dorsky, 1998). bHLH genes are part of well 

studied family of transcription factors whose many members are necessary for 

neurogenesis. Manipulations of individual genes shift the balance between neuronal 

cell fates, but also alter the timing of cell cycle exit of RPCs (Agathocleous and 

Harris, 2009). One Example of bHLH proneural is Ath5, a gene important for the 

final differentiation of RPCs to retinal ganglion cells. The path of differentiation 

toward horizontal cells goes under the influence of another transcription factor, 

Prox1, which induces cell cycle exit and horizontal cell differentiation and it can be 
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found as well in some amacrine cells (Dyer et al., 2003). 

Table	
  3.	
  Signalling	
  pathways	
  involved	
  during	
  retinogenesis	
  

Signalling	
  	
   Events	
  during	
  retinogenesis	
   References	
  

FGF;	
  EGF	
   Promotes	
  neurogenesis	
  and	
  
proliferation	
  and	
  is	
  involved	
  in	
  
gliogenesis	
  

(Ahmad	
  et	
  al.,	
  1998;	
  Esteve	
  
and	
  Bovolenta,	
  2006;	
  Lillien	
  
and	
  Cepko,	
  1992;	
  McFarlane	
  
et	
  al.,	
  1998)	
  	
  

Notch	
   Inhibits	
  neuronal	
  differentiation,	
  
promotes	
  RPC	
  maintenance	
  or	
  
gliogenesis	
  

(Perron	
  and	
  Harris,	
  2000)	
  

Hedgehog	
  
	
  

Activates	
  proliferation	
   (Agathocleous	
  et	
  al.,	
  2007;	
  
Wallace,	
  2008)	
  

BMP	
   Promotes	
  proliferation	
  and	
  
neurogenesis	
  

(Murali	
  et	
  al.,	
  2005)	
  

CNTF	
   Promotes	
  gliogenesis	
   (Ezzeddine	
  et	
  al.,	
  1997;	
  
Goureau	
  et	
  al.,	
  2004)	
  

RA;	
  Taurine;	
  TH	
   Photorecetor	
  fate	
  decision	
   (Altshuler	
  et	
  al.,	
  1993;	
  Hyatt	
  
and	
  Dowling,	
  1997;	
  Kelley	
  et	
  
al.,	
  1999;	
  Young	
  and	
  Cepko,	
  
2004)	
  

	
  

Mature retinal phenotype acquisition requires the action of homeobox genes. In 

mice, cone-rod homoebox (Crx) and its homologue Otx2 are necessary for 

photoreceptor differentiation (Furukawa et al., 1997; Nishida et al., 2003), while 

bipolar cells rely on the expression of Chx10 (Burmeister et al., 1996). 

As it has been mentioned earlier Pax6 is essential for eye field specification. Pax6 is 

a homoebox gene, which also play a role in late retinogenesis. Experiments with 

conditional knock outs for Pax6 shown, that due to the loss of several bHLH genes, 

only amacrine cells were produced (Marquardt et al., 2001). Other transcription 

factors important during the differentiation of progenitors to mature retinal 

phenotypes are shown in Table 4. 

Table	
  4.	
  Transcription	
  factors	
  involved	
  during	
  retinogenesis	
  

Transcription	
  

factors	
  

Events	
  during	
  

retinogenesis	
  

References	
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Hes1;	
  Hes5	
   Promotes	
  gliogenesis	
   (Dorsky	
  et	
  al.,	
  1997;	
  Dorsky	
  et	
  al.,	
  
1995;	
  Furukawa	
  et	
  al.,	
  2000;	
  
Rapaport	
  and	
  Dorsky,	
  1998)	
  

Ath5	
   RGC	
  differentiation,	
  
activates	
  BarH1	
  and	
  Brn3	
  

(Liu	
  et	
  al.,	
  2001)	
  

Prox1	
   Cell	
  cycle	
  exit	
  and	
  
horizontal	
  cell	
  
differentiation	
  

(Dyer	
  et	
  al.,	
  2003)	
  

Crx;	
  Otx2	
   	
   	
  
Chx10	
   Bipolar	
  cell	
  differentiation	
   	
  
Pax6	
   	
   (Marquardt	
  et	
  al.,	
  2001)	
  
	
   	
   	
  

 

In sum, retinal fate decisions share some common features like cell cycle exit of 

RPC and the induction of differentiation by manipulation of signalling pathways and 

the composition of transcription factors. Nevertheless, the most significant feature is 

the lack of a define linear sequence of events form a prgenitor to a postmitotic cell. 

Instead several processes work in paralel and interact at multiple levels, ensuring 

coordination of proliferation and differentiation. Furthermore, it remains unclear if 

the different extrinsic factors involved during retinogenesis are instructive or 

permissive in regard to cell fate acquisition. 

	
  

1.3	
  Photoreceptors	
  development	
  

The PRs are found in the outer most part of the retina, were they relay in close 

contact and interaction with the RPE. PRs are highly specialised light-sensitive 

neurons with elaborated outer segments carrying discs packed with pigments. 

There are two different types of PRs, cones and rods, which are distinguished by 

their shape, type of pigment, retinal distribution and pattern of synaptic conections 

(Figure 1.6) 



35 
 

 

Figure 1.6. Types of photoreceptors. Webvission. Distribution of photoreceptors in the human eye. 
Overall, rods outnumber cones by a ratio of 20:1 or greater in the retina. However, in the fovea, the cone 
density is the highest and is correlated with visual acuity. 
 

In contradiction to the well understood photoreceptor function and biochemistry, 

which will be describe later on this chapter, the information regarding the sequence 

of events that lead to either cone or rod PR is more limited.  

There are two proneural bHLH transcription factors that are thought to play a role in 

photorecptor development: the mammalian achaete-scute homologue 1 (Ascl1) and 

NeuroD. Ascl1 May play a role at early stages of development of specific neural 

lineages in most regions of the CNS. In the rodent retina instead, Ascl1 is confined 

to a subset of proliferating late progenitors giving rise to rods and other late-born 

cell types and later in development, becomes restricted to the inner nuclear layer 

(Tomita et al., 1996). In 2001, Hatakeyama and colleagues demostrated that 

overexpression of Ascl1 in E17.5 retinae resulted in the predominant generation of 

rod PRs (Hatakeyama et al., 2001). On the other hand, NeuroD expression during 

normal development is mainly found in retinal cells committed to either PRs or 

amacrine cells.  
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Several transcription factors form part of the complex network around the cone-rod 

homeobox gene, Crx. Crx gene is essential for the maintenance of mammalian 

photoreceptors. A minimal network of interaction can be seen in the Figure1.7, 

where blue lines show the direct binding of Crx on other genes, such as Nrl, Nr2e3 

and Atxn7. Yellow lines represent the inhibition of expression and green 

arrowheads show direct activation of expression, such is the case for Rho. 

However, fully mature amacrine cells loose NeuroD expression and in the mature 

retina NeuroD is confined to only a sUbset of PRs (Morrow et al., 1999). As well as 

with the Ascl1 knock-outs, inactivation of NeuroD is lethal and mice die at birth. 

Nevertheless, from explant cultures of NeuroD knock-outs, it was observed an 

increase in Müller glia and bipolar cells and a delay in amacrine cell differentiation. 

In the case of PRs they are generated at the expense of an increase in apoptosis 

among the cells in the ONL (Morrow et al., 1999; Tomita et al., 1996). 

Consequently, NeuroD may play a role in the commitment to PRs or amacrine cell 

fate and in the particular case of PRs, on its survival. Additionally, in Crx knock-outs 

NeuroD expression was decreased (Hennig et al., 2008). 

1.3.1.	
  Photoreceptor	
  lineage	
  determination,	
  Crx	
  positive	
  cells	
  

In vertebrates, as it has been mentioned, the formation of the forebrain and the 

eyes relay onto three ortholog genes; Otx1, Otx2 and Crx. The latter two are 

essential in the lineage specification and maturation of PRs. Experiments from 

knockouts have revealed that Otx2 inactivation is lethal in mice due to impaired 

forebrain development and the heterozygous Otx2 knock-out presented a severe 

ocular malformation. 
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Figure 1.7. Cone-rod homeobox gene (Mus musculus) network of interaction; Binds and transactivates 
the sequence 5'-TAATC[CA]-3' which is found upstream of several photoreceptor-specific genes, 
including the opsin genes. Essential for the maintenance of mammalian photoreceptors. Built with String 
9.05 and UniProt. 
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1.3.2.	
  Cones	
  and	
  Rods,	
  a	
  fate	
  decision	
  

 
 

 
	
  

1.4	
  Photoreceptor	
  function	
  

	
  

1.4.1	
  Phototransduction	
  

	
  

1.5.2	
  Differences	
  in	
  rod	
  and	
  cone	
  photoreceptor	
  function	
  

	
  

Gene Name Function 
Gucy2d Guanylate cyclase 2d Cyclic nucleotide metabolism 

Rpgrip1 Retinitis pigmentosa 
GTPase regulator 

Essential for RPGR function and is also 
required for normal disk morphogenesis 
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interacting protein 1 

Rho Rhodopsin 

Photoreceptor required for image-forming 
vision at low light intensity. Required for 
photoreceptor cell viability after birth. Light-
induced isomerization of 11-cis to all-trans 
retinal triggers a conformational change 
leading to G-protein activation and release 
of all-trans retinal  

Aipl1 
Aryl hydrocarbon 
receptor-interacting 
protein-like 1 

May be important in protein trafficking and/or 
protein folding and stabilization (By 
similarity) 

Nrl Neural retina leucine 
zipper gene 

Transcription factor which regulates the 
expression of several rod-specific genes, in 
cluding RHO and PDE6B (By similarity)  

Atxn7 Ataxin 7 

Involved in neurodegeneration. Acts as 
component of the STAGA transcription 
coactivator-HAT complex. Mediates the 
interaction of STAGA complex with the CRX 
and is involved in CRX- dependent gene 
activation (By similarity)  

Crx Cone-rod homeobox 
containing gene 

Binds and transactivates the sequence 5'-
TAATC[CA]-3' which is found upstream of 
several photoreceptor-specific genes, 
including the opsin genes. Essential for the 
maintenance of mammalian photoreceptors  

Neurod4 Neurogenic 
differentiation 4  

neurogenic differentiation 4 Gene; Appears 
to mediate neuronal differentiation (By 
similarity)  

Pde6b 
Phosphodiesterase 6B, 
cGMP, rod receptor, beta 
polypeptide  

This protein participates in processes of 
transmission and amplification of the visual 
signal. Necessary for the formation of a 
functional phosphodiesterase holoenzyme  

Nr2e3 
Nuclear receptor 
subfamily 2, group E, 
member 3  

Orphan nuclear receptor of retinal 
photoreceptor cells. Transcriptional factor 
that is an activator of rod development and 
repressor of cone development. Binds the 
promoter region of a number of rod- and 
cone-specific genes, including rhodopsin, M- 
and S-opsin and rod-specific 
phosphodiesterase beta subunit. Enhances 
rhodopsin expression. Represses M- and S-
cone opsin expression  

Lif Leukemia inhibitory 
factor  

LIF has the capacity to induce terminal 
differentiation in leukemic cells. Its activities 
include the induction of hematopoietic 
differentiation in normal and myeloid 
leukemia cells, the induction of neuronal cell 
differentiation, and the stimulation of acute-
phase protein synthesis in hepatocytes  
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Table	
  5.	
  Genes	
  involved	
  in	
  photoreceptor	
  function	
  	
  

Gene  Protein function in photoreceptors 

AIPL1  Chaperone, nuclear export 

CABP4  Synaptic terminal, voltage-gated Ca2+ channel 
modulation 

CEP290  Connecting cilium, 20% of LCA 

CRB1  OLM, 9-13% of LCA 

CRX  Transcription factor, 1-3% of LCA 

GUCY2D  Cyclic nucleotide metabolism 

IQCB1  Cyclic nucleotide metabolism 

KCNJ13  Potassium channel, membrane potential 

LCA5  Connecting cilium 

LRAT  Retinol metabolism, visual cycle (expressed in in 
RPE) 

OTX2  Transcription factor 

RD3  Unknown 

RDH12  Retinol metabolism, visual cycle, 4% of LCA 

RPE65  Retinol metabolism, visual cycle, 16% of LCA 

RPGRIP1  Cyclic nucleotide metabolism 

SPATA7  Unknown 

TULP1  Connecting cilium, opsin transport from IS to OS 
RetNet	
  (http://www.sph.uth.tmc.edu/Retnet/sum-­‐dis.htm#B-­‐diseases,	
  accessed	
  09/2011)	
  

	
  
 

1.5	
  Retinal	
  dystrophies	
  

Inherited retinal dystrophies are the main cause of uncurable blindness in the 

developing world. These group of diseases affect as many as 1 in 2.000 births, and 

unfortunately in many cases, no treatment can be offered (Berger et al., 2010a). 

The most common forms of retinal dystophies are retinitis pigmentosa (RP) and 

acute macular degeneration (AMD). In both cases, the main pathological hallmark is 

the PR degeneration and the consequent implantation of blindness. As expected,  
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many gene mutations associated to either RP or AMD, have been found in genes 

that play a crucial role in PR functions, nevertheless, mutations in other cells such 

as RPE, also can cause the diseases. Interestinlgly, classical apoptosis is not  the 

main cell death mechanism in PR. Instead, a necrosis-like cell death 

mechanismseems to be the responsible for the PR degeneration, where the cells 

experience energy depletion, increased oxidative stress and also show a 

deregulated DNA repair. ( Sancho-Pelluz et al 2008, Marigo  2007 and Reme 1998). 

According to Berger and colleagues retinal diseases can be categorized in three 

major groups:  

1. stationary and progressive rod dominated diseases 

2. stationary and progressive cone dominated diseases 

3. non-syndromic generalized PR diseases (affecting both PR cell types, rod 

and cones; (Berger et al., 2010a).  

 
Disorders primarily affecting the rod system present initially night blindness and may 

progress to involve the peripheral visual field, with relative preservation of central 

vision. In contrast, cone dystrophies will manifest initially with loss of central visual 

acuity and colour vision and should not significantly affect peripheral vision unless 

the rod system is also involved (cone-rod dystrophy, CORD). Macular dystrophies 

(MDs) affect both rods and cones within the macula, whilst leaving the peripheral 

populations intact. 

1.5.1	
  Retinititis	
  Pigmentosa	
  

 
Retinitis pigmentosa is the most common form of inherited RD, in which patients 

lose both rod and cone PRs. In most cases of RP, hallmark features include night 
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blindness, attenuated retinal vessels, waxy pallor of the optic disc, and bone 

spicule-like pigmentation in the fundus. It has a worldwide prevalence of 1 in 3.500. 

The functions of the different RP-associated genes may be grouped into mainly five 

categories: (i) phototransduction, (ii) retinal metabolism, (iii) tissue development and 

maintenance, (iv) cellular structure, and (v) splicing. More than 50 genes have been 

associated to RP to date, most of them are rod-specific genes, yet some RP genes 

are ubiquitously expressed (RetNet, http://www.sph.uth.tmc.edu/retnet). Autosomal 

dominant RP is the most frequently inherited type of RP, accounting for 

approximately 20% to 25% of cases (Ferrari et al., 2011).  Among the most 

prevalent are rhodopsin (RHO) and peripherin/RDS. RHO gene was the first gene 

linked to RP. Its mutations are responsible for 30% to 40% of the autosomal 

dominant cases (Ferrari et al., 2011). More than 100 mutations have been identified 

in RHO, causing variation within the clinical presentations. Another common cause 

of adRP is attributed to the peripherin/RDS gene mutation, which accounts for 5% 

to 9.5% of adRP (Ferrari et al., 2011). Mutations in transcription factors (NRL, CRX) 

and pre-mRNA processing factors (HPRP3, PRPC8, PRPF31) have been also 

implicated in adRP (RetNet, http://www.sph.uth.tmc.edu/retnet). Mutations in 

TOPORS, a cilliary protein, were identified in patients with adRP (Chakarova et al., 

2007) linked to a previously reported locus, RP31 (Papaioannou et al., 2005).  

Autosomal recessive RP is the second most frequently inherited type of RP, 

accounting for approximately 15% to 20% of cases. The majority of arRP–causing 

genes are involved in the phototransduction cascade (CNGA1, PDE6A, PDE6B, 

SAG) or in vitamin A metabolism and its recycling in the eye (RLBP1, ABCA4, 

LRAT, RPE65) (Retinal Information Network: http://www.sph.uth.tmc.edu/retnet).   

X-linked (XlRP) is the least frequently inherited type of RP, accounting for only 10% 
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to 15% of cases (Ferrari et al., 2011). To date, only 2 genes have been identified 

(RetNet, http://www.sph.uth.tmc.edu/retnet). The RPGR and RP2 genes.  

1.5.2	
  Acute	
  Macular	
  Distrophy	
  

One of the most common macular degenerations (MDs) is age-related macular 

degeneration (AMD) and results in progressive loss of visual acuity in the center of 

the visual field (the macula), colour vision abnormalities and central scotomas 

(shadows or missing areas of vision). AMD usually, affects the elder with a 

prevalence of 0.05% before the age of 50, increasing up to a 12% in patients above 

80 years old (Friedman et. Al. 2004). A combination of genetic and environmental 

factors such as hypertension, smoking, diet, obesity and chronic inflammation are 

responsible for the development of AMD. A pathological feature of the disease is 

the deposit of lipids in the Bruch’s membrane underlying the RPE, a sign known as 

drusen. The the condition can progress by further accumulations of drusen (dry 

AMD) or intrusion of fluid leading to the detachment of the RPE or the retina (wet 

AMD, de Jong PT 2006)   ARMS2, HTRA1 and PLEKHA among other genes have 

been identified as susceptibly genes for AMD and are summarized in Table 4 

(RetNet, http://www.sph.uth.tmc.edu/retnet). 

Table	
   4.	
   Known	
   mutations	
   to	
   cause	
   age-­‐related	
   macular	
   degeneration	
  
(AMD)	
  
	
  

Gene	
  	
   Protein	
  function	
  in	
  disease	
  

ABCA4	
  	
  
Phototransduction.	
  Expressed	
  in	
  rod	
  outer	
  segment	
  and	
  
foveal	
  cones	
  

ARMS2	
  	
   Mitocondrial	
  protein	
  found	
  in	
  the	
  inner	
  segment	
  of	
  PR	
  

C2	
   Innate	
  immunity	
  and	
  inflammation	
  

C3	
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CFB	
  	
  
Gene	
  contiguous	
  to	
  C2.	
  Innate	
  immunity	
  and	
  
inflammation	
  

CFH	
   Factor	
  H.	
  Regulatio	
  of	
  complement	
  activation	
  

ERCC6	
   Protein	
  is	
  involved	
  in	
  DNA	
  nucleotide	
  excision	
  repair	
  	
  

FBLN5	
  	
   	
  

HMCN1	
   	
  

HTRA1	
  
Protein	
  found	
  in	
  drusen,	
  Regulates	
  degradation	
  of	
  
extracellular	
  matrix	
  

RAX2	
  
Modulator	
  of	
  photoreceptor	
  gene	
  expression.	
  Binds	
  to	
  
Rho	
  promoter	
  

TLR3	
   	
  

TLR4	
   	
  

	
  
RetNet	
  (http://www.sph.uth.tmc.edu/Retnet/sum-­‐dis.htm#B-­‐diseases,	
  accessed	
  09/2011)	
  

 

1.6	
  Cell-­‐based	
  therapy	
  for	
  retinals	
  dystrophies	
  

Effective treatment for retinal degeneration has been widely investigated. Gene 

therapy has shown to improve visual function in inherited retinal disease. However, 

this treatment was less effective in advanced cases and due to its nature is too 

specific, increasing the cost and reducing the spectrum of patients whom can 

benefit from it. One of the main drawbacks of gene therapy is that photoreceptor 

loss cannot be reclaimed, for this reason it has become so important to design 

protocols of differentiation more efficients and safe for cell replacement therapies. 

Cell-based therapy pursue to find an appropriate source of cells which could give 

rise to photoreceptors after transplantation into the diseased 

1.7	
  Stem	
  cells	
  

A stem cell is defined as a cell that can renew itself for the lifetime of the organism 
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while also producing a cell progeny that matures and differentiates into more 

specialized organ specific cells. The balance between populations of stem cells and 

differentiating cells is critical during embryonic development and for the 

maintenance and regeneration of adult tissues. 

 
 

1.7.1	
  Concept	
  and	
  definition	
  

As mentioned above, there are two main features to define a stem cell. Any cell 

capable of self-renewal that under certain physiological or experimental conditions 

can be induced to become cells with specialized functions, which is known as 

pluripotency(Evans and Kaufman, 1981; Thomson et al., 1998). Self-renewal and 

pluripotency make stem cells unique. Pluripotency is perhaps the most exciting 

feature of stem cells from the therapeutic point of view. Pluripotent stem cells have 

the ability to differentiate into any cell type constituting an adult organism, since they 

have proven to differentiate into the three germ layers, ectoderm, mesoderm and 
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endoderm cells. Nevertheless, there are other stem cells found in adult tissues, 

which do not follow this rule strictly and this will be discuss in the following section. 

1.7.2	
  Classification	
  

1.7.3	
  Cellular	
  differentiation	
  

	
  

1.7.3.1	
  Cromatin	
  and	
  differentiation	
  

	
  

1.7.3.2	
  Apoptosis	
  and	
  differentiation	
  
	
  



47 
 

1.8	
  Retinal	
  differentiation	
  of	
  mouse	
  embryonic	
  stem	
  cells	
  

1.8.1	
  Extrinsic	
  Factors	
  

1.8.2	
  Intrinsic	
  Factors	
  

1.8.3	
  Coculture	
  experience	
  

1.9	
  Oxygen	
  Tension	
  

1.9.1	
  Early	
  development	
  

1.9.2	
  Neuronal	
  development	
  

1.9.3	
  pluripotency	
  and	
  differentiation	
  

1.9.4	
  Retinal	
  development	
  

Eye development is a complex multistep process rather that a simple one-step 

phenomena, which is why it is rational to consider than instead of transcription 

factors or signalling molecules acting individually is the interaction of both of them 

along with microenviromental factors what achieves the development of a normal 

eye. 

1.10	
  Summary	
  

Stem cell therapy is a potential treatment for dysfunction and death of photoreceptor 
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cells of retinal dystrophies. Retinitis pigmentosa (RP) and age-related macular 

degeneration (AMD), the leading causes of permanent blindness in humans are 

characterized by the progressive the retina. For such diseases, the replenishment of 

functional photoreceptor precursors may be a good strategy for retinal regeneration, 

as gene therapy or growth factor supplement cannot regenerate dying 

photoreceptor cells. Retinal development is a multi-step process involving cell cycle 

exit, migration, and changes of cell morphology (Malicki, 2004). These changes 

result from a reciprocal relationship between tissue-tissue interaction and cell 

intrinsic factors (Fuhrmann, 2010). Additionally, accumulating evidence suggests 

that other components of the niche, such as oxygen tension, play an important role 

in cell fate determination during the development of many tissues, including the 

nervous system and the retina (Arden et al., 2005; de Gooyer et al., 2006; Evans 

and Kaufman, 1981).  

Mouse embryonic stem cells (mESC) allow us to recapitulate retinal development in 

vitro. These cells are derived from the early embryo and are characterized by their 

two unique features of pluripotency and self-renewal (Evans and Kaufman, 1981). 

In particular, during implantation and fetal development, stem cells live at oxygen 

tensions between 2% to 8% (Maltepe and Simon, 1998).  

Early embryonic formation during mammalian development occurs in a precise 

environment, where the O2 tension plays a critical role (Dunwoodie, 2009). In 

comparison to the atmospheric O2 tension (20%) the uterus environment is hypoxic. 

Mammals, including rabbits (8.7% oxygen tension) and monkeys (1.5% oxygen 

tension; (Fischer and Bavister, 1993) as well as humans develop embryos under 

low oxygen tension. Up until the second trimester in humans this ranges from 0-3% 

(Burton and Caniggia, 2001; Burton and Jaunaiux, 2001). The retina is not an 
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exception and recent studies have shown the important role that hypoxia may play 

in neuroprotection and development of the human retina (Grimm and Willmann, 

2012). This relative hypoxia or tissular normoxia is relatively low compared with 

traditional in vitro culture conditions (20% O2; (Simon and Keith, 2008). Once, the 

pluripotency agents such as Leukemia inhibitory factor (LIF) is removed, ESC 

spontaneously differentiate following a reproducible temporal pattern of 

development, that in many ways recapitulates early embryogenesis (Keller, 1995). 

Due to these special characteristics, ESC are considered an unlimited source for 

cell replacement therapies. The formation of embryoid bodies (EBs), which are 

three-dimensional aggregates of ESC, is the initial step in ESC differentiation. 

Therefore, EB culture has been widely utilized as a trigger for the in vitro 

differentiation of ESC. Numerous groups have recently demonstrated that ESC can 

be converted into cells that resemble retinal progenitors (Banin et al., 2006; Hirami 

et al., 2009; Lamba et al., 2006), photoreceptors (Osakada et al., 2008) or RPE 

(Klimanskaya et al., 2004; Vugler et al., 2008). Furthermore, Meyer and colleagues 

have very elegantly mimicked the early retinal development in a stepwise fashion 

typical of normal retinogenesis (Meyer et al., 2009) and high yield of cells 

differentiated towards photoreceptors were achieved by Mellough and colleagues 

(Mellough et al., 2012). Others went further attempting to obtain 3D structures of 

early optic cup using scaffolds (Eiraku et al., 2011; Nistor et al., 2010). However, 

evidence of fully characterized high yield populations of photoreceptors or mature 

RPE cells has not yet been accomplished. The main drawback of the differentiation 

methods available is the very low efficiency along with the lack of reproducibility. 

Most of the protocols published in recent years have been geared towards the 

induction of expression of retina-specific transcription factors, but very few 
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publications have included information regarding in vivo integration of differentiated 

cells into the mouse retina, suggesting cell survival, migration and functionality of 

the grafted cells (Lamba et al., 2009a; Lamba et al., 2010). In this study, we have 

optimized and fully characterized an original protocol of differentiation that allows us 

to obtain photoreceptors at a high efficiency in a reproducible way.  
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2.	
  AIMS
 

 

 

 

“Research	
  is	
  what	
  I'm	
  doing	
  when	
  I	
  don't	
  know	
  what	
  

I'm	
  doing.”	
  

―Wernher	
  von	
  Braun	
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The work presented in this thesis investigates whether lower oxygen 

tensions mimic the retinal microenvironment increasing the yield of 

photoreceptors and improving the modeling of retinogenesis in vitro. 

 

Furthermore, the work attempts to resolve if the retinal cells differentiated 

under hypoxic conditions, could survive and integrate more efficiently given 

the similarities between the culture conditions and the physiological O2 

tension found in the retinal niche. 

 

Specific aims 

 

To evaluate whether D3-mESC line is suitable for the generation of retinal 

cells in a stepwise manor that mimics normal development. 

 

To determine if low O2 tension has a positive effect on mESC’s 

spontaneous differentiation, loss of pluripotency and favors the generation 

of a retinal phenotype. 

 

To improve the differentiation of mESC towards photoreceptors and other 

retinal cells by taking into account micro-environmental cues such as O2 

tension. 

 

To study the transplantation of retinal cells obtained from mESC and 

determine if they survive, migrate and integrate into the host retina.  
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3.	
  MATERIALS	
  AND	
  
METHODS	
  

 

 

 

 

 

“No	
  amount	
  of	
  experimentation	
  can	
  ever	
  prove	
  me	
  

right;	
  a	
  single	
  experiment	
  can	
  prove	
  me	
  wrong.”	
  

―Albert	
  Einstein	
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Unless otherwise specified, all the reagents used in this thesis were 

acquired from Sigma® or Invitrogen®.  Table 8. Contains detailed media 

description. 

3.1	
  Maintenance	
  of	
  mESC	
  pluripotent	
  cultures.	
  	
  

All experiments conducted in this thesis were carried out using ES-D3 cells 

(ATCC CRL 1934, (Doetschman et al., 1985; Mellough et al., 2012) 

passages 18-35. ESC were maintained modifying already published 

protocols (Zhao et al., 2002, 2006) and were incubated at 37ºC under 20% 

Oxygen tension. Cultures were passaged every 4-7 days and grown at low 

confluence at a 1:1000 split ratio (Figure 3.1). Fresh medium (Table 8) was 

exchanged every 48 hours. Appropriate Master and Working Cell Banks 

were generated to allow all the experiments to be accomplished using early 

passages.  

 
Figure 3.1. ES-D3 cell cultures. Bright field images showing the undifferentiated ES-D3 cell 
line 2 days (left) and 6 days (right) after passage. 
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Table	
  6.	
  Formulations	
  of	
  media	
  used. 

 

Maintenance	
  

Medium	
  (500mL)	
  

EB	
  Medium	
  

(500mL)	
  

Progenitors	
  

Medium	
  

(500mL)	
  

Retinal	
  Medium	
  

(500	
  ml)	
  

DMEM	
  

GLUTAMAX	
  

(GIBCO32430)	
  

409ml	
  

DMEM	
  

GLUTAMAX	
  

(GIBCO32430)	
  

459ml	
  

DMEM	
  

GLUTAMAX	
  

(GIBCO32430)	
  

459ml	
  

MEM-­‐HEPES	
  66%	
  

320ml	
  	
  

HBSS	
  33%	
  	
  	
  

50	
  ml	
  

FBS	
  (Hyclone)	
  

15%	
  	
   	
  	
  	
  	
  	
  75	
  ml	
  

KSR	
  	
  	
  

(GIBCO	
  10828)	
  

5%	
  	
   25ml	
  

NEAA	
  	
  	
  

(GIBCO	
  11140)	
  

0.1mM	
   	
  	
  	
  	
  	
  	
  5ml	
  

GLUCOSE	
  SOL.	
  2.88g	
  

Glucose	
  in	
  115ml	
  

HBSS	
  

NEAA	
  	
  	
  

(GIBCO	
  11140)	
  

0.1mM	
   	
  	
  	
  	
  	
  	
  	
  	
  5ml	
  

NEAA	
  	
  	
  

(GIBCO	
  11140)	
  

0.1mM	
   	
  	
  	
  	
  	
  	
  	
  

5ml	
  

ANTIBIOTICS	
  

(GIBCO	
  15140)	
  	
  

1%	
   	
  	
  	
  	
  	
  	
  	
  	
  

5ml	
  

L-­‐GLUTAMINE	
  	
  

(Sigma)	
  	
  

200	
  µM	
  	
  	
  	
  	
  	
  500	
  µl	
  

ANTIBIOTICS	
  

(GIBCO	
  15140)	
  	
  

1%	
   	
  	
  	
  	
  	
  	
  	
  	
  5ml	
  

ANTIBIOTICS	
  

(GIBCO	
  15140)	
  	
  

1%	
   	
  	
  	
  	
  	
  	
  	
  

5ml	
  

Na+	
  PYR	
  	
  

(GIBCO	
  11360)	
  

	
  1mM	
   5ml	
  

N2	
  SUPPLEMENT	
  	
  

(GIBCO	
  17502)	
  

1%	
   5mL	
  

Na+	
  PYR	
  	
  

(GIBCO	
  11360)	
  

	
  1mM	
   5ml	
  

Na+	
  PYR	
  	
  

(GIBCO	
  11360)	
  

	
  1mM	
   5ml	
  

2-­‐ME	
  	
  

(GIBCO	
  31350)	
  

0.1mM	
   1ml	
  

FBS	
  (Hyclone)	
  

1%	
  	
  	
  	
  	
  	
  	
  	
  5	
  ml	
  

2-­‐ME	
  	
  

(GIBCO	
  31350)	
  

0.1mM	
   1ml	
  

2-­‐ME	
  

(GIBCO	
  31350)	
  

0.1mM	
   1ml	
  

KSR	
  	
  	
  

(GIBCO	
  10828)	
  

5%	
  	
  	
  	
  	
  	
  	
  	
  25ml	
  

ANTIBIOTICS	
  	
  

(GIBCO	
  15140)	
  	
  

1%	
   5ml	
  

LIF	
  (Hyclone)	
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3.2	
  ES	
  cell	
  differentiation	
  	
  

One week prior to starting the differentiation protocol cells were incubated 

at 37ºC in 5% CO2 under either Normoxic (20% Oxygen tension) or Hypoxic 

(2% Oxygen tension) conditions in a Thermo Fisher incubator (CO2/O2 WJ 

IR Model 3141, Thermo Electron Corporation, Fisher Scientific). Both 

conditions were maintained during the whole time of differentiation. Oxygen 

tension control was monitored daily.  

3.2.1	
  Spontaneous	
  Differentiation:	
  Model	
  of	
  Embryoid	
  Bodies	
  	
  
EBs were generated following an optimized protocol of the hanging drop 

method described by Wobus and colleagues (Wobus et al., 1991). mESC 

were dissociated using 0.05% Trypsin for 4 min at 37ºC. Trypsin was 

washed away adding EBs medium (Table 8). The cell suspension 

generated was spun down by centrifugation (Beckman coulter) and pelleted 

cells were resuspended in ES medium at the desired concentration (1000 

cells per 30 µl). Hanging drops of 30 µl were plated onto the lid of a 150 

mm
2
 ultralow attachment plate (Soria Greiner) using a multichannel pipette 

(Eppendorf).  

 
Figure 3.2. Embryoid bodies Generation. Diagram Showing the procedure followed to obtain 
a homogenous sample of embryoid bodies from mouse embryonic stem cells. 
 
 
ESC were allowed to aggregate in hanging drops for 3-4 days before 
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transfer to a suspension culture. After 3 days identical spherical EBs were 

formed and each drop was collected individually with a 100 µl pipette and 

deposited into a 10-cm ultra-low-attachment dish (Soria Greiner) containing 

10 ml of EB medium to a final concentration of 100 EBs per dish (Figure 

3.2). The EBs were cultured for 5 and 7 days and the medium was changed 

every 2-3 days.  

3.2.2	
  Directed	
  Differentiation	
  of	
  mESC	
  Towards	
  Retinal	
  
Progenitors	
  and	
  Retinal	
  Mature	
  Phenotypes	
  	
  
Retinal differentiation of mESC was accomplished using an optimized 

protocol encompassing growth factors described in previously published 

protocols (Hirami et al., 2009; Ikeda, 2005; Osakada et al., 2008) combined 

with the manipulation of the microenvironment. All the growth factors and 

media supplements were bought from R&D Systems, unless otherwise 

specified. EBs generated from mESC were induced to differentiate in 

Progenitors medium (Table 8) supplemented with 100 ng/ml Dickkopf-

related protein 1 (Dkk1) and 500 ng/ml Lefty-A for 5 days at 37 °C with 5% 

CO2 under Normoxic (20%) or Hypoxic (2%) conditions. Media was 

changed 72 hours later and fresh aliquots of the growth factors were added 

along with 5% fetal bovine serum (FBS) and 100 ng/ml Activin-A. On day 5, 

media was changed and EBs were cultured for 5 more days in Progenitors 

media without the addition of any growth factor. Fresh Progenitors medium 

was changed every 48 hours. On day 10, EBs were plated in 6-well plates 

or coverslips coated with human recombinant 30 µg/cm
2
 Laminin (Sigma) 

and 150 µg/cm
2
 Poly-L-Ornithine (Sigma) and cultured in Retinal medium 
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(Table 6) supplemented with 10 µM N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-

2-phenylglycine-1,1-dimethylethyl ester (DAPT; Calbiochem) at 37 °C with 

5% CO2 for 48 hours. Ideal cell density was established in 150 EBs per 9.6 

cm
2
. To allow better attachment of the EBs, 10% FBS was added to the 

medium for 48 hours. Retinal medium was exchanged every 2 days. On 

day 16 and until day 24, Retinal medium was supplemented with 10 µM 

DAPT, 50 ng/ml acidic fibroblast growth factor (aFGF), 10 ng/ml basic 

fibroblast growth factor (bFGF, Millipore), 3 nM Sonic hedgehog homolog 

(Shh), 0.5 µM retinoic acid (RA; Sigma) and 100 µM Taurine (Sigma). From 

day 24 to day 28 Retinal medium was supplemented with 10 µM DAPT, 3 

nM Shh, 0.5 nM RA and 100 µM Taurine. Samples were collected on day 0, 

day 5, day 10, day 16, and day 28 for molecular biology analysis and 

immunocytochemistry. Figure 3.3 provides an schematic of the protocol of 

differentiation and a diagram with all the growth factors and small 

molecules, distributed by day of addition, used to direct the differentiation 

towards retinal cells during the development of this thesis.  
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Figure 3.3. Protocol of differentiation.  A. Schematic Diagram of the 3 step differentiation protocol used to generate retinal cells form mESC. B. Detail of 
the protocol of differentiation used to generate retinal cells. 
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The integrity of total RNA was qualitatively assessed on an Agilent 2100® Bioanalyser 

(Figure 3.4). Reverse transcription was carried out with 1 µg of total RNA using the 

Superscript III RT kit (Invitrogen). Quantitative PCR (RT-PCR) reactions were performed 

using SensiFAST™ SYBR No-ROX Kit (Bioline, London, UK). All samples were 

normalized against a housekeeping gene (β-actin). The primer sets, as well as the 

annealing temperatures are listed in Table 7. All RT-PCR reactions were run at 40 cycles 

and data analysis was done using the CFX Manager v2.1 software (BioRad) by the ∆∆CT 

method. The ∆∆CT method is widely used to present relative gene expression and is also 

referred as the comparative CT method, where the changes in steady-state mRNA levels of 

a gene across multiple samples are express relative to the levels of an internal control 

RNA (Livak and Schmittgen, 2001). 

 
 
Figure 3.4. RNA sample analysed in Agilent 2100 bioanalyzer.  Example of a typical sample of total RNA 
extracted for the analysis of gene expression. A. Electropherogram of a high quality total RNA sample. The 18S 
and 28S peaks are clearly visible. The microchannels of the Bioanalyzer are filled with a sieving polymer and 
fluorescence dye. Samples are detected by their fluorescence and translated into electropherograms or into gel-
like images. B. Gel representation of total RNA. 
 

Table	
   7.	
   PCR	
   primers	
   used	
   to	
   study	
   the	
   loss	
   of	
   pluripotency	
   and	
   the	
   retinal	
  
differentiation	
  
	
  

Gene	
   Primers	
  (5’-­‐3’)	
  
Ta	
  

(ºC)	
  

Product	
  size	
  

(bp)	
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B-­‐Actin	
  
F:TCCTGTGGCATCCACGAAACTACA	
  

R:ACCAGACAGCACTGTGTTGGCATA	
  
60	
   93	
  

Cdkn1a	
  
F:	
  TTGTCGCTGTCTTGCACTCTGGT	
  

R:AGACCAATCTGCGCTTGGAGTGAT	
  
62	
   141	
  

Vegfa	
  
F:	
  GGAGAGCAGAAGTCCCATGA	
  

R:	
  ACTCCAGGGCTTCATCGTTA	
  
60	
   184	
  

Pax6	
   QT01052786	
  Qiagen	
   60	
   120	
  

Chx10	
   QT00112056	
  Qiagen	
   60	
   134	
  

Nrl	
   QT00109298	
  Qiagen	
   60	
   71	
  

Crx	
   QT00115402	
  Qiagen	
   60	
   127	
  

Rax	
   QT01775193	
  Qiagen	
   60	
   88	
  

Rhodopsin	
   QT00099022	
  Qiagen	
   60	
   78	
  

Nanog	
   QT01743679	
  Qiagen	
   60	
   190	
  

Sox2	
   QT00249347	
  Qiagen	
   60	
   103	
  

Tert	
   QT00104405	
  Qiagen	
   60	
   145	
  

Pou5f1	
   QT00109186	
  Qiagen	
   60	
   101	
  

Six3	
   QT01045219	
  Qiagen	
   60	
   117	
  

Otx2	
   QT01079771	
  Qiagen	
   60	
   115	
  

Mitf	
   QT00131313	
  Qiagen	
   60	
   87	
  

ZO-­‐1	
   QT00493899	
  Qiagen	
   60	
   150	
  

 

3.4	
  Immunocytochemistry	
  

Cell cultures were washed in PBS and fixed with 4% paraformaldehyde in PBS for 20 min 

at room temperature (r.t.). Fixed cells were washed twice with PBS before staining. For 

nuclear staining, permeabilization within ice methanol was accomplished for 30 min at -

20ºC. After permeabilization, cells were blocked with 3% Donkey serum, 3% Goat serum in 

0.5% Triton-PBS for 30 min at r.t. Immunostaining was performed overnight at 4ºC in 0.5% 

Triton-PBS using the antibodies listed in Table 8 and 9. Cells were counter-stained with 
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300 nM DAPI for 10 min at r.t. For negative controls, primary antibodies were omitted and 

the same staining procedure was carried out. Positive cells were detected using either 

Alexa488-, Alexa594-, Alexa633- (Invitrogen) or Dylight549- conjugated secondary 

antibodies in a Leica DM 5500 microscope (Leica Microsystems, Wetzlar Germany) and a 

TCS SP5 confocal microscope (Leica Microsystems, Wetzlar Germany). Specificity of each 

antibody was determined in mouse embryonic and adult retinal tissue (Annex 2).  

Table	
   8.	
   List	
   of	
   primary	
   antibodies	
   used	
   to	
   study	
   the	
   retinal	
   differentiation	
   of	
  
embryonic	
  stem	
  cells	
  

Antibody	
   Type	
   Source	
   Dilution	
  

Ki67	
   Rabbit	
  polyclonal	
   Abcam	
   1:200	
  (1:100	
  FACS)	
  

Mitf	
   Mouse	
  monclonal	
   Abnova	
   1:500	
  

Opsin-­‐s	
   Rabbit	
  polyclonal	
   Abcam	
   1:200	
  

Otx2	
   Rabbit	
  polyclonal	
   Millipore	
   1:500	
  

Rhodopsin	
   Mouse	
  monoclonal	
   Abcam	
   1:100	
  

Recoverin	
   Rabbit	
  polyclonal	
   Millipore	
   1:1000	
  

RAX	
   Rabbit	
  polyclonal	
   Abcam	
   1:300	
  

ZO1	
   Rabbit	
  polyclonal	
   Invitrogen	
   1:50	
  

Crx	
   Mouse	
  monoclonal	
   Novus	
  Biologicals	
   1:100	
  

RPE65	
   Mouse	
  monoclonal	
   Abcam	
   1:250	
  

Chx10	
   Sheep	
  polyclonal	
   Exalpha	
   1:1000	
  

Pax6	
   Mouse	
  monoclonal	
   Hybridoma	
  Bank	
   1:100	
  

Nrl	
   Rabbit	
  polyclonal	
   Gift	
   1:1000	
  

Hif1a	
   Rabbit	
  polyclonal	
   Santa	
  cruz	
   1:50	
  

Tuj1	
   Mouse	
  monoclonal	
   Covance	
   1:500	
  

 
 
 
Table	
   9.	
   List	
   of	
   primary	
   antibodies	
   used	
   for	
   analysis	
   of	
   pluripotency	
   and	
  
stemness.	
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Antibody	
   Type	
   Source	
   Dilution	
  

SSEA-­‐1	
   Mouse	
  monoclonal	
   Cell	
  Signaling	
   1:100	
  

OCT-­‐4	
   Rabbit	
  monoclonal	
   Cell	
  Signaling	
   1:100	
  

Nanog	
   Goat	
  monoclonal	
   R&D	
  Systems	
   1:50	
  

Sox2	
   Mouse	
  monoclonal	
   R&D	
  Systems	
   1:50	
  

PE-­‐Nanog	
   Mouse	
  monoclonal	
   BD	
  Pharmingen™	
   	
  

PerCP-­‐Cy5.5-­‐Oct3/4	
   Mouse	
  monoclonal	
   BD	
  Pharmingen™	
   	
  

Alexa	
  Fluor®	
  647-­‐Sox2	
   Mouse	
  monoclonal	
   BD	
  Pharmingen™	
   	
  

PE-­‐Mouse	
  IgG1,	
  κ	
   Mouse	
  Isotype	
  control	
   BD	
  Pharmingen™	
   	
  

PerCP-­‐Cy5.5-­‐Mouse	
  IgG1,	
  κ	
   Mouse	
  Isotype	
  control	
   BD	
  Pharmingen™	
   	
  

Alexa	
  Fluor®	
  647-­‐Mouse	
  IgG2a,	
  κ	
   Mouse	
  Isotype	
  control	
   BD	
  Pharmingen™	
   	
  

 

3.5	
  Image	
  analyses	
  	
  

The immunocytochemistry experiments were repeated at least 3 times. For Image analysis 

at least 8 microscopic fields from each sample were taken randomly using a 40X lens 

objective in a TCS SP5 confocal microscope (Leica Microsystems, Wetzlar Germany). To 

reduce human bias, a semi-automated image analysis system was used to determine the 

percentage of immunoreactive cells from digital images using the MetaMorph NX® v 

7.5.1.0 Software (Molecular Devices, Downington, PA).  First, cells and processes of 

interest were outlined to exclude adjacent cells or areas of nonspecific immunoreactivity.  

3.6	
  FACS	
  	
  

EBs were washed twice with DPBS (Gibco 14190) and enzymatically digested by 

incubation with the Embryoid Body Dissociation Kit from Miltenyi Biotech (Bergisch 

Gladbach, Germany) for 15 minutes at 37ºC. The single cell suspension obtained was 

washed in DPBS and fixed with 4% paraformaldehyde in PBS for 20 min at r.t.  Fixed cells 
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were washed twice with PBS before staining. Cells were then immunostained using the BD 

Stemflow™ Mouse Pluripotent Stem Cell Transcription Factor Analysis Kit (BD 

Biosciences) following the manufacturer´s instructions. Appropriate isotype controls 

provided with the kit were used to immunostain the negative populations. At least 10,000 

events were analysed in each experiment using FACSCalibur system (BD Biosciences). 

Results correspond to at least 6 individual runs and the number of positive cells within the 

gated population was analysed using CellQuest
TM Pro (BD Biosciences) software. RPE-1 

and D3 cells were washed twice with PBS and enzymaticaly digested by incubation with 

Trypsin for 4 minutes at 37ºC. The single cell suspension obtained was washed in PBS 

and fixed with 4% paraformaldehyde in PBS for 20 min at r.t. Fixed cells were washed 

twice with PBS before staining. Cells were then permeabilized with 1X Perm Wash Buffer 

(BD Biosciences) at r.t. for 10 min and incubated overnight with the Rabbit Polyclonal 

Hif1α primary antibody (1:50 dilution) and the corresponding IgG Isotype control in staining 

buffer containing 1% FBS in PBS. Immunostaining was completed with Goat anti rabbit 

Alexa488-conjugated secondary antibody (1:500). 10.000 events were analysed in each 

experiment (n=3) using FACS Calibur system (BD Biosciences). The number of positive 

cells within the gated population was analysed using Cell Quest™ Pro (BD Biosciences) 

software.  

3.7	
  ApoTox-­‐Glo™Triplex	
  Assay	
  	
  

This kit combines three assay chemistries to assess viability, cytotoxicity and caspase 

activation events within a single assay well. In the first part of the assay, it measures two 

protease activities simultaneously; one being a marker of cell viability and the other being a 

marker of cytotoxicity. Peptide substrate (glycylphenylalanylaminofluorocoumarin; GF-

AFC) enters intact cells where it is cleaved by the live-cell protease activity to generate a 

fluorescent signal proportional to the number of living cells. This live-cell protease 
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becomes inactive upon loss of cell membrane integrity and leakage into the surrounding 

culture medium. Peptide substrate (bis-alanylalanylphenylalanyl-rhodamine 110; bis-AAF-

R110) is used to measure dead-cell protease activity, which is released from cells that 

have lost membrane integrity. Bis-AAF-R110 is not cell-permeable, so intact, viable cells 

generate no signal from this substrate. The live- and dead-cell proteases produce different 

products, AFC and R110, which have different excitation and emission spectra, allowing 

them to be detected simultaneously. In the second part of the assay, the Caspase-Glo® 

3/7 Reagent, added in an "add-mix-measure" format, results in cell lysis, followed by 

caspase cleavage of the substrate and generation of a "glow-type" luminescent signal 

produced by luciferase. RPE-1 cells were seeded in a flat 96-well micro-plate 

(approximately 500/well) (Nunc) as triplicates. Three different types of controls, namely: 

positive, untreated, and negative controls were used throughout the study. Positive control 

had cells with culture medium exposed to 10 µM MG132 for 16 hours to induce apoptosis. 

Control cell cultures contained cells untreated with MG132. Negative control (background) 

contained only culture medium without cells. After 7 days of exposure to either normoxic or 

hypoxic conditions, 20 µl of Viability/Cytotoxicity reagent containing both GF-AFC and bis-

AAF-R110 substrates was added to each well, and briefly mixed by orbital shaking at 500 

rpm for 30 seconds and then incubated at 37°C for 30 minutes. Fluorescence was 

measured at 400Ex/505Em (Viability) and 485Ex/520Em (Cytotoxicity) by using Thermo 

Scientific Varioskan® Flash Spectral Scanning Multimode Reader. After that 100 µl of 

Caspase-Glo 3/7 reagent was added to each well, and briefly mixed by orbital shaking at 

500 rpm for 30 seconds and then incubated at room temperature for 30. Luminescence 

was measured using a Thermo Scientific Varioskan® Flash Spectral Scanning Multimode 

plate reader. Luminiscence RFUs are proportional to the amount of caspase activity 

present. Figure 3.5 provides a schematic of the mechanism of action of ApoTox-Glo™. 
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Figure 3.5. ApoTox-Glo™ Triplex Assay Schematics. The ApoTox-Glo™ Triplex Assay is a multiplexed, 
sequential addition assay that measures biomarkers associated with cell viability, cytotoxicity and apoptosis. Cell 
viability and cytotoxicity are measured first by adding two substrates that detect viable and membrane-
compromised cells (GF-AFC and bis-AAF-R110). A. GF-AFC is cell permeant and measures a protease 
associated with live cells. C.The live-cell protease becomes inactivated once it is released into the medium and 
produces only a minimal signal from dead cells. The bis-AAF-R110 measures a dead-cell protease. D. Activated 
Caspase 3 is detected in apoptotic cells. Taken and modified from www.promega.com 
 

3.	
  8	
  RPE-­‐1	
  cell	
  cultures	
  	
  

Telomerase-immortalized human retinal pigment epithelia 1 (RPE-1, ATCC CRL-4000), 

cells were cultured in DMEM-Ham’s F12 supplemented with 10% fetal bovine serum (FBS) 

and L-Glutamine (Figure 3.6). RPE-1 cells were maintained at 37° C in a humidified 5% 

CO2 environment under etiher Normoxic (20% oxygen Tension) or Hypoxic  (2% Oxygen 

tension) conditions in a thermo Fisher incubator (CO2/O2 WJ IR Model 3141, Thermo 

Electron Co, Fisher Scientific). Cell cultures were passaged every 7 days to 1:10 split ratio 

and fresh medium was exchanged every 48 hours.  
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Figure 3.6. RPE-1 cultures. Representative images of the appearance of RPE-1 cell cultures. Left image shows 
a low confluence culture and right image a high confluence culture. Images taken form ATCC website. 
http://www.lgcstandards-atcc.org/en.aspx 
 

3.	
  9	
  Statistical	
  analyses	
  	
  

Data are the mean r standard error of mean (SEM) of at least three independent 

experiments, except for the immunocytochemistry, for which a representative image from 

three assays is depicted in the figures. Comparisons between values were analysed using 

one-way analysis of variance (ANOVA); p≤ 0.05 was considered statistically significant. 

3.10	
  Preparation	
  of	
  cells	
  for	
  transplantation	
  	
  

Cells, after 20 days of in vitro differentiation were trypsinized to obtain a single cell 

suspension. Harvested cells were labeled using a 2 µM PKH26 solution (Sigma-Aldrich) 

and washed in DPBS (Gibco 14190). Stained cells were counted with a hemocytometer 

and the suspension to be transplanted was diluted to an appropriate cell density of 50,000 

cells/µl.  
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3.11	
  Transplantation	
  procedure	
  	
  

10-week old C57BL/6NCrl mice were used in this study. Animals were distributed in 2 

groups of 7 animals each, according to the culture conditions of the cells, Normoxia or 

Hypoxia. All animal procedures were accomplished following the guidelines of the local 

ethics committee of animal experimentation. Surgical procedures were performed under 

general anesthesia with 100 mg Ketamine and 5 mg diazepam per kilogram bodyweight. 

Additionally, the eye was topically anesthetized with 0.1% tetracaine and 0.4% 

oxybuprocaine. One drop of each 10% phenyleprine and 1% tropicamide were used to 

dilate the pupils. Following complete dilation, the anesthetized animal was placed in lateral 

recumbency under the SMZ-1 Nikon dissecting microscope and positioned with one hand 

holding mice. The mice fundus could be visualized with the application of a drop of 2.5% 

methylcellulose to the eye. The fundus observation served to evaluate the condition of the 

eye before injection and to compare with the postoperative condition of the retina. The 

needle with bevel up was advanced full thickness 1 mm posterior to the sclerocorneal 

limbus into the posterior chamber. At least 50% of the bevel was pushed through the 

choroid to produce a hole sufficiently large to insert the 33 gauge blunt needle (Hamilton 

Company, Reno, NV). The blunt needle tip was inserted through the choroidal puncture 

and advanced into the posterior chamber, avoiding trauma to ciliary body or lens. 

Subsequently, the needle shaft was aimed slightly nasally toward the posterior chamber 

and it was advanced toward the desired injection location in the posterior retina. A 10 µl 

syringe (Hamilton, Switzerland) with a 33-gauge needle attached to an ultra-micropump 

(World Precision Instruments, Sarasota, FL) was used to inject 1,5 µl of cell suspension 

(75,000 cells) slowly, at a rate of 0.05 µl/second, into the subretinal space (SS) (Figure 

3.7). Immediately after injection, the fundus was examined and any animals with massive 

subretinal hemorrhage or vitreous hemorrhage were removed from the study. Injected 

animals developed a retinal detachment and small amount of bleeding in the same area of 
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injection. Finally, a drop of antibiotic (0.3% ciprofloxacin) was administered on each eye 

and animals were kept on a 37ºC pad until recovery from anesthesia.  

 
Figure 3.7. Transplantation procedure. A. Photograph of the mice used for the transplantation studies. B. 
Diagram showing the anatomical site where the subretinal injection was performed for the transplantation studies.  

3.12	
  Tissue	
  preparation	
  	
  

Animals were sacrificed by cervical dislocation after 24 hours and 1 and 4 weeks of 

transplantation. Eyes were enucleated and immediately fixed overnight at 4ºC in freshly 

prepared 4% paraformaldehyde solution. Eyes were then washed in PBS and transferred 

into 30% sucrose in PBS solution for at least 12 hours before inclusion in OCT and 

cryosectioning. Retinal sections (18 µm) were mounted in SuperFrost Ultra Plus® slides 

(MENZEL-GLÄSER, Braunschweig, Germany) and stored at room temperature (RT) until 

further processing.  

3.13	
  Immunohistochemical	
  Analysis	
  	
  

Sections were blocked in PBS containing 10% goat serum and 0.1% Triton for 1 hour at 

RT and incubated with primary antibodies overnight at 4ºC. Primary antibodies used are 

listed in Table 8 and Table 9. After incubation with primary antibodies, sections were 
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washed with PBS containing 0.1% triton and incubated with secondary antibodies for 1 

hour at room temperature. After successive washing in PBS, nuclei were counterstained 

with DAPI (4’,6-diamino-2-phenylindole, dilactate; Invitrogen-Molecular Probes, Eugene, 

OR). Immunofluorescence was observed using a Leica DM 5500 microscope (Leica 

Microsystems, Wetzlar Germany) and a TCS SP5 confocal microscope (Leica 

Microsystems, Wetzlar Germany).  
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4. RESULTS	
  
	
  

	
  

	
  

	
  

“Science	
  never	
  solves	
  a	
  problem	
  without	
  creating	
  ten	
  more.”	
  

―	
  George	
  Bernard	
  Shaw	
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4.1	
  Effect	
  of	
  Hypoxia	
  on	
  spontaneous	
  differentiation	
  	
  

We wanted to assess whether hypoxic conditions could induce retinal fate of mESC. 

EBs were generated from ESC using the hanging drop method followed by culture 

in suspension under either normoxic or hypoxic conditions (Figure 3.2). Time course 

(day 0, day 5 and day 7) of spontaneous differentiation of EBs were analysed for 

expression of pluripotency markers along with other markers of retinal commitment. 

FACS analysis showed significant differences in the number of cells positive for 

pluripotency markers in hypoxic conditions when compared to the corresponding 

number under normoxia during the protocol (Figure 4.1 A).  

 

Figure 4.1. Effect of low oxygen tension during early spontaneous differentiation. FACS analysis 
showing the loss of pluripotency markers is more efficient after 7 days of spontaneous differentiation in 
low oxygen when compared to normoxia. A. Nanog. B. Oct4 and C. Sox2 
 
When the FACS analysis data in hypoxia was normalized against normoxia, data 

showed a significant decrease of Nanog+ (46±18%), Oct4+ (50±14%) and Sox2+ 

(42±17%) cells after 7 days under hypoxic conditions (Figure 4.2.A). Besides, RT-

PCR analysis demonstrated that retinal specific genes, such as Pax6 and Crx, were 
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significantly upregulated (4.9±1.1 and 4.2±0.6 fold, respectively) when EBs were 

cultured under hypoxia for 7 days compared to normoxia (Figure 4.3 B). The 

upregulation of Pax6 and Crx genes in cells cultured under hypoxia corresponded 

with the downregulation of pluripotency genes (Figure 4.3A) and the loss of 

pluripotency markers at a protein level as demonstrated by FACS analysis at this 

time point (Figure 4.1 and Figure 4.2).  

 

Figure 4.2. Low oxygen tension decrease pluripotency during early spontaneous differentiation. 
A. Decrease in number of positive cells for pluripotency markers under hypoxia when data was 
normalized against the normoxia values. * p≤0.05 was considered statistically significant. 
 
Other retinal genes such as Six3, a well characterized eye field transcription factor 

(Liu et al., 2010), Chx10, a neural retina marker (Horsford et al., 2005)and Nrl, a 

photoreceptor precursor marker (Oh et al., 2007), showed a slight but not significant 

increase under hypoxia condition (Figure 4.3B). These results have shown that 

hypoxia significantly decreases pluripotency and increases the expression of 

different retinal genes in spontaneous differentiation.  
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Figure 4.3 Effect of low oxygen tension during early spontaneous differentiation. A. RT-PCR 
analysis comparing the relative levels of expression of pluripotency marker genes after 7 days of 
spontaneous differentiation in normoxia (blue bar) and hypoxia (red bar). B. RT-PCR analysis comparing 
the relative levels of expression of retinal specific genes after 7 days of spontaneous differentiation in 
normoxia (blue bar) and hypoxia (red bar). * p≤0.05 or ** p≤0.01 was considered statistically significant. 

4.2	
  Directed	
  differentiation	
  	
  

The results observed with spontaneous differentiation led us to believe that hypoxic 

conditions could improve the differentiation of ESC towards a retinal fate, but 

obviously a more sophisticated protocol for retinal differentiation had to be applied. 

In order to demonstrate our hypothesis and corroborate whether we could obtain a 

higher yield of retinal cells, we have optimized a differentiation protocol that involves 

the culture of ESC under hypoxia (2% O2), and the use of small molecules 

previously described by different authors (Ikeda, 2005; Osakada et al., 2008). Our 

3-step approach is a novelty in differentiation protocol. We included EB step where 

EBs were generated as a hanging drops because previously published data show 

(Dang et al., 2002) that this is an efficient and scalable system which allows uniform 

distribution of culture parameters such as oxygen tension due to the homogeneous 

size of the generated EBs (Figure 4.5). Briefly, ES-cells characterized by the typical 

expression of Oct4, Nanog, Sox2 and SSEA-1 were induced to differentiate into 

neural retina cells or Chx10 positive cells and more mature phenotypes of retinal 

commitment, such as Rhodopsin in the case of rod cells, in a sequential manner 
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(Figure 4.4).  

 
Figure. 4.4. General Approach to obtain a stepwise differenatiation protocol.  Immunofluorescence 
analysis against pluripotency markers; OCT4, B. Ssea-1, C. Sox2 and D. Nanog before differentiation. E. 
FACS analysis showing levels of pluripotency markers Nanog, Oct4 and Sox2 in the undifferentiated 
cultures 
 

To induce in vitro retinal differentiation, ESC were cultured as hanging drops for 3 

days in the presence of Dkk1 and Lefty A. Hanging drops containing the EBs were 

collected and allowed to differentiate in suspension for 7 more days in progenitors 

medium, after which, EBs were plated and allowed to further differentiate for 18 

more days in adherent culture in Retinal Medium (Figure 3.3 and 4.5). From Day3 to 

Day5 FBS and Activin A were added in culture. Different growth factors such as 

DAPT, Fibroblast growth factors (FGFs), Shh, RA and taurine were added to the 

protocol of differentiation as described in Materials and methods (Figure 3.3B) to 

promote differentiation toward photoreceptors (Ikeda, 2005; Osakada et al., 2008; 

Zhao et al., 2002).  

 



 	
  
 

 

 
Figure. 4.5. Photomicrographs of the different stages of retinogesis in vitro. (Diagram of major stages of retinogenesis and the corresponding days of in vitro 
differentiation (Above). Photomicrographs of ES-D3 cell colonies, EBs, monolayer cultures deriving from cell clusters and monolayer cultures at day 22 of 
differentiation (Below). 
 



 

All results were compared to ESC differentiated under normoxic conditions (20% 

O2). During the 28 days of differentiation the expression of various transcription 

factors associated to each major stage of retinogenesis was analysed (Figure 4.6).  

 

 
Figure. 4.6. Schematic of transcription factors associated to each major stage of retinogesis.  
 

4.3	
  Stemness,	
  loss	
  of	
  pluripotency	
  and	
  eye	
  field	
  specification	
  

Before the start of differentiation, undifferentiated ESC cultures were characterized. 

All cultures regardless of passage number showed normal morphology. ESC grew 

forming colonies and expressed pluripotency markers as expected; all colonies 
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were positive for Oct4, Ssea-1, Nanog and Sox2 as determined by 

immunofluorescence (Figure 4.7 A-D) and the level of expression of these markers 

was determined by FACS each time to assure the purity and stemness of the 

culture prior to differentiation. Nanog (98.4%) expression was higher than Oct4 

(94.5%) and Sox2 (83.5%) but no levels lower than 80% were found in any passage

of ESC used (18-35 passages, Figure. 4.7 E).  

To direct mESC toward rostral fate, the EBs were treated with Dkk1, an antagonist 

of Wnt/β-catenin signaling, the nodal antagonist, Lefty-A, and Activin A in presence 

of FBS. The loss of pluripotency, as a hallmark of ESC under differentiating 

pressure, was measured by RT-PCR. ESC rapidly lost expression of the 

pluripotency genes Oct4 and Nanog and even downregulated the neural induction 

marker Sox2 on day 5 (Figure 4.8). Sox2 levels of expression were higher than the 

levels of Oct4 and Nanog at all time points analysed and its expression was 

upregulated on day 10, corresponding to differentiation efforts towards ectoderm 

(Figure 4.8). Indeed, we have observed a majority of cells expressing the anterior 

neural marker Otx2, and a greater number of Otx2 positive cells in hypoxia (Figure 

4.10B), which is consistent with a developmental in vivo study (Baumer et al., 2003) 

(Figure 4.10 A).  
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Figure. 4.7. Stemness characterization. A. Immunofluorescence analysis against pluripotency 
markers; OCT4, B. Ssea-1, C. Sox2 and D. Nanog before differentiation. E. FACS analysis showing 
levels of pluripotency markers Nanog, Oct4 and Sox2 in the undifferentiated cultures 

 
Figure 4.8. Loss of pluripotency. RT-PCR analysis showing efficient loss of pluripotency markers. * 
p≤0.05 was considered statistically significant. 
Furthermore, ESC acquired the expression of transcription factors associated with 
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eye field specification. RT-PCR analysis revealed that Six3, gene required for early 

eye field specification, as well as Pax6 and Rax expression was upregulated as 

early as on day 5 under hypoxia (Figure 4.9A, 4.9B and 4.9C respectively).  

 
Figure 4.9. Hypoxia improves eye field specification. A.B.C. The time course expression of the eye 
field transcription factors Six3, Pax6 and Rax by RT-PCR analysis. D. Immunofluorescence analysis 
showing Rax positive cells colocalize with Pax6 after 10 days of differentiation under hypoxia. *p≤ 0.05 
was considered statistically significant. 

  
Figure 4.10. Hypoxia improves early retinogenesis. A. Shematic of neural retina (purple) on 
embryonic day 14, where the differentiating cells are expressing the transcription factors Otx2 and Rax. 
B. Comparative immunofluorescence analysis showing positive cells for anterior neural specification 
marker OTx2 under hypoxia and normoxia. C. Comparative immunofluorescence analysis showing 
positive cells for the eye field transcription factor Rax under hypoxia and normoxia. D. Quantification of 
Rax positive cells derived under normoxic (blue bar) and hypoxic condition (red bar).*p≤ 0.05 was 
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considered statistically significant. 
 
Eye field cells are characterized by coexpression of Pax6 and Rax (Mathers et al., 

1997; Mathers and Jamrich, 2000) (Figure 4.9D). As a matter of fact, on day 10 of 

the differentiation protocol high expression of Rax coincided with the high 

expression of Pax6. Not only the expression of these markers was upregulated 

earlier using our protocol but the levels of expression of each individual gene at 

their peak of expression were higher under hypoxia when compared to normoxia 

(Figures 4.9B and 4.9C). Additionally, by day 16, hypoxia significantly increased the 

number of Rax+ cells (91% of total cells vs. 80% in normoxia; Figure 4.10C and 

4.10D). On day 10 the fold induction of Six3 in hypoxia was 6 times higher than in 

normoxia (8.2±2.9 against 2.1±0.91 fold change. Figure 4.9A). RT-PCR analysis on 

day 5 revealed a difference of 14 fold change of Pax6 gene expression under 

hypoxia (16.4±3.8 against 2.4±0.2; Figure 4.9B) and the expression of Rax was 

induced 4 times (6.6±1.5 against 2.2±0.6; Figure 4.9C) above the level observed in 

normoxia on day 10. Our results showed that hypoxic conditions significantly 

increased the expression of the eye field genes.  

4.4	
  Retinal	
  commitment,	
  Optic	
  vesicle	
  and	
  Optic	
  cup	
  phenotype	
  	
  

To induce in vitro differentiation, ESC were cultured in suspension as EBs for 10 

days in progenitors medium after which, EBs were plated and allowed to 

differentiate for another 18 days in adherent culture in Retinal Medium (Figure 4.5). 

The next stage of in vivo retinal specification occurs when optic vesicles from the 

paired eye fields are formed. At this stage all cells express the transcription factors 

Mitf and Pax6 and give rise to either neural retina or retinal pigment epithelium 

(Figure 4.6; (Bharti et al., 2008). 



 85 

Furthermore, the fact that Mitf positive cells destined to become neural retina derive 

from the subset of Rax positive cells (Fujimura et al., 2009; Horsford et al., 2005) 

was confirmed with coexpression of these two markers in culture (Figure 4.11). 

  

Figure 4.11 Hypoxia modulated optic vesicle phenotype towards neural retina commitment. A. 
Immunocytochemical analysis showing that all Rax positive cells were also positive for Mitf by day 16 
under hypoxia.  
 

In fact, RT-PCR analysis revealed that Mitf expression was upregulated since day 5 

coinciding with the peak of expression of Pax6 (Figgure 4.9B). During development, 

Mitf is downregulated in response to the onset of Chx10, a neural retina specific 

gene (Horsford et al., 2005). The dynamic expression of Mitf and Chx10 was 

examined over time and it was determined that neural retina phenotype was 

acquired as early as day 16 (Figure 4.12A and 4.12B). 

Figure 4.12 Hypoxia promotes the neural retina commitment. The time course of expression of the 
neural retina transcription factors, Mitf (A.) and Chx10 (B.), respectively, by RT-PCR in normoxia (blue 
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bar) and hypoxia (red bar). *p≤ 0.05 was considered statistically significant. 
 

Also, our cells at day 16 coexpressed Mitf and Rax (Figure 4.11A), revealing RPE 

commitment (Osakada et al., 2009), while the clusters (Figure 4.13A, 4.13B and 

4.13C) formed by day 16, of Chx10 positive cells maintaining expression of Pax6 

revealed their commitment to retinal fate (Figure 4.13B and 4.13C). This 

corresponded with the peak of expression of Chx10 as checked by RT-PCR (Figure 

4.12B).  

 
Figure 4.13 Hypoxia improves neural retina phenotype acquisition. A. Photomicrograph showing 
clusters formed by day 16 of differentiation. B. Immunocytochemical analysis showed Chx10+/Pax6+ 
cells deriving radially away from the clusters by day 16 of differentiation. C. Higher magnification showing 
Chx10 positive cells were also positive for Pax6. 
 

4.5	
  Photoreceptor	
  fate	
  

Prolonged culture of Chx10+ and Pax6+ cells allowed for further maturation of these 

cells towards a photoreceptor phenotype. A crucial gene for rod specification is Nrl 

(Mears et al., 2001), highly induced since day 16 under hypoxia (Figure 4.14A) 

coinciding with high expression of Crx (Figure 4.14B) as observed by RT-PCR 

analysis. 
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Figure 4.14. Hypoxia induces rod photoreceptor specific transcription factors. A. Comparative RT-
PCR analysis of Nrl gene expression during differentiation in normoxic (blue bar) and hypoxic (red bar) 
conditions. B. Comparative RT-PCR analysis of Crx gene expression over the 28 days of differentiation 
under normoxia (Blue bars) and hypoxia (red bars). *p≤ 0.05 was considered statistically significant.  
These data was confirmed by immunocytochemistry analysis for these two markers 

at the end of the protocol where a high number of cells have shown to be positive 

for Crx (Figure 4.15A and 4.15B) and Nrl (Figure 4.17A). The importance of this 

finding is because during development Nrl interacts with Crx to induce the 

expression of rod specific genes such as Rhodopsin (Swaroop et al., 2010). As it 

has been mentioned, the primitive cone and rod photoreceptor-specific transcription 

factor Crx was upregulated since day 16 as well (Figure 4.14B), and the 

immunoreactive cells against Crx antibody accounted for 75% of the total cells 

(75.1±1.9% in hypoxia vs. 64.4±2.3% in normoxia; Figure 4.15B) at the end of the 

protocol.  

 
Figure 4.15 Hypoxia promotes photoreceptor phenotype. A. Immunocytochemical analysis showing 
Crx+ cells in hypoxic culture by day 28 of differentiation. B. Quantification of the percentage of Crx+ cells 
determined by 3 independent experiments under both conditions of differentiation. *p≤ 0.05 was 
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considered statistically significant. 
 
Moreover, it seems that our differentiation protocol applying normoxia did not 

promote high yield of cone cells because from the Crx+ population, only about 8% 

(8.1 ± 5.5%) of cells were immunoreactive for the cone photoreceptor-specific 

protein Opsin-S (Figure 4.16A and 4.16B).  

 
Figure 4.16. Hypoxia improves cone differentiation A. Comparative immunofluorescence analysis 
showing positive cells for cone specific marker Opsin-S after 28 days of differentiation under normoxia or 
hypoxia. B. Quantification of the percentage of Opsin+ cells in normoxic (blue bar) and hypoxic (red bar) 
conditions. *p≤ 0.05 was considered statistically significant. 
 

On the other hand, the percentage of Opsin-S+ cells was significantly increased to 

32% of total cells under hypoxic conditions (31.8 ± 11.6%; Figure 4.16A and 4.16B). 

Consistently, differentiation of ESC in hypoxic conditions significantly increased 

their retinal commitment toward rod photoreceptors, as determined by coexpression 

of Rhodopsin and Recoverin at the end of the protocol (Figure 4.17B and 4.18A), 

when approximately 53% of total cells showed double positive staining for these 

markers (53% in hypoxia against 30% in normoxia. (52.9±1.5 against 29.4±3.5; 

Figure 4.17C).  



 89 

Figure 4.17. Hypoxia increases the yield of Rhodopsin positive cells. A. Immunocytochemical 
analysis showing Nrl+ cells in hypoxic culture by day 28 of differentiation. B. Immunocytochemical 
analysis showing the coexpression of rod photoreceptor markers Rhodopsin and Recoverin after 28 days 
in hypoxic culture conditions. C. Quantification of the percentage of Rhodopsin+ cells in normoxic (blue 
bar) and hypoxic (red bar) conditions. *p≤ 0.05 was considered statistically significant. 
 
The induction of Rhodopsin by hypoxia was confirmed by RT-PCR. The analysis 

showed significant increase in fold change of Rhodopsin since day 16 in hypoxia 

(28.5±3.6 vs. 11.1±2.9) compared to normoxia (Figure 4.18B).  

Figure 4.18. Hypoxia induces Rhodopsin expression. A. Comparative immunofluorescence analysis 
of expression of Rhodopsin during the differentiation in hypoxic and normoxic conditions. B. Comparative 
RT-PCR analysis of Rhodopsin gene expression during the differentiation in normoxic (blue bars) and 
hypoxic conditions (red bars). *p≤ 0.05 was considered statistically significant. 
 

Recoverin expression did not localize with Tuj1 indicating the presence of immature 

neurons and mature photoreceptors in our culture (Figure 4.19A). This data reveals 

that the generated photoreceptors are not immature neurons but mature retinal 

cells. 
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Figure 4.19. Inmature neurons are present in our protocol of differentiation. A. 
Immunofluorescence analysis of other cell types present after 28 days of differentiation 
Tuj1+/Recoverin– cells. 
 
 Furthermore, using hypoxic conditions, morphology typical of rods was observed in 

isolated cases, in sections of the culture where cell density allowed for the 

outgrowth of structures that suggest the formation of outer segments in vitro (Figure 

4.20A and 4.20B). 

 
Figure 4.20. Hypoxia promoted rod-like morphology. A. A representative Rhodopsin+ cell in hypoxic 
conditions. B. Bright field image showing the rod-like morphology in a representative cell in hypoxic 
cultures. C. Electron microscopy photograph of an isolated rod photoreceptors from the rabbit retina. D. 
Schematic of the anatomical features of a Rod photoreceptor, C and D are taken from (Kennedy and 
Malicki, 2009).  
 
To assess the proliferation capacity of differentiated cells, we stained the cells after 

28 days of differentiation against the operational marker, Ki67 (Scholzen and 

Gerdes, 2000). We have found that after 28 days of differentiation under hypoxic 
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conditions, there was a significant decrease in the number of proliferating cells 

(14.8±1.8%) against the amount of proliferating cells differentiated under normoxia 

over the same time (22.8±1.7, Figure 4.21A and 4.21B).  

 

Figure 4.21. Proliferation is reduced in hypoxia. A. Comparative immunofluorescence analysis of 
expression of Ki67 during the differentiation in hypoxic and normoxic conditions. B. Quantification of the 
percentage of Ki67+ cells in normoxic (blue bar) and hypoxic (red bar) conditions. *p≤ 0.05 was 
considered statistically significant. 
All cell phenotypes generated at the end of our protocol are depicted in Figure 4.22.  

 

Figure 4.22. Schematic representation of obtained retinal cells. 
 
To assess the possible mechanisms underlying the increased differentiation 

capacity of mESC in hypoxia, we observed that, a higher proliferation rate was not 

related with an increased yield of Rho+ cells. Hence, we did not observe any 

coexpression of Ki67 and Rho after 28 days of differentiation, neither under hypoxic 

or normoxic conditions (Figure 4.23A). Furthermore, this phenomena was also 

observed in other cellular models, RPE-1 cells showed a significant decrease in 

their proliferation capacity after 3 weeks of hypoxic culture, as determined by the 

percentage of Ki67 + cells in culture and compared to the number found in normoxic 
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conditions (Figure 4.23B).  

 

Figure 4.23. Poliferative cells are not Rhodopsin positive A. Comparative immunofluorescence 
analysis of expression of Rhodopsin and Ki67 positive cells during the differentiation in hypoxic and 
normoxic conditions of ESC. B. Quantification of the percentage of RPE-1 cells positive for Ki67 after 3 
weeks of culture in normoxic (blue bar) and hypoxic (red bar) conditions. *p≤ 0.05 was considered 
statistically significant. 
 

To assess the safety of low oxygen tension in our cultures we performed cytotoxicity 

and apoptosis (presented by Caspase 3/7 activity) tests and found that, after 1 

week of hypoxic culture, RPE-1 cells showed a significant decrease in cytotoxity 

and Caspase 3/7 activity compared to normoxia (Figure 4.24A and 4.24B). 

 
Figure 4.24. Hypoxia reduces cytotoxity and apoptosis. A. Cytotoxity assay showing a decrease in 
toxicity in RPE-1 cells after one week in hypoxia (red bar) when compared to normoxia (blue bar). B. 
Apoptosis assay showing a decrease in caspase 3/7 activity when RPE-1 cells were cultured for one 
week in hypoxia (red bar) compared to normoxia (blue bar). *p≤ 0.05 was considered statistically 
significant. 
 
 
To correlate hypoxia and retinal development we followed the expression of Vegfa 

and Cdkn1a. The expression of these two genes is very well-known to be induced 

under hypoxia and recently they have been directly related with retinal hypoxia 
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(Crosson et al., 2009; Ishikawa et al., 2010). We observed that hypoxia significantly 

increased the fold induction of Vegfa (6.1±1.0 in hypoxia vs. 4.6±0.7 in normoxia; 

Figure 4.25A) and Cdkn1a (11.7±1.0 in hypoxia vs. 5.5±1.1 in normoxia; Figure 

4.25B) at day 28 of differentiation, revealing possible mechanisms through which 

hypoxia promotes retinal development.  

 
 
Figure 4.25 Hypoxia induces the expression of targets of Hif signaling pathway. A. RT-PCR 
analysis showing upregulation of Vegfa gene after 5 and 28 days of differentiation in normoxia (blue bar) 
and hypoxia (red bar). B. RT-PCR analysis showing upregulation of Cdkn1a gene after 5 and 28 days of 
differentiation in normoxia (blue bar) and hypoxia (red bar).	
   *p≤ 0.05 was considered statistically 
significant. 
 
 

The exposure of cells to hypoxia leads to the activation and stabilization of hypoxia 

inducible factor Hif1α as determined by FACS analysis. The percentage of Hif1α 

cells in RPE-1 cells was higher after 3 weeks of hypoxia when compared to 

normoxia culture (69.6±4.18 vs 55.6±10.4; Figure 4.26A) and significantly higher in 

D3-mESC cells after 1 week of hypoxia in the presence of LIF (79.9±11.5 vs. 

49.1±10.7; Figure 4.26B).  
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Figure 4.26. Hypoxia stabilizes Hif1α . A. FACS analysis showing the percentage of Hif1α positive 
cells in RPE-1 cells after 3 weeks of culture under normoxic (blue bar) and hypoxic (red bar) conditions. 
Graph corresponds to the mean of 3 independent experiments. B. Percentage of Hif1a positive cells in 
D3-mESC cells after 1 week of culture in presence of LIF under normoxic (blue bar) and hypoxic (red 
bar)conditons determined by FACS analysis. Graph corresponds to the mean of 3 independent 
experiments. *	
  p≤0.05 was considered statistically significant. 

4.6	
  Subretinal	
  injection	
  	
  

To evaluate whether injected cells in suspension, generated using our protocol 

under hypoxia could survive and integrate in vivo, C57BL6/NCrl mice received 

unilateral subretinal injections of 75000 retinal cells differentiated until day 20 or 

medium alone (sham). The uninjected eye served as internal control for each 

animal. The PKH26 staining applied prior to transplantation was used to identify 

surviving retinal progenitors after 24 hours and 1 week of the injection (Figure 4.28A 

4.28C, 4.28E, 4.29A, 4.29C 4.29E and 4.30A) The location of the main graft was 

subretinal in 7 eyes with a large cluster of transplanted cells localized between the 

host photoreceptors and the RPE layer.  
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Figure 4.27 Transplanted cells were efficiently delivered into the subretinal space. A. Diagram 
showing the details of the subretinal injection used to deliver the transplanted cells. B. 
Immunohystochemical analysis showing the anatomy of the injection site after 24 hours of 
transplantation with Rcvn+ cells in green, transplanted PKH26+ cells in red and Dapi in blue. 
 

 
 

Figure 4.28 Transplanted photoreceptors derived from ESC under hypoxic conditions expressed 
Rhodopsin. A. Anatomy of the injection site and efficiency of differentiation 24 hours after 
transplantation. B. C. D and E. Higher magnification of inset in A. Coexpression of transplanted cells 
(red, PKH26), Rhodopsin+ (green) and DAPI (blue). 
 

Immunohistochemical analysis demonstrated dispersed transplanted cells positive 

for Rhodopsin (Figure 4.28A, 4.28B, 4.28E and 4.30A) and Recoverin (Figure 

4.29A, 4.29B and 4.29E) across the retina, singly or in small clusters. A large 
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number of donor cells injected in subretinal locations migrated and integrated in 

host retina.  

 

Figure 4.29 Transplanted photoreceptors derived from ESC under hypoxic conditions expressed 
Recoverin. A. The efficiency of differentiation towards photoreceptors 1 week after transplantation. B. C. 
D and E. Higher magnification of inset in A. showing transplanted cells (red, PKH26) colocalizing with 
Recoverin (Rcvn, green) and DAPI (blue).  
 
Transplanted cells immunopositive for photoreceptor marker Rhodopsin and 

Recoverin were found in outer nuclear layer (ONL) and inner nuclear layer (INL) in 

the mice (Figure 4.30A).  
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Figure 4.30 Transplanted photoreceptors migrated and integrated within the host retina. A. 
Colocalization of PKH26 and Rhodopsin in ONL 1 week after subretinal injection. 
 

A much smaller fraction of transplanted cells was Opsin-S positive revealing the 

presence of cones. 

There was no evidence of uncontrolled growth or tumor formation at any time, 

suggesting that donor cell proliferation might be regulated or balanced by cell death.  
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Figure 4.31. Integration of transplanted cells within the host retina. A. High magnification of 
immunofluorescence analysis performed in animals transplanted with retinal cells differentiated under 
hypoxia, showing integration in the outer nuclear layer (ONL) of cells positive for Rcvn and Rhodopsin. B. 
Integration of transplanted cells was confirmed when analysis for Dapi was performed and the 
transplanted cells were positive for Recvn and were localized in the ONL among the other host 
photoreceptors. SS- subretinal space. 
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5.	
  DISCUSSION	
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ESC offer an excellent in vitro tool to recapitulate mechanisms activated during early 

development. The efficient differentiation of retinal cells from ESC is a major challenge for 

the development of successful cell therapy, which can be applied in different retinal 

dystrophies such as Retinitis pigmentosa (RP) and age related macular disease (AMD). 

Although the early stages of development occur in a hypoxic environment, little is known 

about how low O2 levels modulate the pluripotency and differentiation capacity of ESC. Our 

data demonstrate that mESC can be efficiently directed to retinal progenitors and other 

mature phenotypes, such as photoreceptors, by using a combination of small molecules 

and lowering O2 tension can enhance this efficiency. Different protocols of generation of 

retinal phenotypes have been published and all of them have implied important advances 

in the field [17, 22]. Our main issue continues to be the accomplishment of a high yield of 

specific populations and the modeling of retinogenesis in vitro.  

In the first phase of our protocol we used the combination of Dkk1, Activin A and LeftyA to 

direct mESC toward rostral neural progenitors, applying an approach used in a previous 

study [33]. This strategy is widely used to generate rostral neural progenitors [49-52]. 

Indeed, we observed high percentage of Rax+ and Otx2+, rostral neural progenitors and 

markers for early eye field. These two markers together with Pax6, Six3, Six6 and Lhx2 

play an important role in the establishment of anterior neuroectodermal region which 

maintains high capacity for generation of future retinal progenitors [39, 53, 54]. Significant 

upregulation of some of these markers (Six3, Pax6 and Rax) was observed as early as by 

day 5 in culture. Large increase of the eye field markers coincided with rapid decrease of 

main pluripotency markers indicating high differentiation potential of our protocol. Our 

results have shown that lowering the O2 tension near the physiological level is a more 

effective parameter for retinal differentiation, especially for photoreceptor precursors. It 

seems that the effects of this parameter are expressed very early in differentiation 

significantly increasing the expression of Six3, Pax6 and Rax (Fig. 3E, 3F and 3G).  
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The next phase in retinal specification in vivo occurs with the formation of the optic vesicle, 

determined mainly by the expression of Mitf and Pax6 giving rise to multiple cell types of 

the functional retina. Cells coexpressing Pax6 and Chx10 give rise to neural retina only. 

Experiments using different vertebrates indicated that SHH and FGF signaling play a 

critical role in future specification of retinal cells [55-57]. Once neural retina progenitor 

phenotype has been acquired, it is necessary for further maturation of these cells. As 

shown by others, Notch signaling pathway needs to be blocked at this point to allow for an 

increase in the Crx+ cells [17]. For these reasons we supplemented the medium with the J-

secretase inhibitor DAPT from day 10. Retinoic acid and taurine were added to obtain 

mature photoreceptors [17, 31]. Hence, further retinal specification included DAPT, FGFs, 

Shh, RA and Taurine. These conditions together with low O2 tension significantly increase 

the population of cells coexpressing Pax6 and Chx10 as well as Crx+ cells compared to 

normoxia. High percentage of derived photoreceptors, reflected by coexpression of 

Rhodopsin and Recoverin for rods, and Opsin-S for cones, revealed that low O2 tension 

promoted a photoreceptor fate of mESC. With regard to efficiency, the induction of rods, 

namely the yield of Rhodopsin+ cells, was higher when compared with other protocols 

using murine ESC [17, 31] or iPS [15, 58, 59]. The results in the present study, are 

consistent with the recently published study applying hypoxic condition [60], describing an 

increased yield of Pax6 and Chx10 positive cells. Here we further define the 

characterization of generated cells achieving a higher yield of mature retinal phenotypes as 

well as in vivo study. Our results have shown not only that the population of retinal cells 

can be increased under hypoxia in a way that mimics normal retinal development, but also, 

we demonstrate for the first time that, early rostral differentiation (Otx2), early eye field 

acquisition (Six3, Rax and Pax6) and mature retinal phenotypes (Crx, Opsin-S and 

Rhodopsin) are increased in yield under hypoxia. Furthermore, hypoxic condition seems to 

improve the timing of retinogenesis, as it has been observed by RT-PCR analysis. Eye 



 
 

103 

field transcription factors are highly expressed as early as by day 5 and the important 

suppression of Mitf by upregulation of Chx10 occurred by day 16 instead of day 28 only 

when the cells differentiated under hypoxia. This allowed for a bigger population of neural 

retina progenitors earlier in the differentiation protocol that could mature into cells 

expressing photoreceptor markers, such as, Crx, Nrl and Rhodopsin, all three populations 

highly increased at the end of our protocol.  

Our study went further showing efficient in vivo evaluation of generated retinal precursors. 

Previous studies have shown that photoreceptors taken from young animals efficiently 

incorporate in adult retina when transplanted in the sub-retinal space [25, 61]. We also 

successfully grafted in vitro generated retinal cells in the adult mouse retina, which resulted 

in cell survival. Interestingly, high percentage of transplanted cells expressed rod specific 

markers, such as Rhodopsin and Recoverin, though without known possible implication of 

local environment on further differentiation. It seems that specific retinal niche was 

preferable for mature differentiation of retinal progenitors.  

This data demonstrates the viability of the cells and the robustness of our protocol. 

However, to fully validate the protocol further in vivo functional analyses have to be 

performed. Different studies on pluripotent stem cells have demonstrated improved 

differentiation when different hypoxic conditions were applied [60, 62]. The exact 

mechanism of hypoxia on retinal differentiation still remains to be elucidated. The primary 

transcriptional regulators of cellular hypoxic adaptation in mammals are hypoxia induced 

factors (HIFs). Hypoxic preconditioning was shown to stabilize HIF-1Į in the retina, further 

inducing the expression of target genes with neuroprotective properties like vascular 

endothelial growth factor (Vegfa) and erythropoietin (Epo) suggesting a link between HIF-

1D driven gene expression and neuroprotection [63, 64]. Little is known about the 

molecular effects of hypoxia on retinal differentiation. The published reports mainly 

correlate the expression of individual genes and hypoxia in different retinal functions [47]. 
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For example, hypoxia increases vascular endothelial growth factor (Vegfa) expression in 

the retina [60, 63]. The identification of this gene together with p21 (Cdkn1a) is strongly 

suggestive of their role in general retinal neuroprotection [65, 66]. During our differentiation 

protocol under hypoxic conditions both genes were significantly upregulated when 

compared to normoxic conditions. This data suggests that hypoxia, through activation of 

HIF-1D, decreasing apoptosis and cytotoxicity, has influenced retinal differentiation [67, 

68]. Although, the source of Vegfa could be RPE cells observed in retinal progenitors 

generated in hypoxic conditions [69] (data not shown), further investigation has to be 

performed to elucidate the origin of neuroprotective processes. Moreover, a significant 

decrease of proliferating cells at the end of our protocol in hypoxic conditions, suggests 

that hypoxia favors postmitotic cells, increasing therefore the number of photoreceptors 

(Figure 4.22 and Figure 4.21B). It is known that p21, increased in hypoxia (Figure 4.25B) 

not only provokes cell cycle arrest, necessary to start the differentiation process, but can 

also repress apoptosis [70] (Figure 4.24B). Therefore, we propose that hypoxia promotes 

retinal differentiation through activation of p21. Higher yield of early eye field markers in 

hypoxic condition suggests that hypoxia is preferable for EB formation and early 

differentiation. This data corroborates with earlier findings where an improved 

differentiation of human ES cells was observed in hypoxic conditions [71, 72]. We also 

observed a more compact structure of EBs in hypoxia (data not shown), which could have 

a consequence on further differentiation. For this to be confirmed, further detailed studies 

have to be performed. 
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5. CONCLUSIONS	
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The present study provides the technical framework necessary for a highly efficient 

differentiation of mESC towards photoreceptors, which is important for advances in cell 

therapy and regenerative medicine. Given the results obtained with this work, we can 

conclude the following 

 

We believe the application of a new modified protocol for differentiation of mESC reported 

here support the hypothesis that hypoxia is necessary to induce efficient differentiation of 

ESC towards a higher yield of retinal phenotypes. The timing of retinogenesis is also 

improved in hypoxic conditions, by decreasing the time to acquire an eye field phenotype 

and achieve mature population of photoreceptors in vitro. Purification of these specific 

retinal cells can allow us to define the conditions to expand a homogeneous population 

that will be further differentiated into fully mature photoreceptor cells. Further 

experimentation is required to elucidate the precise mechanism or mechanisms by which 

hypoxia exerts its effect on retinal differentiation. In summary, the novel findings of the 

work reported here are: 1. The most efficient protocol so far, for the differentiation of any 

kind of stem cells (mouse, human or induced-pluripotent cells), towards rod photoreceptor 

cells (53±1.5%). 2. The modeling of retinogenesis has been accomplished for the first time 

with mESC only under hypoxic conditions. 3. Photoreceptor precursors from mESC 

differentiate towards Rhodopsin/Recoverin double positive cells after transplantation in the 

retina, and a complete lack of tumor formation, demonstrates the importance of an efficient 

differentiation process and the loss of pluripotency of the transplanted cells.  
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7.	
  FUTURE	
  PERSPECTIVES	
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  Claude	
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model disease in vitro using  our model 
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ANNEX	
  9.1	
  GLOSSARY	
  



Adult stem cells (Somatic stem cells) 
Stem cells found in different tissues of the developed, adult organism that 
remain in an undifferentiated state with a limited capacity for both self-
renewal and differentiation. Such cells vary in their differentiation capacity, 
but it is usually limited to cell types in the organ of origin. This is an active 
area of investigation.	
  
Allogeneic transplantation 
Cell, tissue or organ transplants from one member of a species to a 
genetically different member of the same species. 

Autologous transplantation 
Cell, tissue or organ transplants from one individual back to the same 
individual. Such transplants do not induce an immune response and are not 
rejected. 

Blastocyst 
A very early embryo consisting of approximately 150 cells produce by cell 
division after fertilization. The blastocyst is a spherical cell mass produced 
by cleavage of the zygote. It contains a fluid-filled cavity, a cluster of cells 
called the inner cell mass and an outer layer of cells called the trophoblast, 
which forms the placenta). 

Bone marrow stromal cell 
Also known as mesenchymal stem cells, bone marrow stromal cells are a 
mixed population of cells derived from the non-blood forming fraction of 
bone marrow. Bone marrow stromal cells are capable of growth and 
differentiation into a number of different cell types including bone, cartilage 
and fat. 

Cell culture 
Growth of cells in vitro in an artificial medium for research or medical 
treatment. 

Cell division 
Method by which a single cell divides to create two cells. There are two 
main types of cell division depending on what happens to the 
chromosomes: mitosis and meiosis. 

Cell line 
Cells that can be maintained and grown in culture and display an immortal 
or indefinite life span. 

Cell type 
A specific subset of cells within the body, defined by their appearance, 
location and function. 
i) adipocyte: the functional cell type of fat, or adipose tissue, that is found 
throughout the body, particularly under the skin. Adipocytes store and 
synthesize fat for energy, thermal regulation and cushioning against 
mechanical shock. 



 
ii) cardiomyocytes: the functional muscle cell type of the heart that allows 
it to beat continuously and rhythmically. 
 
iii) chondrocyte: the functional cell type that makes cartilage for joints, ear 
canals, trachea, epiglottis, larynx, the discs between vertebrae and the 
ends of ribs. 
 
iv) fibroblast: a connective or support cell found within most tissues of the 
body. Fibroblasts provide an instructive support scaffold to help the 
functional cell types of a specific organ perform correctly. 
 
v) hepatocyte: the functional cell type of the liver that makes enzymes for 
detoxifying metabolic waste, destroying red blood cells and reclaiming their 
constituents, and the synthesis of proteins for the blood plasma. 
 
vi) hematopoietic cell: the functional cell type that makes blood. 
Hematopoietic cells are found within the bone marrow of adults. In the 
fetus, hematopoietic cells are found within the liver, spleen, bone marrow 
and support tissues surrounding the fetus in the womb. 
 
vii) myocyte: the functional cell type of muscles. 
 
viii) neuron: the functional cell type of the brain that is specialized in 
conducting impulses. 
 
ix) osteoblast: the functional cell type responsible for making bone. 
 
x) islet cell: the functional cell of the pancreas that is responsible for 
secreting insulin, glucogon, gastrin and somatostatin. Together, these 
molecules regulate a number of processes including carbohydrate and fat 
metabolism, blood glucose levels and acid secretions into the stomach. 
 

Cell-based therapies 
Treatment in which stem cells are induced to differentiate into the specific 
cell type required to repair damaged or destroyed cells or tissues. 

Chromosome 
A structure consisting of DNA and regulatory proteins found in the nucleus 
of the cell. The DNA in the nucleus is usually divided up among several 
chromosomes.The number of chromosomes in the nucleus varies 
depending on the species of the organism. Humans have 46 chromosomes. 

Cloning 
In biology, the process in which an organism produces one or more 
genetically identical copies of itself by asexual means.  
The term also refers to creating multiple copies of a product such as a 
fragment of DNA. 



1. In reference to DNA: To clone a gene, one finds the region where 
the gene resides on the DNA and copies that section of the DNA 
using laboratory techniques.  

2. In reference to cells grown in a tissue culture dish: a clone is a line 
of cells that is genetically identical to the originating cell. This 
cloned line is produced by cell division (mitosis) of the original cell.  

3. In reference to organisms: Many natural clones are produced by 
plants and (mostly invertebrate) animals. The term clone may also 
be used to refer to an animal produced by somatic cell nuclear 
transfer (SCNT) or parthenogenesis.  

Culture medium 
The liquid that covers cells in a culture dish and contains nutrients to 
nourish and support the cells. Culture medium may also include growth 
factors added to produce desired changes in the cells. 

Differentiation 
The process whereby an unspecialized embryonic cell acquires the features 
of a specialized cell such as a heart, liver, or muscle cell. Differentiation is 
controlled by the interaction of a cell's genes with the physical and chemical 
conditions outside the cell, usually through signaling pathways involving 
proteins embedded in the cell surface. 

Directed differentiation 
The manipulation of stem cell culture conditions to induce differentiation 
into a particular cell type. 

Ectoderm 
The outermost of three germ layers of the early embryo that gives rise in 
later development to the skin, cells of the amnion and chorion, nervous 
system, enamel of the teeth, lens of the eye and neural crest. 

Embryo 
The product of a fertilized egg, from the zygote until the end of the eighth 
week of gestation, when it is called a fetus. 

Embryoid bodies 
Spheroid colonies seen in culture produced by the growth of embryonic 
stem cells in suspension. Embryoid bodies are of mixed cell types, and the 
distribution and timing of the appearance of specific cell types corresponds 
to that observed within the embryo. 

Embryonic germline cells 
Embryonic germline cells, also called EG cells, are pluripotent stem cells 
derived from the primitive germline cells (those cells that give rise to eggs 
and sperm). Their properties are similar to those of embryonic stem cells. 

Embryonic stem cell 
Also called ES cells, embryonic stem cells are cells derived from the inner 
cell mass of developing blastocysts. An ES cell is self-renewing (can 
replicate itself), pluripotent (can form all cell types found in the body) and 
theoretically is immortal. 



Endoderm 
The inner of three germ layers of the early embryo that gives rise in later 
development to tissues such as the lungs, the intestine, the liver and the 
pancreas. 

Epigenetic 
Having to do with the process by which regulatory proteins can turn genes 
on or off in a way that can be passed on during cell division. 

Fetus 
The stage in development from the end of the embryonic stage, 7-8 weeks 
after fertilization, to developed organism that ends at birth. 

Gamete 
An egg (in the female) or sperm (in the male) cell. 

Gastrulation 
The process in which cells proliferate and migrate within the embryo to 
transform the inner cell mass of the blastocyst stage into an embryo 
containing all three primary germ layers. 

Gene 
A functional unit of heredity that is a segment of DNA found on 
chromosomes in the nucleus of a cell. Genes direct the formation of an 
enzyme or other protein. 

Germ layers 
The three germ layers are the endoderm, mesoderm and ectoderm and are 
the three precursory tissue layers of the early, primitive embryo (which form 
at approximately two weeks in the human) that give rise to all tissues of the 
body. 

Heterologous 
Not homologous or uniform. In the context of cells, heterologous is a mixed 
or divergent cell population or of a divergent origin. 

Histocompatible 
A tissue or organ from a donor (the person giving the organ or tissue) that 
will not be rejected by the recipient (the patient in whom the tissue or organ 
is transplanted). Rejection is caused because the immune system of the 
recipient sees the transplanted organ or tissue as foreign and tries to 
destroy it. Tissues from most people are not histocompatible with other 
people. In siblings, the probability of histocompatibility is higher, while 
identical twins are almost always histocompatible. 

Homologous 
Similar or uniform, often used in the context of genes and DNA sequences. 
In the context of stem cells, the term homologous recombination is a 
technique used to disable a gene in embryonic stem cells. 

Homologous recombination 



A technique used to inactivate a gene and determine its function in a living 
animal. The process of homologous recombination is more efficient in 
embryonic stem cells than in other cell types. It is achieved by introducing a 
stretch of DNA that is similar or identical (homologous) to part of a gene 
and to some of the DNA surrounding the gene, but different (not 
homologous) to a specific section of the gene. The DNA is then introduced 
into the stem cells and the stretch of homologous DNA will recognize the 
similar sequences of the gene within the cell, and replace it. But the cell is 
then left with a piece of DNA in the gene that has the wrong sequence and 
this interrupts the function of the gene. The gene is then said to be knocked 
out. From these embryonic stem cells, an entire mouse can be made by 
injecting the altered stem cells into a blastocyst, and implanting the 
blastocyst into a female mouse. This is one way to make genetically 
manipulated mice and other animals with altered gene function. These 
experiments are crucial to understand how specific genes work and interact 
in living animals. 

Human embryonic stem cell 
A stem cell that is derived from the inner cell mass of a blastocyst and can 
differentiate into several tissue types in a dish. They are similar to 
embryonic stem cells from the mouse; however, in the mouse, it is possible 
to inject those cells into a blastocyst, to make a new mouse, while this is 
not, and should not, be possible in humans for ethical reasons. Human 
embryonic stem cells are harder to grow than mouse embryonic stem cells. 

Induced pluripotent stem cell (iPSC) 
A type of pluripotent stem cell, similar to an embryonic stem cell, formed by 
the introduction of certain embryonic genes into a somatic cell. 

Inner cell mass 
A small group of cells attached to the wall of the blastocyst (the embryo at a 
very early stage of development that looks like a hollow ball). Embryonic 
stem cells are made by isolating and culturing the cells that make up the 
inner cell mass. In development. it is the inner cell mass that will eventually 
give rise to all the organs and tissues of the future embryo and fetus, but do 
not give rise to the extra-embryonic tissues, such as the placenta.conn 

In vitro 
Latin for "in glass"; in a laboratory dish or test tube; an artificial 
environment. 

In vitro fertilization 
A procedure where an egg cell (the oocyte) and sperm cells are brought 
together in a dish (i.e. in vitro), so that a sperm cell can fertilize the egg. 
The resulting fertilized egg, called a zygote, will start dividing and after a 
several divisions, forms the embryo that can be implanted into the womb of 
a woman and give rise to pregnancy. 

Mesemchymal stem cell 
Also known as bone marrow stromal cells, mesenchymal stem cells are 
rare cells, mainly found in the bone marrow, that can give rise to a large 



number of tissue types such as bone, cartilage (the lining of joints), fat 
tissue, and connective tissue (tissue that is in between organs and 
structures in the body). 

Mesoderm 
The middle of three germ layers that gives rise later in development to such 
tissues as muscle, bone, connective tissue, kidneys and blood. 

Microenvironment 
The molecules and compounds such as nutrients and growth factors in the 
fluid surrounding a cell in an organism or in the laboratory, which play an 
important role in determining the characteristics of the cell. 

Mitosis 
The type of cell division that allows a population of cells to increase its 
numbers or to maintain its numbers. The number of chromosomes remains 
the same in this type of cell division. 

Morphology 
Study of the shape and visual appearance of cells, tissues and organs. 

Multipotent stem cells 
Stem cells whose progeny are of multiple differentiated cell types, but all 
within a particular tissue, organ, or physiological system. For example, 
blood-forming (hematopoietic) stem cells are single multipotent cells that 
can produce all cell types that are normal components of the blood. 

Neural stem cell 
A type of stem cell that resides in the brain, which can make new nerve 
cells (called neurons) and other cells that support nerve cells (called glia). 
In the adult, neural stem cells can be found in very specific and very small 
areas of the brain where replacement of nerve cells is seen. 

Neurons 
Nerve cells, the principal functional units of the nervous system. A neuron 
consists of a cell body and its processes—an axon and one or more 
dendrites. Neurons transmit information to other neurons or cells by 
releasing neurotransmitters at synapses. 

Nuclear transfer 
A technique in which an egg has its original nucleus removed and 
exchanged for the nucleus of a donor cell. The egg now has the same 
nuclear DNA, or genetic material, as the donor cell. Nuclear transfer is also 
referred to as somatic cell nuclear transfer (SCNT), as the donor cell is 
usually a somatic cell (that is, any cell of the body except sperm and egg 
cells). 

Nucleus 
A part of the cell, situated more or less in the middle of the cell, that is 
surrounded by a specialized membrane and contains the DNA of the cell. 
This DNA is packaged into structures called chromosomes, which is the 
genetic, inherited material of cells. 



Oligopotent progenitor cells 
Progenitor cells that can produce more than one type of mature cell. An 
example is the myeloid progenitor cell which can give rise to mature blood 
cells, including blood granulocytes, monocytes, red blood cells, platelets, 
basophiles, eosinophiles and dendritic cells, but not T lymphocytes, B 
lymphocytes, or natural killer cells. 

Parthenogenesis 
A form of reproduction where an egg develops without the fusion of sperm 
with the egg cell. Parthenogenesis occurs commonly among insects and 
other arthropods. Artificially inducing parthenogenesis with human eggs 
may be a means to isolate stem cells from an embryo, without fertilization. 

Passage 
In cell culture, the process in which cells are disassociated, washed, and 
seeded into new culture vessels after a round of cell growth and 
proliferation. The number of passages a line of cultured cells has gone 
through is an indication of its age and expected stability. 

Plasticity 
A phenomenon used to describe a cell that is capable of becoming a 
specialized cell type of different tissue. For example, when the same stem 
cell can make both new blood cells and new muscle cells. 

Phenotype 
The description of the characteristics of a cell, a tissue or an animal; as 
black and white fur of a mouse are two phenotypes that can be found. The 
phenotype is determined by the genes (or the genotype) and by the 
environment. For example, short stature is a phenotype that can be 
genetically determined (and therefore inherited from the parents), but can 
also be caused by malnourishment during childhood (and therefore be 
caused by the environment). 

Pluripotent 
The state of a single cell that is capable of differentiating into all tissues of 
an organism, but not alone capable of sustaining full organismal 
development. 
Scientists demonstrate pluripotency by providing evidence of stable 
developmental potential, even after prolonged culture, to form derivatives 
of all three embryonic germ layers from the progeny of a single cell and to 
generate a teratoma after injection into an immunosuppressed mouse. 

Pluripotent stem cells 
Stem cells that can become all the cell types that are found in an implanted 
embryo, fetus, or developed organism, but not embryonic components of 
the trophoblast and placenta (these are usually called extra-embryonic). 

Post-implantation embryo 
Implanted embryos in the early stages of development until the 
establishment of the body plan of a developed organism with identifiable 
tissues and organs. 



Pre-implantation embryos 
Fertilized eggs (zygotes) and all of the developmental stages up to, but not 
beyond, the blastocyst stage. 

Progenitor cell 
A progenitor cell, often confused with stem cell, is an early descendant of a 
stem cell that can only differentiate, but it cannot renew itself anymore. In 
contrast, a stem cell can renew itself (make more stem cells by cell division) 
or it can differentiate (divide and with each cell division evolve more and 
more into different types of cells). A progenitor cell is often more limited in 
the kinds of cells it can become than a stem cell. In scientific terms, it is 
said that progenitor cells are more differentiated than stem cells. 

Proliferation 
Expansion of the number of cells by the continuous division of single cells 
into two identical daughter cells. 

Regenerative medicine 
A field of medicine devoted to treatments in which stem cells are induced to 
differentiate into the specific cell type required to repair damaged or 
destroyed cell populations or tissues by aging or disease. 

Reproductive cloning 
The transfer into the uterus of an embryo derived by nuclear transfer with 
the intent to establish a pregnancy. Off-spring would be genetically identical 
to the donor of the transferred nucleus. A range of animals have been 
generated by reproductive cloning. The first mammal to be created by 
reproductive cloning was Dolly the sheep, born at the Roslin Institute in 
Scotland in 1996. 

Signals 
Internal and external factors that control changes in cell structure and 
function. They can be chemical or physical in nature. 

Somatic cells 
All the cells within the developing or developed organism with the exception 
of germline (egg and sperm) cells. 

Somatic cell nuclear transfer (SCNT) 
A technique that combines an enucleated egg and the nucleus of a somatic 
cell to make an embryo. SCNT can be used for therapeutic or reproductive 
purposes, but the initial stage that combines an enucleated egg and a 
somatic cell nucleus is the same.  

Stem cells 
Cells that have both the capacity to self-renew (make more stem cells by 
cell division) as well as to differentiate into mature, specialized cells. 

Subculturing 
Transferring cultured cells, with or without dilution, from one culture vessel 
to another. 



Surface markers 
Proteins on the outside surface of a cell that are unique to certain cell types 
and that can be visualized using antibodies or other detection methods. 

Telomere 
The end of a chromosome, associated with a characteristic DNA sequence 
that is replicated in a special way. A telomere counteracts the tendency of 
the chromosome to shorten with each round of replication. 

Teratoma 
A multi-layered benign tumor that grows from pluripotent cells injected into 
mice with a dysfunctional immune system. Scientists test whether they have 
established a human embryonic stem cell (hESC) line by injecting putative 
stem cells into such mice and verifying that the resulting teratomas contain 
cells derived from all three embryonic germ layers. 

Therapeutic cloning 
The generation of embryonic stem cells from an embryo derived by nuclear 
transfer for therapeutic purposes. The resultant cell line would be 
genetically identical to the donor of the transferred nucleus. In humans, the 
therapeutic potential includes research using patient- or disease-specific 
human embryonic stem cells to study the basis of disease or advance 
towards tissue replacement. 

Totipotent stem cells 
Stem cells that can give rise to all cell types that are found in an embryo, 
fetus, or developed organism, including the embryonic components of the 
trophoblast and placenta required to support development and birth. The 
zygote and the cells at the very early stages following fertilization (i.e., the 
2-cell stage) are considered totipotent. 

Transdifferentiation 
The ability of a particular cell of one tissue, organ or system, including stem 
or progenitor cells, to differentiate into a cell type characteristic of another 
tissue, organ, or system. 

Trophoblast 
The tissue of the developing embryo responsible for implantation and 
formation of the placenta. In contrast to embryonic stem cells, the 
trophoblast does not come from the inner cell mass, but from cells 
surrounding it. 

Unipotent stem cells 
Stem cells that self-renew as well as give rise to a single mature cell type; 
e.g., spermatogenic stem cells. 

Zygote 
The cell that results from the union of sperm and egg during fertilization. 
Cell division begins after the zygote forms. 
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ABSTRACT
Retinitis pigmentosa (RP), a genetically heterogeneous 
group of diseases together with age-related macular 
degeneration (AMD), are the leading causes of 
permanent blindness and are characterized by the 
progressive dysfunction and death of the light sensing 
photoreceptors of the retina. Due to the limited 
regeneration capacity of the mammalian retina the 
scientific community has invested significantly in 
trying to obtain retinal progenitor cells from 
embryonic stem cells (ESC). These represent an 
unlimited source of retinal cells, but it has not yet been 
possible to achieve specific populations, such as 
photoreceptors, efficiently enough to allow them to be 
used safely in the future as cell therapy of RP or AMD. 
In this study we generated a high yield of 
photoreceptors from directed differentiation of mouse 
ESC (mESC) by recapitulating crucial phases of retinal 

development. We present a new protocol of 
differentiation, involving hypoxia and taking into 
account extrinsic and intrinsic cues. These include 
niche-specific conditions as well as the manipulation of 
the signaling pathways involved in retinal development. 
Our results show that hypoxia promotes and improves 
the differentiation of mESC towards photoreceptors. 
Different populations of retinal cells are increased in 
number under the hypoxic conditions applied, such as 
Crx positive cells, S-Opsin positive cells and double 
positive cells for Rhodopsin and Recoverin, as shown 
by immunofluorescence analysis. For the first time this 
manuscript reports the high efficiency of 
differentiation in vivo and the expression of mature rod 
photoreceptor markers in a large number of 
differentiated cells, transplanted in the sub-retinal 
space of wild type mice. 

INTRODUCTION

Stem cell therapy is a potential treatment for 
retinal dystrophies. Retinitis pigmentosa (RP) 

and age-related macular degeneration (AMD), 
the leading causes of permanent blindness in 
humans are characterized by the progressive 
dysfunction and death of photoreceptor cells of 
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the retina. For such diseases, the replenishment 
of functional photoreceptor precursors may be a 
good strategy for retinal regeneration, as gene 
therapy or growth factor supplement cannot 
regenerate dying photoreceptor cells. Retinal 
development is a multi-step process involving 
cell cycle exit, migration, and changes of cell 
morphology [1]. These changes result from a 
reciprocal relationship between tissue-tissue 
interaction and cell intrinsic factors [2].
Additionally, accumulating evidence suggests 
that other components of the niche, such as 
oxygen tension, play an important role in cell 
fate determination during the development of 
many tissues, including the nervous system and 
the retina [3, 4]. 

Mouse embryonic stem cells (mESC) allow us to 
recapitulate retinal development in vitro. These 
cells are derived from the early embryo and are 
characterized by their two unique features of 
pluripotency and self-renewal [5]. In particular, 
during implantation and fetal development, stem 
cells live at oxygen tensions between 2% to 8% 
[6].

Early embryonic formation during mammalian 
development occurs in a precise environment, 
where the O2 tension plays a critical role [7]. In 
comparison to the atmospheric oxygen tension 
(20%) the uterus environment is hypoxic. 
Mammals, including rabbits (8.7% oxygen 
tension) and monkeys (1.5% oxygen tension [8]) 
as well as humans develop embryos under low 
oxygen tension. Up until the second trimester in 
humans this ranges from 0-3% [9, 10]. The 
retina is not an exception and recent studies have 
shown the important role that hypoxia may play 
in neuroprotection and development of the 
human retina [11]. This relative hypoxia or 
tissular normoxia is relatively low compared 
with traditional in vitro culture conditions (20% 
O2 [12]). Once, the pluripotency agents such as 
Leukemia inhibitory factor (LIF) is removed, 
ESC spontaneously differentiate following a 
reproducible temporal pattern of development, 
that in many ways recapitulates early 
embryogenesis [13]. Due to these special 

characteristics, ESC are considered an unlimited 
source for cell replacement therapies. The 
formation of embryoid bodies (EBs), which are 
three-dimensional aggregates of ESC, is the 
initial step in ESC differentiation. Therefore, EB 
culture has been widely utilized as a trigger for 
the in vitro differentiation of ESC. Numerous 
groups have recently demonstrated that ESC can 
be converted into cells that resemble retinal 
progenitors [14-16], photoreceptors [17] or RPE 
[18, 19]. Furthermore, Meyer and colleagues 
have very elegantly mimicked the early retinal 
development in a stepwise fashion typical of 
normal retinogenesis [20] and high yield of cells 
differentiated towards photoreceptors were 
achieved by Mellough and colleagues [21]. 
Others went further attempting to obtain 3D 
structures of early optic cup using scaffolds [22, 
23]. However, evidence of fully characterized 
high yield populations of photoreceptors or 
mature RPE cells has not yet been accomplished. 
The main drawback of the differentiation 
methods available is the very low efficiency 
along with the lack of reproducibility. Most of 
the protocols published in recent years have been 
geared towards the induction of expression of 
retina-specific transcription factors, but very few 
publications have included information 
regarding in vivo integration of differentiated 
cells into the mouse retina, suggesting cell 
survival, migration and functionality of the 
grafted cells [24, 25]. In this study, we have 
optimized and fully characterized an original 
protocol of differentiation that allows us to 
obtain photoreceptors at a high efficiency in a 
reproducible way. Our approach involves the use 
of small molecules, growth factors and 
morphogenic drugs in specific growth medium 
to differentiate mESC using hypoxic conditions. 
Our work is based on the hypothesis that 
hypoxia influences stem cell characteristics in
vivo, showing that lower oxygen tensions in vitro
could mimic the microenvironment and improve 
the modeling of retinogenesis in vitro. To 
demonstrate the efficiency of our protocol in
vivo we transplanted our cells after 20 days of 
differentiation in the subretinal space of wild 
type mice and found that they were able to 
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complete differentiation in vivo. More than 90% 
of the transplanted cells expressed mature rod 
specific markers such as Recoverin (Recvn) or 
Rhodopsin. Furthermore, no tumoral growth was 
observed in any of the animals transplanted, 
corresponding to the absence of proliferative 
cells in the grafted population due to a highly 
efficient differentiation process. 

MATERIALS AND METHODS

Methods used to develop this work have been 
described elsewhere [26-28]. See supporting 
information for a detailed media description 
(Supplementary Table 1) and supplementary 
methods. 

Maintenance of mESC pluripotent cultures. All
experiments conducted in this study were carried 
out using ES-D3 cells (ATCC CRL 1934 [29]) 
passages 18-35. ESC were maintained modifying 
already published protocols [30, 31] and were 
incubated at 37ºC under 20% Oxygen tension. 
Cultures were passaged every 4-7 days and 
grown at low confluence at a 1:1000 split ratio. 
Fresh medium was exchanged every 48 hours. 
Appropriate Master and Working Cell Banks 
were generated to allow all the experiments to be 
accomplished using early passages. 

ES cell differentiation 
One week prior to starting the differentiation 
protocol cells were incubated at 37ºC in 5% CO2

under either Normoxic (20% Oxygen tension) or 
Hypoxic (2% Oxygen tension) conditions in a 
Thermo Fisher incubator (CO2/O2 WJ IR Model 
3141, Thermo Electron Corporation, Fisher 
Scientific). Both conditions were maintained 
during the whole time of differentiation. Oxygen 
tension control was monitored daily. 

A. Spontaneous Differentiation: Model of 
Embryoid Bodies (EB) 
EBs were generated following an optimized 
protocol of the hanging drop method described 
by Wobus and colleagues [32]. mESC were 
dissociated using 0.05% Trypsin for 4 min at 
37ºC. Trypsin was washed away adding EBs 

medium. The cell suspension generated was spun 
down by centrifugation (Beckman coulter) and 
pelleted cells were resuspended in ES medium at 
the desired concentration (1000 cells per 30 µl). 
Hanging drops of 30 µl were plated onto the lid 
of a 150 mm2 ultralow attachment plate (Soria 
Greiner) using a multichannel pipette 
(Eppendorf). ESC were allowed to aggregate in 
hanging drops for 3-4 days before transfer to a 
suspension culture. After 3 days identical 
spherical EBs were formed and each drop was 
collected individually with a 100 µl pipette and 
deposited into a 10-cm ultra-low-attachment dish 
(Soria Greiner) containing 10 ml of EB medium 
to a final concentration of 100 EBs per dish. The 
EBs were cultured for 5 and 7 days and the 
medium was changed every 2-3 days. 

B. Directed Differentiation of mESC Towards 
Retinal Progenitors and Retinal Mature 
Phenotypes
Retinal differentiation of mESC was 
accomplished using an optimized protocol 
encompassing growth factors described in 
previously published protocols [15, 17, 33] (all 
R&D Systems, unless otherwise specified) 
combined with the manipulation of the 
microenvironment. EBs generated from mESC 
were induced to differentiate in Progenitors 
medium supplemented with 100 ng/ml 
Dickkopf-related protein 1 (Dkk1) and 500 
ng/ml Lefty-A for 5 days at 37 °C with 5% CO2

under Normoxic (20%) or Hypoxic (2%) 
conditions. Media was changed 72 hours later 
and fresh aliquots of the growth factors were 
added along with 5% fetal bovine serum (FBS) 
and 100 ng/ml Activin-A. On day 5, media was 
changed and EBs were cultured for 5 more days 
in Progenitors media without the addition of any 
growth factor. Fresh Progenitors medium was 
changed every 48 hours. On day 10, EBs were 
plated in 6-well plates or coverslips coated with 
human recombinant 30 µg/cm2 Laminin (Sigma) 
and 150 µg/cm2 Poly-L-Ornithine (Sigma) and 
cultured in Retinal medium supplemented with 
10 M N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-
2-phenylglycine-1,1-dimethylethyl ester (DAPT; 
Calbiochem) at 37 °C with 5% CO2 for 48 hours. 
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Ideal cell density was established in 150 EBs per 
9.6 cm2. To allow better attachment of the EBs, 
10% FBS was added to the medium for 48 hours. 
Retinal medium was exchanged every 2 days. 
On day 16 and until day 24, Retinal medium was 
supplemented with 10 M DAPT, 50 ng/ml 
acidic fibroblast growth factor (aFGF), 10 ng/ml 
basic fibroblast growth factor (bFGF, Millipore), 
3 nM Sonic hedgehog homolog (Shh), 0.5 µM 
retinoic acid (RA; Sigma) and 100 M Taurine 
(Sigma). From day 24 to day 28 Retinal medium 
was supplemented with 10 M DAPT, 3 nM 
Shh, 0.5 nM RA and 100 M Taurine. Samples 
were collected on day 0, day 5, day 10, day 16, 
and day 28 for molecular biology analysis and 
immunocytochemistry. 

Methods of RNA isolation and quantitative RT-
PCR, immunocytochemistry, apoptosis and 
cytotoxicity assays and FACS are described in 
Supplementary methods. 

Statistical analyses 
Data are the mean  standard error of mean 
(SEM) of at least three independent experiments, 
except for the immunocytochemistry, for which 
a representative image from three assays is 
depicted in the figures. Comparisons between 
values were analyzed using one-way analysis of 
variance (ANOVA); p  0.05 was considered 
statistically significant. 

Preparation of cells for transplantation 
Cells, after 20 days of in vitro differentiation 
were trypsinized to obtain a single cell 
suspension. Harvested cells were labeled using a 
2 µM PKH26 solution (Sigma-Aldrich) and 
washed in DPBS (Gibco 14190). Stained cells 
were counted with a hemocytometer and the 
suspension to be transplanted was diluted to an 
appropriate cell density of 50,000 cells/µl. 

Transplantation procedure 
10-week old C57BL/6NCrl mice were used in 
this study. Animals were distributed in 2 groups 
of 7 animals each, according to the culture 
conditions of the cells, Normoxia or Hypoxia. 
All animal procedures were accomplished 

following the guidelines of the local ethics 
committee of animal experimentation. Surgical 
procedures were performed under general 
anesthesia with 100 mg Ketamine and 5 mg 
diazepam per kilogram bodyweight. 
Additionally, the eye was topically anesthetized 
with 0.1% tetracaine and 0.4% oxybuprocaine. 
One drop of each 10% phenyleprine and 1% 
tropicamide were used to dilate the pupils. 
Following complete dilation, the anesthetized 
animal was placed in lateral recumbency under 
the SMZ-1 Nikon dissecting microscope and 
positioned with one hand holding mice. The 
mice fundus could be visualized with the 
application of a drop of 2.5% methylcellulose to 
the eye. The fundus observation served to 
evaluate the condition of the eye before injection 
and to compare with the postoperative condition 
of the retina. The needle with bevel up was 
advanced full thickness 1 mm posterior to the 
sclerocorneal limbus into the posterior chamber. 
At least 50% of the bevel was pushed through 
the choroid to produce a hole sufficiently large 
to insert the 33 gauge blunt needle (Hamilton 
Company, Reno, NV). The blunt needle tip was 
inserted through the choroidal puncture and 
advanced into the posterior chamber, avoiding 
trauma to ciliary body or lens. Subsequently, the 
needle shaft was aimed slightly nasally toward 
the posterior chamber and it was advanced 
toward the desired injection location in the 
posterior retina. A 10 µl syringe (Hamilton, 
Switzerland) with a 33-gauge needle attached to 
an ultra-micropump (World Precision 
Instruments, Sarasota, FL) was used to inject 1,5 
µl of cell suspension (75,000 cells) slowly, at a 
rate of 0.05 µl/second, into the subretinal space 
(SS). Immediately after injection, the fundus was 
examined and any animals with massive 
subretinal hemorrhage or vitreous hemorrhage 
were removed from the study. Injected animals 
developed a retinal detachment and small 
amount of bleeding in the same area of injection. 
Finally, a drop of antibiotic (0.3% ciprofloxacin) 
was administered on each eye and animals were 
kept on a 37ºC pad until recovery from 
anesthesia. 
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Tissue preparation 
Animals were sacrificed by cervical dislocation 
after 24 hours and 1 and 4 weeks of 
transplantation. Eyes were enucleated and 
immediately fixed overnight at 4ºC in freshly 
prepared 4% paraformaldehyde solution. Eyes 
were then washed in PBS and transferred into 
30% sucrose in PBS solution for at least 12 
hours before inclusion in OCT and 
cryosectioning. Retinal sections (18 µm) were 
mounted in SuperFrost Ultra Plus® slides 
(MENZEL-GLÄSER, Braunschweig, Germany) 
and stored at room temperature (RT) until further 
processing.

Immunohistochemical Analysis 
Sections were blocked in PBS containing 10% 
goat serum and 0.1% Triton for 1 hour at RT and 
incubated with primary antibodies overnight at 
4ºC. Primary antibodies used are listed in 
Supporting Information (Supplementary Table 
3a). After incubation with primary antibodies, 
sections were washed with PBS containing 0.1% 
triton and incubated with secondary antibodies 
for 1 hour at room temperature. After successive 
washing in PBS, nuclei were counterstained with 
DAPI (4’,6-diamino-2-phenylindole, dilactate; 
Invitrogen-Molecular Probes, Eugene, OR). 
Immunofluorescence was observed using a Leica 
DM 5500 microscope (Leica Microsystems, 
Wetzlar Germany) and a TCS SP5 confocal 
microscope (Leica Microsystems, Wetzlar 
Germany). 

RESULTS

Effect of Hypoxia on spontaneous 
differentiation 
We wanted to assess whether hypoxic conditions 
could induce retinal fate of mESC. EBs were 
generated from ESC using the hanging drop 
method followed by culture in suspension under 
either normoxic or hypoxic conditions (Fig. 1A). 
Time course (day 0, day 5 and day 7) of 
spontaneous differentiation of EBs were 
analyzed for expression of pluripotency markers 
along with other markers of retinal commitment. 
FACS analysis showed significant differences in 

the number of cells positive for pluripotency 
markers in hypoxic conditions when compared 
to the corresponding number under normoxia 
during the protocol (Fig. 1C). When the FACS 
analysis data in hypoxia was normalized against 
normoxia, data showed a significant decrease of 
Nanog+ (46±18%), Oct4+ (50±14%) and Sox2+

(42±17%) cells after 7 days under hypoxic 
conditions (Fig. 1C and 1D). 

Besides, RT-PCR analysis demonstrated that 
retinal specific genes, such as Pax6 and Crx, 
were significantly upregulated (4.9±1.1 and 
4.2±0.6 fold, respectively) when EBs were 
cultured under hypoxia for 7 days compared to 
normoxia (Fig. 1F). The upregulation of Pax6 
and Crx genes in cells cultured under hypoxia 
corresponded with the downregulation of 
pluripotency genes (Fig. 1E) and the loss of 
pluripotency markers at a protein level as 
demonstrated by FACS analysis at this time 
point (Fig. 1C and 1D). Other retinal genes such 
as Six3, a well characterized eye field 
transcription factor [34], Chx10 [35], a neural 
retina marker and Nrl [36], a photoreceptor 
precursor marker, showed a slight but not 
significant increase under hypoxia condition 
(Fig. 1F). These results have shown that hypoxia 
significantly decreases pluripotency and 
increases the expression of different retinal 
genes in spontaneous differentiation. 

Directed differentiation 
The results observed with spontaneous 
differentiation led us to believe that hypoxic 
conditions could improve the differentiation of 
ESC towards a retinal fate, but obviously a more 
sophisticated protocol for retinal differentiation 
had to be applied. In order to demonstrate our 
hypothesis and corroborate whether we could 
obtain a higher yield of retinal cells, we have 
optimized a differentiation protocol that involves 
the culture of ESC under hypoxia (2% O2), and 
the use of small molecules previously described 
by different authors [17, 33]. Our 3-step 
approach is a novelty in differentiation protocol. 
We included EB step where EBs were generated 
as a hanging drops because previously published 
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data show [37] that this is an efficient and 
scalable system which allows uniform 
distribution of culture parameters such as oxygen 
tension due to the homogeneous size of the 
generated EBs. Briefly, ES-cells characterized 
by the typical expression of Oct4, Nanog, Sox2 
and SSEA-1 (Fig. 1B) were induced to 
differentiate into neural retina cells or Chx10 
positive cells and more mature phenotypes of 
retinal commitment, such as Rhodopsin in the 
case of rod cells, in a sequential manner 
(Supplementary Fig. 1A). To induce in vitro
retinal differentiation, ESC were cultured as 
hanging drops for 3 days in the presence of Dkk1 
and Lefty A. Hanging drops containing the EBs 
were collected and allowed to differentiate in 
suspension for 7 more days in progenitors 
medium, after which, EBs were plated and 
allowed to further differentiate for 18 more days 
in adherent culture in Retinal Medium (Fig. 2B 
and Supplementary Fig. 1B). From D3 to D5 
FBS and Activin A were added in culture. 
Different growth factors such as DAPT, 
Fibroblast growth factors (FGFs), Shh, RA and 
taurine were added to the protocol of 
differentiation as described in Materials and 
methods (Fig. 2B) to promote differentiation 
toward photoreceptors [17, 31, 33]. All results 
were compared to ESC differentiated under 
normoxic conditions (20% O2). During the 28 
days of differentiation the expression of various 
transcription factors associated to each major 
stage of retinogenesis was analyzed 
(Supplementary Fig. 1C). 

Stemness, loss of pluripotency and eye field 
specification 
Before the start of differentiation, 
undifferentiated ESC cultures were 
characterized. All cultures regardless of passage 
number showed normal morphology. ESC grew 
forming colonies and expressed pluripotency 
markers as expected; all colonies were positive 
for Oct4, Ssea-1, Nanog and Sox2 as determined 
by immunofluorescence (Fig. 1B) and the level 
of expression of these markers was determined 
by FACS each time to assure the purity and 
stemness of the culture prior to differentiation. 

Nanog (98.4%) expression was higher than Oct4 
(94.5%) and Sox2 (83.5%) but no levels lower 
than 80% were found in any passage of ESC 
used (18-35 passages, data not shown). To direct 
mESC toward rostral fate, the EBs were treated 
with Dkk1, an antagonist of Wnt/ -catenin 
signaling, the nodal antagonist, LeftyA, and 
Activin A in presence of FBS. The loss of 
pluripotency, as a hallmark of ESC under 
differentiating pressure, was measured by RT-
PCR. ESC rapidly lost expression of the 
pluripotency genes Oct4 and Nanog and even 
downregulated the neural induction marker Sox2 
on day 5 (Fig. 2C). Sox2 levels of expression 
were higher than the levels of Oct4 and Nanog at 
all time points analyzed and its expression was 
upregulated on day 10, corresponding to 
differentiation efforts towards ectoderm (Fig. 
2C). Indeed, we have observed a majority of 
cells expressing the anterior neural marker Otx2, 
and a greater number of Otx2 positive cells in 
hypoxia (Fig. 3B) which is consistent with a 
developmental in vivo study [38] (Fig. 3A). 

Furthermore, ESC acquired the expression of 
transcription factors associated with eye field 
specification. RT-PCR analysis revealed that 
Six3, gene required for early eye field 
specification, as well as Pax6 and Rax 
expression was upregulated as early as on day 5 
under hypoxia (Fig. 3E, 3F and 3G, 
respectively). Eye field cells are characterized by 
coexpression of Pax6 and Rax [39, 40] (Fig. 3H). 
As a matter of fact, on day 10 of the 
differentiation protocol high expression of Rax 
(Fig. 3G and 3H) coincided with the high 
expression of Pax6 (Fig. 3F and 3H). Not only 
the expression of these markers was upregulated 
earlier using our protocol but the levels of 
expression of each individual gene at their peak 
of expression were higher under hypoxia when 
compared to normoxia. Additionally, by day 16, 
hypoxia significantly increased the number of 
Rax+ cells (91% of total cells vs. 80% in 
normoxia; Fig. 3C and 3D). On day 10 the fold 
induction of Six3 in hypoxia was 6 times higher 
than in normoxia (8.2±2.9 against 2.1±0.91 fold 
change. Fig. 3E). RT-PCR analysis on day 5 
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revealed a difference of 14 fold change of Pax6 
gene expression under hypoxia (16.4±3.8 against 
2.4±0.2; Fig. 3G) and the expression of Rax was 
induced 4 times (6.6±1.5 against 2.2±0.6; Fig. 
3G) above the level observed in normoxia on 
day 10. Our results showed that hypoxic 
conditions significantly increased the expression 
of the eye field genes. 

Retinal commitment 
To induce in vitro differentiation, ESC were 
cultured in suspension as EBs for 10 days in 
progenitors medium (Fig. 2B) after which EBs 
were plated and allowed to differentiate for 
another 18 days in adherent culture in Retinal 
Medium. The next stage of in vivo retinal 
specification occurs when optic vesicles from the 
paired eye fields are formed. At this stage all 
cells express the transcription factors Mitf and 
Pax6 and give rise to either neural retina or 
retinal pigment epithelium (RPE) [41]. 
Furthermore, the fact that Mitf positive cells 
destined to become neural retina derive from the 
subset of Rax positive cells [35, 42] was 
confirmed with coexpression of these two 
markers in culture (Fig. 4A). In fact, RT-PCR 
analysis revealed that Mitf expression was 
upregulated since day 5 coinciding with the peak 
of expression of Pax6 (Fig. 3F). During 
development, Mitf is downregulated in response 
to the onset of Chx10, a neural retina specific 
gene [35]. The dynamic expression of Mitf and 
Chx10 was examined over time and it was 
determined that neural retina phenotype was 
acquired as early as day 16 (Fig. 4E and 4F). 
Also, our cells at day 16 coexpressed Mitf and 
Rax (Fig. 4A), revealing RPE commitment [43], 
while the clusters (Fig. 4B, 4C and 4D) formed 
by day 16, of Chx10 positive cells maintaining 
expression of Pax6 revealed their commitment to 
retinal fate (Fig. 4C and 4D). This corresponded 
with the peak of expression of Chx10 as checked 
by RT-PCR (Fig. 4F). 

Prolonged culture of Chx10+ and Pax6+ cells 
allowed for further maturation of these cells 
towards a photoreceptor phenotype. A crucial 
gene for rod specification is Nrl [44], highly 

induced since day 16 under hypoxia (Fig. 5E) 
coinciding with high expression of Crx (Fig. 5C) 
as observed by RT-PCR analysis. These data 
was confirmed by immunocytochemistry 
analysis for these two markers at the end of the 
protocol where a high number of cells have 
shown to be positive for Crx (Fig. 5A and 5B) 
and Nrl (Fig. 5D). The importance of this finding 
is because during development Nrl interacts with 
Crx to induce the expression of rod specific 
genes such as Rhodopsin [45]. As it has been 
mentioned, the primitive cone and rod 
photoreceptor-specific transcription factor Crx 
was upregulated since day 16 as well (Fig. 5C), 
and the immunoreactive cells against Crx 
antibody accounted for 75% of the total cells 
(75.1±1.9% in hypoxia vs. 64.4±2.3% in 
normoxia; Fig. 5B) at the end of the protocol. 

Moreover, it seems that our differentiation 
protocol applying normoxia did not promote 
high yield of cone cells because from the Crx+

population, only about 8% (8.1 ± 5.5%) of cells 
were immunoreactive for the cone 
photoreceptor-specific protein Opsin-S (Fig. 5F 
and 5G). On the other hand, the percentage of 
Opsin-S+ cells was significantly increased to 
32% of total cells under hypoxic conditions 
(31.8 ± 11.6%; Fig. 5F and 5G). 

Consistently, differentiation of ESC in hypoxic 
conditions significantly increased their retinal 
commitment toward rod photoreceptors, as 
determined by coexpression of Rhodopsin and 
Recoverin at the end of the protocol (Fig. 6A, 
6B, and 6D), when approximately 53% of total 
cells showed double positive staining for these 
markers (53% in hypoxia against 30% in 
normoxia. (52.9±1.5 against 29.4±3.5; Fig. 6E). 
The induction of Rhodopsin by hypoxia was 
confirmed by RT-PCR. The analysis showed 
significant increase in fold change of Rhodopsin 
since day 16 in hypoxia (28.5±3.6 vs. 11.1±2.9) 
compared to normoxia (Fig. 6C). Recoverin 
expression did not localize with Tuj1 indicating 
the presence of immature neurons and mature 
photoreceptors in our culture (Fig. 6G). This data 
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reveals that the generated photoreceptors are not 
immature neurons but mature retinal cells. 

Furthermore, using hypoxic conditions, 
morphology typical of rods was observed in 
isolated cases, in sections of the culture where 
cell density allowed for the outgrowth of 
structures that suggest the formation of outer 
segments in vitro (Fig. 6B and data not shown). 

To assess the proliferation capacity of 
differentiated cells, we stained the cells after 28 
days of differentiation against the operational 
marker, Ki67 [46]. We have found that after 28 
days of differentiation under hypoxic conditions, 
there was a significant decrease in the number of 
proliferating cells (14.8±1.8%) against the 
amount of proliferating cells differentiated under 
normoxia over the same time (22.8±1.7, Fig. 6H 
and 5I). All cell phenotypes generated at the end 
of our protocol are depicted in Fig. 6F. To assess 
the possible mechanisms underlying the 
increased differentiation capacity of mESC in 
hypoxia, we observed that, a higher proliferation 
rate was not related with an increased yield of 
Rho+ cells. Hence, we did not observe any 
coexpression of Ki67 and Rho after 28 days of 
differentiation, neither under hypoxic or 
normoxic conditions (Supplementary Fig. 4A). 
Furthermore, this phenomena was also observed 
in other cellular models, RPE-1 cells showed a 
significant decrease in their proliferation 
capacity after 3 weeks of hypoxic culture, as 
determined by the percentage of Ki67 + cells in 
culture and compared to the number found in 
normoxic conditions (Supplementary Fig. 4B). 
To assess the safety of low oxygen tension in our 
cultures we performed cytotoxicity and apoptosis 
(presented by Caspase 3/7 activity) tests and 
found that, after 1 week of hypoxic culture, 
RPE-1 cells showed a significant decrease in 
cytotoxity and Caspase 3/7 activity compared to 
normoxia (Supplementary Fig. 4C and 4D). 

To correlate hypoxia and retinal development we 
followed the expression of Vegfa and Cdkn1a. 
The expression of these two genes is very well-
known to be induced under hypoxia and recently 

they have been directly related with retinal 
hypoxia [47, 48]. We observed that hypoxia 
significantly increased the fold induction of 
Vegfa (6.1±1.0 in hypoxia vs. 4.6±0.7 in 
normoxia; Supplementary Fig. 4E) and Cdkn1a 
(11.7±1.0 in hypoxia vs. 5.5±1.1 in normoxia; 
Supplementary Fig. 4F) at day 28 of 
differentiation, revealing possible mechanisms 
through which hypoxia promotes retinal 
development. The exposure of cells to hypoxia 
leads to the activation and stabilization of 
hypoxia inducible factor Hif1  as determined by 
FACS analysis. The percentage of Hif1 cells 
in RPE-1 cells was higher after 3 weeks of 
hypoxia when compared to normoxia culture 
(69.6±4.18 vs 55.6±10.4; Supplementary Fig. 
4G) and significantly higher in D3-mESC cells 
after 1 week of hypoxia in the presence of LIF 
(79.9±11.5 vs. 49.1±10.7; Supplementary 
Fig.4H).

Subretinal injection 
To evaluate whether injected cells in suspension, 
generated using our protocol under hypoxia 
could survive and integrate in vivo, 
C57BL6/NCrl mice received unilateral 
subretinal injections of 75000 retinal cells 
differentiated until day 20 or medium alone 
(sham). The uninjected eye served as internal 
control for each animal. 

The PKH26 staining applied prior to 
transplantation was used to identify surviving 
retinal progenitors after 24 hours and 1 week of 
the injection (Fig. 7A, 7C, 7E, 7F, 7H, 7J and 
7K). The location of the main graft was 
subretinal in 7 eyes with a large cluster of 
transplanted cells localized between the host 
photoreceptors and the RPE layer. 
Immunohistochemical analysis demonstrated 
dispersed transplanted cells positive for 
Rhodopsin (Fig. 7A, 7B, 7E and 7K) and 
Recoverin (Fig. 7F, 7G and 7J) across the retina, 
singly or in small clusters. A large number of 
donor cells injected in subretinal locations 
migrated and integrated in host retina. 
Transplanted cells immunopositive for 
photoreceptor marker Rhodopsin and Recoverin 
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were found in outer nuclear layer (ONL) and 
inner nuclear layer (INL) in the mice 
(Supplementary Fig. 7). A much smaller fraction 
of transplanted cells was Opsin-S positive 
revealing the presence of cones (Supplementary 
Fig. 6). 

There was no evidence of uncontrolled growth or 
tumor formation at any time, suggesting that 
donor cell proliferation might be regulated or 
balanced by cell death. 

DISCUSSION

ESC offer an excellent in vitro tool to 
recapitulate mechanisms activated during early 
development. The efficient differentiation of 
retinal cells from ESC is a major challenge for 
the development of successful cell therapy, 
which can be applied in different retinal 
dystrophies such as Retinitis pigmentosa (RP) 
and age related macular disease (AMD). 
Although the early stages of development occur 
in a hypoxic environment, little is known about 
how low O2 levels modulate the pluripotency 
and differentiation capacity of ESC. Our data 
demonstrate that mESC can be efficiently 
directed to retinal progenitors and other mature 
phenotypes, such as photoreceptors, by using a 
combination of small molecules and lowering O2

tension can enhance this efficiency. Different 
protocols of generation of retinal phenotypes 
have been published and all of them have 
implied important advances in the field [17, 22]. 
Our main issue continues to be the 
accomplishment of a high yield of specific 
populations and the modeling of retinogenesis in 
vitro.

In the first phase of our protocol we used the 
combination of Dkk1, Activin A and LeftyA to 
direct mESC toward rostral neural progenitors, 
applying an approach used in a previous study 
[33]. This strategy is widely used to generate 
rostral neural progenitors [49-52]. Indeed, we 
observed high percentage of Rax+ and Otx2+,
rostral neural progenitors and markers for early 
eye field. These two markers together with Pax6, 

Six3, Six6 and Lhx2 play an important role in 
the establishment of anterior neuroectodermal 
region which maintains high capacity for 
generation of future retinal progenitors [39, 53, 
54]. Significant upregulation of some of these 
markers (Six3, Pax6 and Rax) was observed as 
early as by day 5 in culture. Large increase of the 
eye field markers coincided with rapid decrease 
of main pluripotency markers indicating high 
differentiation potential of our protocol. Our 
results have shown that lowering the O2 tension 
near the physiological level is a more effective 
parameter for retinal differentiation, especially 
for photoreceptor precursors. It seems that the 
effects of this parameter are expressed very early 
in differentiation significantly increasing the 
expression of Six3, Pax6 and Rax (Fig. 3E, 3F 
and 3G). 

The next phase in retinal specification in vivo
occurs with the formation of the optic vesicle, 
determined mainly by the expression of Mitf and 
Pax6 giving rise to multiple cell types of the 
functional retina. Cells coexpressing Pax6 and 
Chx10 give rise to neural retina only. 
Experiments using different vertebrates indicated 
that SHH and FGF signaling play a critical role 
in future specification of retinal cells [55-57]. 
Once neural retina progenitor phenotype has 
been acquired, it is necessary for further 
maturation of these cells. As shown by others, 
Notch signaling pathway needs to be blocked at 
this point to allow for an increase in the Crx+

cells [17]. For these reasons we supplemented 
the medium with the -secretase inhibitor DAPT 
from day 10. Retinoic acid and taurine were 
added to obtain mature photoreceptors [17, 31]. 
Hence, further retinal specification included 
DAPT, FGFs, Shh, RA and Taurine. These 
conditions together with low O2 tension 
significantly increase the population of cells co-
expressing Pax6 and Chx10 as well as Crx+ cells 
compared to normoxia. High percentage of 
derived photoreceptors, reflected by 
coexpression of Rhodopsin and Recoverin for 
rods, and Opsin-S for cones, revealed that low 
O2 tension promoted a photoreceptor fate of 
mESC. With regard to efficiency, the induction 
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of rods, namely the yield of Rhodopsin+ cells, 
was higher when compared with other protocols 
using murine ESC [17, 31] or iPS [15, 58, 59]. 
The results in the present study, are consistent 
with the recently published study applying 
hypoxic condition [60], describing an increased 
yield of Pax6 and Chx10 positive cells. Here we 
further define the characterization of generated 
cells achieving a higher yield of mature retinal 
phenotypes as well as in vivo study. Our results 
have shown not only that the population of 
retinal cells can be increased under hypoxia in a 
way that mimics normal retinal development, but 
also, we demonstrate for the first time that, early 
rostral differentiation (Otx2), early eye field 
acquisition (Six3, Rax and Pax6) and mature 
retinal phenotypes (Crx, Opsin-S and 
Rhodopsin) are increased in yield under hypoxia. 
Furthermore, hypoxic condition seems to 
improve the timing of retinogenesis, as it has 
been observed by RT-PCR analysis. Eye field 
transcription factors are highly expressed as 
early as by day 5 and the important suppression 
of Mitf by upregulation of Chx10 occurred by 
day 16 instead of day 28 only when the cells 
differentiated under hypoxia. This allowed for a 
bigger population of neural retina progenitors 
earlier in the differentiation protocol that could 
mature into cells expressing photoreceptor 
markers, such as, Crx, Nrl and Rhodopsin, all 
three populations highly increased at the end of 
our protocol. 

Our study went further showing efficient in vivo
evaluation of generated retinal precursors. 
Previous studies have shown that photoreceptors 
taken from young animals efficiently incorporate 
in adult retina when transplanted in the sub-
retinal space [25, 61]. We also successfully 
grafted in vitro generated retinal cells in the 
adult mouse retina, which resulted in cell 
survival. Interestingly, high percentage of 
transplanted cells expressed rod specific 
markers, such as Rhodopsin and Recoverin, 
though without known possible implication of 
local environment on further differentiation. It 
seems that specific retinal niche was preferable 
for mature differentiation of retinal progenitors. 

This data demonstrates the viability of the cells 
and the robustness of our protocol. However, to 
fully validate the protocol further in vivo
functional analyses have to be performed. 

Different studies on pluripotent stem cells have 
demonstrated improved differentiation when 
different hypoxic conditions were applied [60, 
62]. The exact mechanism of hypoxia on retinal 
differentiation still remains to be elucidated. The 
primary transcriptional regulators of cellular 
hypoxic adaptation in mammals are hypoxia 
induced factors (HIFs). Hypoxic preconditioning 
was shown to stabilize HIF-1  in the retina, 
further inducing the expression of target genes 
with neuroprotective properties like vascular 
endothelial growth factor (Vegfa) and 
erythropoietin (Epo) suggesting a link between 
HIF-1  driven gene expression and 
neuroprotection [63, 64]. Little is known about 
the molecular effects of hypoxia on retinal 
differentiation. The published reports mainly 
correlate the expression of individual genes and 
hypoxia in different retinal functions [47]. For 
example, hypoxia increases vascular endothelial 
growth factor (Vegfa) expression in the retina 
[60, 63]. The identification of this gene together 
with p21 (Cdkn1a) is strongly suggestive of their 
role in general retinal neuroprotection [65, 66]. 
During our differentiation protocol under 
hypoxic conditions both genes were significantly 
upregulated when compared to normoxic 
conditions. This data suggests that hypoxia, 
through activation of HIF-1 , decreasing 
apoptosis and cytotoxicity, has influenced retinal 
differentiation [67, 68]. Although, the source of 
Vegfa could be RPE cells observed in retinal 
progenitors generated in hypoxic conditions [69] 
(data not shown), further investigation has to be 
performed to elucidate the origin of 
neuroprotective processes. Moreover, a 
significant decrease of proliferating cells at the 
end of our protocol in hypoxic conditions, 
suggests that hypoxia favors postmitotic cells, 
increasing therefore the number of 
photoreceptors (Fig. 6F and 6I). It is known that 
p21, increased in hypoxia (Supplementary Fig. 
4F), not only provokes cell cycle arrest, 
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necessary to start the differentiation process, but 
can also repress apoptosis [70] (Supplementary 
Fig. 4D). Therefore, we propose that hypoxia 
promotes retinal differentiation through 
activation of p21. Higher yield of early eye field 
markers in hypoxic condition suggests that 
hypoxia is preferable for EB formation and early 
differentiation. This data corroborates with 
earlier findings where an improved 
differentiation of human ES cells was observed 
in hypoxic conditions [71, 72]. We also observed 
a more compact structure of EBs in hypoxia 
(data not shown), which could have a 
consequence on further differentiation. For this 
to be confirmed, further detailed studies have to 
be performed. 

Conclusion and future perspectives 
We believe the application of a new modified 
protocol for differentiation of mESC reported 
here support the hypothesis that hypoxia is 
necessary to induce efficient differentiation of 
ESC towards a higher yield of retinal 
phenotypes. The timing of retinogenesis is also 
improved in hypoxic conditions, by decreasing 
the time to acquire an eye field phenotype and 
achieve mature population of photoreceptors in
vitro. Purification of these specific retinal cells 
can allow us to define the conditions to expand a 
homogeneous population that will be further 
differentiated into fully mature photoreceptor 
cells. Further experimentation is required to 
elucidate the precise mechanism or mechanisms 
by which hypoxia exerts its effect on retinal 

differentiation. In summary, the novel findings 
of the work reported here are: 1. The most 
efficient protocol so far, for the differentiation of 
any kind of stem cells (mouse, human or 
induced-pluripotent cells), towards rod 
photoreceptor cells (53±1.5%). 2. The modeling 
of retinogenesis has been accomplished for the 
first time with mESC only under hypoxic 
conditions. 3. Photoreceptor precursors from 
mESC differentiate towards 
Rhodopsin/Recoverin double positive cells after 
transplantation in the retina, and a complete lack 
of tumor formation, demonstrates the importance 
of an efficient differentiation process and the 
loss of pluripotency of the transplanted cells. We 
believe that our findings provide the technical 
framework necessary for a highly efficient 
differentiation of mESC towards photoreceptors, 
which is important for advances in cell therapy 
and regenerative medicine. 
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Figure 1. Effect of low oxygen tension during early spontaneous differentiation. A. Schematic of 
the generation of embryoid bodies from mESC. B. Immunofluorescence analysis against pluripotency 
markers; Oct4, Ssea-1, Sox2 and Nanog before differentiation. C. FACS analysis showing the loss of 
pluripotency markers is more efficient after 7 days of spontaneous differentiation in low oxygen when 
compared to normoxia. D. Decrease in number of positive cells for pluripotency markers under 
hypoxia when data was normalized against the normoxia values. E. qPCR analysis comparing the 
relative levels of expression of pluripotency marker genes after 7 days of spontaneous differentiation 
in normoxia (blue bar) and hypoxia (red bar). F. qPCR analysis comparing the relative levels of 
expression of retinal specific genes after 7 days of spontaneous differentiation in normoxia (blue bar) 
and hypoxia (red bar). * p 0.05 or ** p 0.01 was considered statistically significant. 
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Figure 2. Protocol of differentiation and loss of pluripotency. A. Schematic diagram of the 3 step 
differentiation protocol used to generate retinal cells. B. Detail of the protocol of differentiation used 
to generate retinal cells. C. qPCR analysis showing efficient loss of pluripotency markers. * p  0.05 
was considered statistically significant. 
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Figure 3. Hypoxia improves early retinogenesis. A. Schematic of early neural retina (purple) on 
embryonic day 14, where the differencing cells are expressing the transcription factors Otx2 and Rax. 
B. Comparative immunofluorescence analysis showing positive cells for anterior neural specification 
marker Otx2 under hypoxia and normoxia. C. Comparative immunofluorescence analysis showing 
positive cells for the Eye Field Transcription Factor, Rax. D. Quantification of Rax positive cells 
derived under normoxic (blue bar), and hypoxic condition (red bar). E.F.G. The time course of 
expression of the eye field transcription factors, Six3, Pax6, and Rax respectively, by qPCR in 
normoxia (blue bar) and hypoxia (red bar). H. Immunofluorescence analysis showing Rax positive 
cells colocalized with Pax6 after 10 days of differentiation under hypoxia. * p  0.05 was considered 
statistically significant. 
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Figure 4. Hypoxia improves neural retina phenotype acquisition. A. Immunocytochemical analysis 
showing that all Rax positive cells were also positive for Mitf by day 16 under hypoxia. B.
Photomicrograph showing clusters formed by day 16 of differentiation. C. Immunocytochemical 
analysis showed Chx10+/Pax6+ cells deriving radially away from the clusters by day 16 of 
differentiation. D. Higher magnification showing Chx10 positive cells were also positive for Pax6. E.
F. The time course of expression of the neural retina transcription factors, Mitf and Chx10, 
respectively, by qPCR in normoxia (blue bar) and hypoxia (red bar). * p  0.05 was considered 
statistically significant. 
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Figure 5. Hypoxia improves late retinogenesis. A. Immunocytochemical analysis showing Crx+ cells 
in hypoxic culture by day 28 of differentiation. B. Quantification of the percentage of Crx+ cells 
determined by 3 independent experiments under both conditions of differentiation. C. Comparative 
qPCR analysis of Crx gene expression over the 28 days of differentiation under normoxia (Blue bars) 
and hypoxia (red bars). D. Immunocytochemical analysis showing Nrl+ cells in hypoxic culture by day 
28 of differentiation. E. Comparative qPCR analysis of Nrl gene expression during differentiation in 
normoxic (blue bar) and hypoxic (red bar) conditions. F. Quantification of the percentage of Opsin+

cells in normoxic (blue bar) and hypoxic (red bar) conditions.. G. Comparative immunofluorescence 
analysis showing positive cells for cone specific marker Opsin-S after 28 days of differentiation under 
normoxia or hypoxia. * p  0.05 was considered statistically significant. 
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Figure 6. Hypoxia increase the yield of Rhodopsin positive cells. A. Immunocytochemical analysis 
showing the coexpression of rod photoreceptor markers Rhodopsin and Recoverin after 28 days in 
hypoxic culture conditions. B. A representative Rhodopsin+ cell in hypoxic conditions after 28 days in 
culture. C. Comparative qPCR analysis of Rhodopsin gene expression during the differentiation in 
normoxic (blue bars) and hypoxic conditions (red bars). D. Comparative immunofluorescence analysis 
of expression of Rhodopsin during the differentiation in hypoxic and normoxic conditions. E.
Quantification of the percentage of Rhodopsin+ cells in normoxia (blue bar) and hypoxia (red bar). F.
Schematic representation of obtained retinal cells. G. Immunofluorescence analysis of other cell types 
present after 28 days of differentiation Tuj1+/Recoverin– cells. H. Comparative immunofluorescence 
analysis showing positive cells for the proliferation marker; Ki67 after 28 days of differentiation under 
hypoxia and normoxia. I. Quantification of the percentage of Ki67+ cells after 28 days of 
differentiation in normoxia (blue bar) and hypoxia (red bar). * p  0.05 was considered statistically 
significant.
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Figure 7. Transplantation of photoreceptors derived from ESC under hypoxic conditions.

A. Anatomy of the injection site and efficiency of differentiation 24 hours after transplantation. B. C. 
D. E. Higher magnification of inset in A. Coexpression of transplanted cells (red, PKH26), 
Rhodopsin+ (green) and DAPI (blue). F. The efficiency of differentiation towards photoreceptors 1 
week after transplantation. G. H. I. J. Higher magnification of inset in F. showing transplanted cells 
(red, PKH26) colocalizing with Recoverin (Rcvn, green) and DAPI (blue). K. Colocalization of 
PKH26 and Rhodopsin in ONL 1 week after subretinal injection. 
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Table 3b. List of primary antibodies used for analysis of pluripotency and stemness. 

Antibody Type Source Dilution 

SSEA-1 Mouse monoclonal Cell Signaling 1:100 

OCT-4 Rabbit monoclonal Cell Signaling 1:100 

Nanog Goat monoclonal R&D Systems 1:50 

Sox2 Mouse monoclonal R&D Systems 1:50 

PE-Nanog Mouse monoclonal BD Pharmingen™  

PerCP-Cy5.5-Oct3/4 Mouse monoclonal BD Pharmingen™  

Alexa Fluor® 647-Sox2 Mouse monoclonal BD Pharmingen™  

PE-Mouse IgG1, κ Mouse Isotype control BD Pharmingen™  

PerCP-Cy5.5-Mouse IgG1, κ Mouse Isotype control BD Pharmingen™  

Alexa Fluor® 647-Mouse IgG2a, κ Mouse Isotype control BD Pharmingen™  
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Supplementary Table 3a. List of primary antibodies used to study the retinal 

differentiation of embryonic stem cells 

Antibody Type Source Dilution 

Ki67 Rabbit polyclonal Abcam 1:200 (1:100 FACS)

Mitf Mouse monclonal Abnova 1:500 

Opsin-s Rabbit polyclonal Abcam 1:200 

Otx2 Rabbit polyclonal Millipore 1:500 

Rhodopsin Mouse monoclonal Abcam 1:100 

Recoverin Rabbit polyclonal Millipore 1:1000 

RAX Rabbit polyclonal Abcam 1:300 

ZO1 Rabbit polyclonal Invitrogen 1:50 

Crx Mouse monoclonal Novus Biologicals 1:100 

RPE65 Mouse monoclonal Abcam 1:250 

Chx10 Sheep polyclonal Exalpha 1:1000 

Pax6 Mouse monoclonal Hybridoma Bank 1:100 

Nrl Rabbit polyclonal Gift 1:1000 

Hif1a Rabbit polyclonal Santa cruz 1:50 

Tuj1 Mouse monoclonal Covance 1:500 
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Supplementary Table 2. PCR primers used to study the loss of pluripotency and the 

retinal differentiation 

Gene 
name Primer sequence Ta 

(Cº)
Product 
size (bp) 

NCBI 
Accesion No. 

B-Actin F: TCCTGTGGCATCCACGAAACTACA 
R:ACCAGACAGCACTGTGTTGGCATA 

60 93 NM_007393.3 

Cdkn1a F: TTGTCGCTGTCTTGCACTCTGGT 
R: AGACCAATCTGCGCTTGGAGTGAT 

62 141 NM_007669.4 

Vegfa F: GGAGAGCAGAAGTCCCATGA 
R: ACTCCAGGGCTTCATCGTTA 

60 184 NM_001025250 

Pax6 QT01052786 Qiagen 60 120  
Chx10 QT00112056 Qiagen 60 134  
Nrl QT00109298 Qiagen 60 71  
Crx QT00115402 Qiagen 60 127  
Rax QT01775193 Qiagen 60 88 NM_013833 
Rhodopsin QT00099022 Qiagen 60 78  
Nanog QT01743679 Qiagen 60 190  
Sox2 QT00249347 Qiagen 60 103  
Tert QT00104405 Qiagen 60 145  
Pou5f1 QT00109186 Qiagen 60 101  
Six3 QT01045219 Qiagen 60 117 X90871 
Otx2 QT01079771 Qiagen 60 115  
Mitf QT00131313 Qiagen 60 87 NM_001113198 
ZO-1 QT00493899 Qiagen 60 150 NM_001163574 
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Supplementary Table 1. Formulations of media used. 

Maintenance 

Medium (500mL) 

EB Medium 

(500mL) 

Progenitors 

Medium (500mL) 

Retinal Medium  

(500 ml) 

DMEM 

GLUTAMAX-I 

(GIBCO32430100) 

459ml 

DMEM 

GLUTAMAX-I 

(GIBCO32430100) 

459ml 

DMEM 

GLUTAMAX-I 

(GIBCO32430100) 

459ml 

MEM-HEPES 66% 

330ml  

HBSS 33%   

50 ml 

FBS  

(Hyclone) 

15%        75 ml 

KSR   

(GIBCO 10828) 

5%   25ml 

NEAA   

(GIBCO 11140) 

0.1mM          5ml 

GLUCOSE SOL 

2.88g Glucose in 

115ml HBSS 

NEAA   

(GIBCO 11140) 

0.1mM          5ml 

NEAA   

(GIBCO 11140) 

0.1mM          5ml 

ANTIBIOTICS 

(GIBCO 15140)  

1%         5ml 

L-GLUTAMINE  

(Sigma)  

200 µM      500 µl 

ANTIBIOTICS 

(GIBCO 15140)  

1%         5ml 

ANTIBIOTICS 

(GIBCO 15140)  

1%         5ml 

Na+ PYR  

(GIBCO 11360) 

 1mM  5ml 

N2 SUPPLEMENT  

(GIBCO 17502) 

1%        5mL 

Na+ PYR  

(GIBCO 11360) 

 1mM  5ml 

Na+ PYR  

(GIBCO 11360) 

 1mM  5ml 

2-ME (GIBCO 

31350-010) 0.1mM

 1ml 

FBS  

(Hyclone) 

1%        5 ml 

2-ME (GIBCO 

31350-010) 0.1mM

 1ml 

2-ME (GIBCO 

31350-010) 0.1mM

 1ml 

KSR   

(GIBCO 10828) 

5%   25ml 

ANTIBIOTICS 

(GIBCO 15140)  

1%  5ml 

LIF (Hyclone;     
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Supplementary material and methods 

RNA isolation and quantitative RT-PCR. Total RNA isolation was performed using 

Trizol® reagent (Invitrogen) or RNAeasy kit (Qiagen), according to the manufacturer's 

instructions and followed by treatment with TURBO DNase™ (2 U/µl) (Ambion, 

Warrington, UK). RNA concentration and purity were determined using a NanoDrop 

ND-1000 Spectrophotometer (NanoDrop, Thermo Scientific, Epson, UK). The integrity 

of total RNA was qualitatively assessed on an Agilent 2100® Bioanalyser. Reverse 

transcription was carried out with 1 μg of total RNA using the Superscript III RT kit 

(Invitrogen). Quantitative PCR (qPCR) reactions were performed using SensiFAST™ 

SYBR No-ROX Kit (Bioline, London, UK). All samples were normalized against a 

housekeeping gene (β-actin). The primer sets, as well as the annealing temperatures are 

listed in Supporting Information (Supplementary Table 2). All qPCR reactions were 

run at 40 cycles and data analysis was done using the CFX Manager v2.1 software 

(BioRad) by the ∆∆CT method. 

Immunocytochemistry: Cell cultures were washed in PBS and fixed with 4% 

paraformaldehyde in PBS for 20 min at room temperature (r.t.). Fixed cells were 

washed twice with PBS before staining. For nuclear staining, permeabilization within 

ice methanol was accomplished for 30 min at -20ºC. After permeabilization, cells were 

blocked with 3% Donkey serum, 3% Goat serum in 0.5% Triton-PBS for 30 min at r.t . 

Immunostaining was performed overnight at 4ºC in 0.5% Triton-PBS using the 

antibodies listed in Supporting Information (Supplementary Table 3a and 3b). Cells 

were counter-stained with 300 nM DAPI for 10 min at r.t. For negative controls, 

primary antibodies were omitted and the same staining procedure was carried out. 

Positive cells were detected using either Alexa488-, Alexa594-, Alexa633- (Invitrogen) 

or Dylight549- conjugated secondary antibodies in a Leica DM 5500 microscope (Leica 



Microsystems, Wetzlar Germany) and a TCS SP5 confocal microscope (Leica 

Microsystems, Wetzlar Germany). Specificity of each antibody was determined in 

mouse embryonic and adult retinal tissue (Supplementary Figure 2 and 3). 

Image analyses 

The immunocytochemistry experiments were repeated at least 3 times. For Image 

analysis at least 8 microscopic fields from each sample were taken randomly using a 

40X lens objective in a TCS SP5 confocal microscope (Leica Microsystems, Wetzlar 

Germany). To reduce human bias, a semi-automated image analysis system was used to 

determine the percentage of immunoreactive cells from digital images using the 

MetaMorph NX ® v 7.5.1.0 Software (Molecular Devices, Downington, PA).  First, 

cells and processes of interest were outlined to exclude adjacent cells or areas of non-

specific immunoreactivity. 

FACS 

EBs were washed twice with DPBS (Gibco 14190) and enzymatically digested by 

incubation with the Embryoid Body Dissociation Kit from Miltenyi Biotech (Bergisch 

Gladbach, Germany) for 15 minutes at 37ºC. The single cell suspension obtained was 

washed in DPBS and fixed with 4% paraformaldehyde in PBS for 20 min at r.t.  Fixed 

cells were washed twice with PBS before staining. Cells were then immunostained 

using the BD Stemflow™ Mouse Pluripotent Stem Cell Transcription Factor Analysis 

Kit (BD Biosciences) following the manufacturer´s instructions. Appropriate isotype 

controls provided with the kit were used to immunostain the negative populations. At 

least 10,000 events were analyzed in each experiment using FACSCalibur system (BD 

Biosciences). Results correspond to at least 6 individual runs and the number of positive 

cells within the gated population was analyzed using CellQuestTM Pro (BD Biosciences) 

software. 



RPE-1 and D3 cells were washed twice with PBS and enzymaticaly digested by 

incubation with Trypsin for 4 minutes at 37ºC. The single cell suspension obtained was 

washed in PBS and fixed with 4% paraformaldehyde in PBS for 20 min at r.t. Fixed 

cells were washed twice with PBS before staining. Cells were then permeabilized with 

1X Perm Wash Buffer (BD Biosciences) at r.t. for 10 min and incubated overnight with 

the Rabbit Polyclonal Hif1α primary antibody (1:50 dilution) and the corresponding 

IgG Isotype control in staining buffer containing 1% FBS in PBS. Immunostaining was 

completed with Goat anti rabbit Alexa488-conjugated secondary antibody (1:500). 

10.000 events were analysed in each experiment (n=3) using FACS Calibur system (BD 

Biosciences). The number of positive cells within the gated population was analysed 

using Cell Quest™ Pro (BD Biosciences) software. 

ApoTox-Glo™Triplex Assay 

This kit combines three assay chemistries to assess viability, cytotoxicity and caspase 

activation events within a single assay well. In the first part of the assay, it measures 

two protease activities simultaneously; one being a marker of cell viability and the other 

being a marker of cytotoxicity. Peptide substrate (glycylphenylalanyl-

aminofluorocoumarin; GF-AFC) enters intact cells where it is cleaved by the live-cell 

protease activity to generate a fluorescent signal proportional to the number of living 

cells. This live-cell protease becomes inactive upon loss of cell membrane integrity and 

leakage into the surrounding culture medium. Peptide substrate (bis-alanylalanyl-

phenylalanyl-rhodamine 110; bis-AAF-R110) is used to measure dead-cell protease 

activity, which is released from cells that have lost membrane integrity. Bis-AAF-R110 

is not cell-permeable, so no signal from this substrate is generated by intact, viable cells. 

The live- and dead-cell proteases produce different products, AFC and R110, which 

have different excitation and emission spectra, allowing them to be detected 



simultaneously. In the second part of the assay, the Caspase-Glo® 3/7 Reagent, added in 

an "add-mix-measure" format, results in cell lysis, followed by caspase cleavage of the 

substrate and generation of a "glow-type" luminescent signal produced by luciferase. 

RPE-1 cells were seeded in a flat 96-well micro-plate (approximately 500/well) (Nunc) 

as triplicates. Three different types of controls, namely: positive, untreated, and negative 

controls were used throughout the study. Positive control had cells with culture medium 

exposed to 10 µM MG132 for 16 hours to induce apoptosis. Control cell cultures 

contained cells untreated with MG132. Negative control (background) contained only 

culture medium without cells. 

After 7 days of exposure to either normoxic or hypoxic conditions, 20 μl of 

Viability/Cytotoxicity reagent containing both GF-AFC and bis-AAF-R110 substrates 

was added to each well, and briefly mixed by orbital shaking at 500 rpm for 30 seconds 

and then incubated at 37°C for 30 minutes. Fluorescence was measured at 400Ex/505Em 

(Viability) and 485Ex/520Em (Cytotoxicity) by using Thermo Scientific Varioskan® Flash 

Spectral Scanning Multimode Reader. After that 100 μl of Caspase-Glo 3/7 reagent was 

added to each well, and briefly mixed by orbital shaking at 500 rpm for 30 seconds and 

then incubated at room temperature for 30. Luminescence was measured using a 

Thermo Scientific Varioskan® Flash Spectral Scanning Multimode plate reader. 

Luminiscence RFUs are proportional to the amount of caspase activity present. 

 

RPE-1 cell cultures 

Telomerase-immortalized human retinal pigment epithelia 1 (RPE-1), cells were 

cultured in DMEM-Ham’s F12 supplemented with 10% fetal bovine serum (FBS) and 

L-Glutamine. RPE-1 cells were maintained at 37° C in a humidified 5% CO2 

environment under etiher Normoxic (20% oxygen Tension) or Hypoxic  (2% Oxygen 



tension) conditions in a thermo Fisher incubator (CO2/O2 WJ IR Model 3141, Thermo 

Electron Co, Fisher Scientific). Cell cultures were passaged every 7 days to 1:10 split 

ratio and fresh medium was exchanged every 48 hours. 

 




