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Abstract

Time series are ubiquitous, and a measure to assess their similarity is a core
part of many computational systems. In particular, the similarity measure
is the most essential ingredient of time series clustering and classification
systems. Because of this importance, countless approaches to estimate time
series similarity have been proposed. However, there is a lack of comparative
studies using empirical, rigorous, quantitative, and large-scale assessment
strategies. In this article, we provide an extensive evaluation of similarity
measures for time series classification following the aforementioned prin-
ciples. We consider 7 different measures coming from alternative measure
‘families’, and 45 publicly-available time series data sets coming from a wide
variety of scientific domains. We focus on out-of-sample classification accu-
racy, but in-sample accuracies and parameter choices are also discussed. Our
work is based on rigorous evaluation methodologies and includes the use of
powerful statistical significance tests to derive meaningful conclusions. The
obtained results show the equivalence, in terms of accuracy, of a number
of measures, but with one single candidate outperforming the rest. Such
findings, together with the followed methodology, invite researchers on the
field to adopt a more consistent evaluation criteria and a more informed
decision regarding the baseline measures to which new developments should
be compared.

Keywords: Time Series, Similarity, Classification, Evaluation

1. Introduction1

Data in the form of time series pervades a large number of scientific do-2

mains (Keogh, 2011; Keogh et al., 2011). Observations that unfold over time3
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usually represent valuable information subject to analysis, classification, in-4

dexing, prediction, or interpretation (Kantz and Schreiber, 2004; Han and5

Kamber, 2005; Liao, 2005; Fu, 2011). Real-world examples include finan-6

cial data (e.g., stock market fluctuations), medical data (e.g., electrocardio-7

grams), computer data (e.g., log sequences), or motion data (e.g,. location8

of moving objects). Even object shapes or handwriting can be effectively9

transformed into time series, facilitating their analysis and retrieval (Keogh10

et al., 2009, 2011).11

A core issue when dealing with time series is determining their pair-12

wise similarity, i.e., the degree to which a given time series resembles an-13

other. In fact, a time series similarity (or dissimilarity) measure is central to14

many mining, retrieval, clustering, and classification tasks (Han and Kam-15

ber, 2005; Liao, 2005; Fu, 2011; Keogh and Kasetty, 2003). Furthermore,16

there is evidence that simple approaches to such tasks exploiting generic17

time series similarity measures usually outperform more elaborate, some-18

times specifically-targeted strategies. This is the case, for instance, with19

time series classification, where a one-nearest neighbor approach using a20

well-known time series similarity measure was found to outperform an ex-21

haustive list of alternatives (Xi et al., 2006), including decision trees, multi-22

scale histograms, multi-layer perceptron neural networks, order logic rules23

with boosting, or multiple classifier systems.24

Deriving a measure that correctly reflects time series similarities is not25

straightforward. Apart from dealing with high dimensionality (time series26

can be roughly considered as multi-dimensional data), the calculation of27

such measures needs to be fast and efficient (Keogh and Kasetty, 2003).28

Indeed, with better information gathering tools, the size of time series data29

sets may continue to increase in the future. Moreover, there is the need30

for generic/multi-purpose similarity measures, so that they can be readily31

applied to any data set, whether this application is the final goal or just an32

initial approach to a given task. This last aspect highlights another desirable33

quality for time series similarity measures: their robustness to different types34

of data (cf. Keogh and Kasetty, 2003; Wang et al., 2012).35

Over the years, several time series similarity measures have been pro-36

posed (for pointers to such measures see, e.g., Liao, 2005; Fu, 2011; Wang37

et al., 2012). Nevertheless, few quantitative comparisons have been made in38

order to evaluate their efficacy in a multiple-data framework. Apart from be-39

ing an interesting and important task by itself, and as opposed to clustering,40

time series classification offers the possibility to straightforwardly assess the41

merit of time series similarity measures under a controlled, objective, and42

quantitative framework (Keogh and Kasetty, 2003).43
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In a recent study, Wang et al. (2012) perform an extensive comparison of44

classification accuracies for 9 measures (plus 4 variants) across 38 data sets45

coming from various scientific domains. One of the main conclusions of the46

study is that, even though the newly proposed measures can be theoretically47

attractive, the efficacy of some common and well-established measures is,48

in the vast majority of cases, very difficult to beat. Specifically, dynamic49

time warping (DTW; Berndt and Clifford, 1994) is found to be consistently50

superior to the other studied measures (or, at worst, for a few data sets,51

equivalent). In addition, the authors emphasize that the Euclidean distance52

remains a quite accurate, robust, simple, and efficient way of measuring the53

similarity between two time series. Finally, by looking in detail at the results54

presented by Wang et al. (2012), we can spot a group of time series similarity55

measures that seems to have an efficacy comparable to DTW: those based56

on edit distances. In particular, the edit distance for real sequences (EDR;57

Chen et al., 2005) seems to be very competitive, if not slightly better than58

DTW. Interestingly, none of the three measures above was initially targeted59

to generic time series data, but were introduced with hindsight (Agrawal60

et al., 1993; Berndt and Clifford, 1994; Chen et al., 2005). The intuition61

behind Euclidean distance relates to spatial proximity, DTW was initially62

devised for the specific task of spoken word recognition (Sakoe and Chiba,63

1978), and edit distances were introduced for measuring the dissimilarity64

between two strings (Levenshtein, 1966).65

The study by Wang et al. (2012) is, to the best of our knowledge, the66

only comparative study dealing with time series classification using multiple67

similarity measures and a large collection of data. In general, the studies68

introducing a new measure only compare against a few other measures1,69

and usually using a reduced data set corpus (cf. Keogh and Kasetty, 2003).70

Furthermore, there is a lack of agreement in the literature regarding evalu-71

ation methodologies. Besides, statistical significance is usually not studied72

or, at best, improperly evaluated. This is very inconvenient, as robust eval-73

uation methodologies and statistical significance are the principal tools by74

which we can establish, in a formal and rigorous way, differences across the75

considered measures (Salzberg, 1997; Hollander and Wolfe, 1999; Demšar,76

2006). In addition, the chosen parameter values for every measure are rarely77

discussed. All these issues impact the scientific development of the field as78

one is never sure, e.g., of which measure should be used as a baseline for79

future developments, or of which parameters are the most sensible choice.80

1In the majority of cases, as our results will show, not the most appropriate ones.
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In this work, we perform an empirical evaluation of similarity measures81

for time series classification. We follow the initiative by Wang et al. (2012),82

and consider a big pool of publicly-available time series data sets (45 in our83

case). However, instead of additionally focusing on representation meth-84

ods, computational/storage demands, or more theoretical issues, we here85

take a pragmatic approach and restrict ourselves to classification accuracy.86

We believe that this is the most important aspect to be considered in a87

first stage and that, in contrast to the other aforementioned issues, it is88

not sufficiently well-covered in the existing literature. As for the consid-89

ered measures, we decide to include DTW and EDR, as these were found90

to generally achieve the highest accuracies among all measures compared91

in Wang et al. (2012). Apart from these two, we choose the Euclidean dis-92

tance plus 4 different measures not considered in such study, making up to93

a total of 7. Further important contributions that differentiate the current94

work from previous studies include (a) an extensive summary and back-95

ground of the considered measures, with basic formulations, applications,96

and references, (b) the formalization of a robust evaluation methodology,97

exploiting standard out-of-sample cross-validation strategies, (c) the use of98

rigorous statistical significance tests in order to assess the superiority of a99

given measure, (d) the evaluation of both train and test accuracies, and (e)100

the assessment of the chosen parameters for each measure and data set.101

The rest of the paper is organized as follows. Firstly, we provide the102

background on time series similarity measures, outline some of their appli-103

cations, and detail their calculation (Sec. 2). Next, we explain the proposed104

evaluation methodology (Sec. 3). Subsequently, we report the obtained re-105

sults (Sec. 4). A conclusion section ends the paper (Sec. 5).106

2. Time series similarity measures107

The list of approaches for dealing with time series similarity is vast, and108

a comprehensive enumeration of them all is beyond the scope of the present109

work (for that, the interested reader is referred to Gusfield, 1997; Wang110

et al., 2012; Han and Kamber, 2005; Liao, 2005; Marteau, 2009; Fu, 2011).111

In this section, we present several representative examples of different ‘fam-112

ilies’ of time series similarity measures: lock-step measures (Euclidean dis-113

tance), feature-based measures (Fourier coefficients), model-based measures114

(auto-regressive), and elastic measures (DTW, EDR, TWED, and MJC).115

An effort has been made in selecting the most standard measures of each116

group, emphasizing the approaches that are reported to have good perfor-117

mance. We also try to avoid measures with too many parameters, since118
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such parameters may be difficult to learn in small training data sets and,119

furthermore, could lead to over-fitting. Alternative measures found to be120

consistently less accurate than DTW or EDR are not considered (see Wang121

et al., 2012). Apart from all the aforementioned measures, we also include a122

random dissimilarity measure, consisting of a uniformly distributed random123

number between 0 and 1. This will act as our random baseline, informing124

us of the error rates we can expect by chance. By comparing its accuracy to125

the one achieved by other measures, it also gives us qualitative information126

regarding their ‘usefulness’ or improved capacity for classification.127

2.1. Euclidean distance128

The simplest way to estimate the dissimilarity between two time series129

is to use any Ln norm such that130

dLn(x,y) =

(
M∑
i=1

(xi − yi)n
) 1

n

, (1)

where n is a positive integer, M is the length of the time series, and xi and131

yi are the i-th element of time series x and y, respectively. Measures based132

on Ln norms correspond to the group of so-called lock-step measures (Wang133

et al., 2012), which compare samples that are at exactly the same temporal134

location (Fig. 1, top). Notice that in case the time series x and y not being of135

the same length, one can always re-sample one to the length of the other, an136

approach that works well for a number of data sources (Keogh and Kasetty,137

2003).138

Using Eq. 1 with n = 2 we obtain the Euclidean distance, one of the139

most used time series dissimilarity measures, favored by its computational140

simplicity and indexing capabilities. Applications range from early clas-141

sification of time series (Xing et al., 2011) to rule discovery in economic,142

communications, and ecological time series (Das et al., 1998). Some au-143

thors state that the accuracy of the Euclidean distance can be very diffi-144

cult to beat, specially for large data sets containing many time series (cf.145

Wang et al., 2012). To the best of our knowledge, these claims are only146

quantitatively supported by one-nearest neighbor classification experiments147

using two artificially-generated/synthetic data sets (Geurts, 2002). We be-148

lieve that such claims need to be carefully assessed with extensive experi-149

ments and under broader conditions, considering multiple measures, differ-150

ent distance-exploiting algorithms, and real-world data sets.151
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Figure 1: Examples of dissimilarity calculations between time series x and y: Euclidean
distance (top), DTW alignment (center), and MJC (bottom). See text for details.

2.2. Fourier coefficients152

A simple extension of the Euclidean distance is not to compute it directly153

using the raw time series, but using features extracted from it. For instance,154

by first representing the time series by their Fourier coefficients (FC), one155

uses156

dFC(x,y) =

(
θ∑
i=1

(x̂i − ŷi)2

) 1
2

, (2)

where x̂i and ŷi are complex value pairs denoting the i-th Fourier coefficient157

of x̂ and ŷ, the discrete Fourier transforms (DFT) of the raw time series (Op-158
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penheim et al., 1999). Notice that in Eq. 2 we introduce the parameter θ,159

the actual number of considered coefficients. Because of the symmetry of160

the DFT, the sum only needs to be performed, at most, over half of the161

coefficients, so that θ = M/2. Notice that, by the Parseval theorem (Op-162

penheim et al., 1999), the Euclidean distance between FCs is equivalent163

to the standard Euclidean distance between the raw time series (see, e.g.,164

Agrawal et al., 1993). However, having parameter θ, one usually takes the165

opportunity to filter out high-frequency coefficients, i.e., coefficients x̂i and166

ŷi whose i is close to M/2. This has the (sometimes desired) effect of remov-167

ing rapidly-fluctuating components of the signal. Hence, if high frequencies168

are not relevant for the intended analysis or we have some high-frequency169

noise, this operation will usually carry some increase in accuracy. Further-170

more, if θ is relatively small, similarity computations can be substantially171

accelerated.172

Computing the Euclidean distance on a reduced set of features is an173

extremely common approach in literature. FCs are the standard choice for174

efficient time series retrieval, exploiting the aforementioned acceleration ca-175

pabilities. Pioneering work includes Agrawal et al. (1993) and Faloutsos176

et al. (1994) dealing with synthetic and financial data. More recent works177

use FCs with data from other domains. For instance, the case-based reason-178

ing system of Montani et al. (2006) uses FCs to compare medical time se-179

ries. Apart from FCs, wavelet coefficients have been extensively used (Chan180

and Fu, 1999). For instance, Olsson et al. (2004) use a wavelet analysis181

to remove noise and extract features in their system of fault diagnosis in182

industrial equipment. Research suggests that, although they provide some183

advantages, wavelet coefficients do not generally outperform FCs for the184

considered task (Wu et al., 2000). Comparatively less used time series fea-185

tures are based on singular value decomposition (Wu et al., 1996), piece-wise186

aggregate approximations (Keogh et al., 2001), or the coefficients of fitted187

polynomials (Cai and Ng, 2004) among others.188

2.3. Auto-regressive models189

A further option for computing similarities between time series using190

features extracted from them is to employ time series models (Liao, 2005;191

Fu, 2011). The main idea behind model-based measures is to learn a model192

of the two time series and then use its parameters for computing a sim-193

ilarity value. In the literature, several approaches follow this idea. For194

instance, Maharaj (2000) uses the p-value of a chi-square statistic to clus-195

ter auto-regressive coefficients representing stationary time series. Ramoni196

et al. (2002) present a Bayesian algorithm for clustering time series. They197
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transform each series into a Markov chain and then cluster similar chains198

to discover the most probable set of generating processes. Povinelli et al.199

(2004) use Gaussian mixture models of reconstructed phase spaces to clas-200

sify time series of different sources. Serrà et al. (2012a) study the use of the201

error of several learned models to identify similar time series corresponding202

to musical information.203

In the present study we consider the use of auto-regressive (AR) models204

for time series feature extraction. Given an AR model of the form205

xi = a0 +

η∑
j=1

ajxi−j , (3)

where aj denotes the j-th regression coefficient and η is the order of the206

model, we can estimate its coefficients, e.g., by the Yule-Walker function (Marple,207

1987). Then, the dissimilarity between two time series can be calculated, for208

instance, using the Euclidean distance between their estimated coefficients,209

analogously as in Eq. 2 (Piccolo, 1990). The number of AR coefficients is210

controlled by the parameter η which, similarly to θ with FCs, directly affects211

the final speed of similarity calculations (AR and FCs are usually estimated212

offline, prior to similarity calculations).213

2.4. Dynamic time warping214

Dynamic time warping (DTW; Sakoe and Chiba, 1978; Berndt and Clif-215

ford, 1994) is a classic approach for computing the dissimilarity between two216

time series. It has been exploited in countless works: to construct decision217

trees (Rodŕıguez and Alonso, 2004), to retrieve similar shapes from large218

image databases (Bartolini et al., 2005), to match incomplete time series219

in medical applications (Tormene et al., 2009), to align signatures in an220

identity authentication task (Kholmatov and Yanikoglu, 2005), etc. In ad-221

dition, several extensions for speeding up its calculations exist (Keogh and222

Ratanamahatana, 2005; Salvador and Chan, 2007; Lemire, 2009).223

DTW belongs to the group of so-called elastic dissimilarity measures (Wang224

et al., 2012), and works by optimally aligning (or ‘warping’) the time series225

in the temporal domain so that the accumulated cost of this alignment is226

minimal (Fig. 1, center). In its canonical form, this accumulated cost can227

be obtained by dynamic programming, recursively applying228

Di,j = f(xi, yj) + min {Di,j−1, Di−1,j , Di−1,j−1} (4)

for i = 1, . . . ,M and j = 1, . . . , N , being M and N the lengths of time229

series x and y, respectively. Except for the first cell, which is initialized to230
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D0,0 = 0, the matrix D is initialized to Di,j =∞ for i = 0, 1, . . . ,M and j =231

0, 1, . . . , N . In the case of dealing with uni-dimensional time series, the local232

cost function f(), also called sample dissimilarity function, is usually taken233

to be the square of the difference between xi and yj (Berndt and Clifford,234

1994), i.e., f(xi, yj) = (xi−yj)2. In the case of dealing with multidimensional235

time series or having some domain-specific knowledge, the local cost function236

f() must be chosen appropriately, although the Euclidean distance is often237

used. The final DTW dissimilarity measure typically corresponds to the238

total accumulated cost, i.e., dDTW(x,y) = DM,N . A normalization of dDTW239

can be performed on the basis of the alignment of the two time series, which240

is found by backtracking from DM,N to D0,0 (Rabiner and Juang, 1993).241

However, in preliminary analysis we found the normalized variant to be242

equivalent, or sensibly less accurate, than the unnormalized one.243

The canonical form of DTW presented in Eq. 4 can incorporate many244

variants. In particular, several constraints can be applied to the computation245

of D. A common constraint (Sakoe and Chiba, 1978) is to introduce a246

window parameter ω ∈ [0, N ], such that the recursive formula of Eq. 4 is247

only applied for i = 1, . . . ,M and248

j = max{1, i′ − ω}, . . . ,min{N, i′ + ω}, (5)

where i′ is progressively adjusted for dealing with different time series lengths,249

i.e., i′ = biN/Me, using b e as the round-to-the-nearest-integer operator.250

Notice that if ω = 0 and N = M , dDTW will correspond to the squared251

Euclidean distance (the value in DM,N will be the sum of the squared differ-252

ences, see Eqs. 1 and 4). Notice furthermore that, when ω = N , we are using253

the unconstrained version of DTW (the constraints in Eq. 5 have no effect).254

Thus, we include two DTW variants in a single formulation. In general, the255

introduction of constraints, and specially of the window parameter ω, car-256

ries some advantages (Keogh and Kasetty, 2003; Rabiner and Juang, 1993;257

Wang et al., 2012). For instance, constraints prevent ‘pathological align-258

ments’ and, therefore, usually provide better similarity estimates (patho-259

logical alignments typically go beyond the main diagonal of D). Moreover,260

constraints allow for reduced computational costs, since only a percentage261

of the cells in D needs to be examined (Sakoe and Chiba, 1978; Rabiner and262

Juang, 1993).263

DTW currently stands as the main benchmark against which new sim-264

ilarity measures need to be compared (Xi et al., 2006; Wang et al., 2012).265

Very few measures have been proposed that systematically outperform DTW266

for a number of different data sources. These measures are usually more267
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complex than DTW, sometimes requiring extensive tuning of one or more268

parameters. Additionally, it is often the case that no careful, rigorous, and269

extensive evaluation of the accuracy of such measures is done, and further270

studies fail to assess the statistical significance of their improvement. Thus271

we could say that the superiority of such measures is, at best, unclear. In272

this paper, we pay special attention to all these aspects in order to for-273

mally assess the considered measures under a common framework. As it274

will be shown, there exists a similarity measure outperforming DTW for a275

statistically significant margin (Sec. 4).276

2.5. Edit distance on real sequences277

Turning to previous evidence (Wang et al., 2012), we observe that per-278

haps the only measure able to seriously challenge DTW is the edit distance279

on real sequences (EDR; Chen et al., 2005). The EDR corresponds to the280

extension of the original edit or Levensthein distance (Levenshtein, 1966)281

to real-valued time series. Such extensions are not commonplace, but re-282

cent research is starting to focus on them (Morse and Patel, 2007; Marteau,283

2009). As noted by Chen et al. (2005), EDR outperformed previous edit284

distance variants for time series similarity.285

The computation of the EDR can be formalized by a dynamic program-286

ming approach. Specifically, we compute287

Di,j =


Di−1,j−1 if m(xi, yj) = 1

1 + min {Di,j−1, Di−1,j , Di−1,j−1}
if m(xi, yj) = 0,

(6)

for i = 1, . . . ,M and j = 1, . . . , N . The match function used is288

m(xi, yj) = Θ (ε− f (xi, yj)) , (7)

where Θ() is the Heaviside step function such that Θ(z) = 1 if z ≥ 0 and289

0 otherwise, and ε ∈ [0,∞) is a suitably chosen threshold parameter that290

controls the degree of resemblance between two time series samples being291

considered as a match. The first row of D is initialized to Di,0 = i for292

i = 0, 1, . . . ,M and the first column of D to D0,j = j for j = 0, 1, . . . , N .293

Following Chen et al. (2005), who initially reported some accuracy improve-294

ments of EDR over DTW, we set the local cost function f() to the absolute295

difference between the sample values, i.e., f(xi, yj) = |xi− yj |. This has the296

additional advantage that we can easily relate ε to the standard deviation297

of the time series (Sec. 3.5).298
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2.6. Time-warped edit distance299

The time-warped edit distance (TWED; Marteau, 2009) is perhaps the300

most interesting extension of dynamic programming algorithms like DTW301

and EDR. In a sense, it is a combination of these two. Like edit dis-302

tances, TWED comprises a mismatch penalty λ and, like dynamic time303

warping, it introduces a so-called stiffness parameter ν, controlling its ‘elas-304

ticity’ (Marteau, 2009). For uniformly-sampled time series, the formulation305

of TWED corresponds to306

Di,j = min {Di,j + Γxy, Di−1,j + Γx, Di,j−1 + Γy} , (8)

for i = 1, . . . ,M and j = 1, . . . , N , with307

Γxy = f(xi, yj) + f(xi−1, yj−1) + 2ν|i− j|,
Γx = f(xi, xi−1) + ν + λ,
Γy = f(yj , yj−1) + ν + λ,

(9)

where f() can be any Ln metric (Eq. 1). Following Marteau (2009), and as308

done for EDR as well, we choose f(xi, yj) = |xi − yj |. Together with DTW309

and EDR, the final dissimilarity value is taken to be dTWED(x,y) = DM,N .310

An interesting aspect of TWED is that, in its original formulation (Marteau,311

2009), it takes time stamp differences into account. Therefore, it is able to312

cope with time series of different sampling rates, including down-sampled313

time series. A further interesting aspect, and contrasting to DTW and other314

measures, is that TWED is a metric (Marteau, 2009). Thus, one can exploit315

the triangular inequality to speed up the search in the metric space. Finally,316

it is worth mentioning that the combination of the two previous characteris-317

tics results in a lower bound of the TWED dissimilarity, which can be used318

to speed up nearest neighbor retrieval.319

2.7. Minimum jump costs dissimilarity320

The main idea behind the minimum jump costs dissimilarity measure (MJC;321

Serrà and Arcos, 2012) is that, if a given time series x resembles y, the cu-322

mulative cost of iteratively ‘jumping’ between their samples should be small2323

(Fig. 1, bottom). Supposing that for the i-th jump we are at time step tx324

2An implementation of MJC is made available online by the authors: http://www.

iiia.csic.es/~jserra/downloads/2012_SerraArcos_MJC-Dissim.tar.gz (last accessed
on September 15, 2013).
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of time series x, and that we previously visited time step ty − 1 of y, the325

minimum jump cost is expressed as326

c
(i)
min = min

{
c
ty
tx , c

ty+1
tx , c

ty+2
tx , . . .

}
, (10)

where c
ty+∆
tx is the cost of jumping from xtx to yty+∆ and ∆ = 0, 1, 2, . . .327

is an integer time step increment such that ty + ∆ ≤ N . After a jump is328

made, tx and ty are updated accordingly: tx becomes tx + 1 and ty becomes329

ty + ∆ + 1. In case we want to jump from y to x, only tx and ty need to be330

swapped (Serrà and Arcos, 2012).331

To define a jump cost c
ty+∆
tx , the temporal and the magnitude dimensions332

of the time series are considered:333

c
ty+∆
tx = (φ∆)2 + f(xtx , yty+∆), (11)

where φ represents the cost of advancing in time and f() is the local cost334

function, which we take to be f(xtx , yty+∆) = (xtx − yty+∆)2, similarly to335

what is done with DTW (Eq. 4). Notice that, akin to the general formulation336

of TWED, the term (φ∆)2 introduces a nonlinear penalty that depends on337

the temporal gap. Here, the value of φ is set proportional to the standard338

deviation σ expected for the time series and, at the same time, proportional339

to the real-valued parameter β ∈ [0,∞), which controls how difficult is to340

advance in time (for more details see Serrà and Arcos, 2012). To obtain a341

symmetric dissimilarity measure, dMJC(x,y) = min {dXY, dYX} can be used,342

where dXY and dYX are the cumulative MJCs obtained by starting at x1 and343

y1, respectively.344

3. Evaluation methodology345

3.1. Classification scheme346

The efficacy of a time series similarity measure is commonly evaluated by347

the classification accuracy it achieves (Keogh and Kasetty, 2003; Wang et al.,348

2012). For that, the error ratio of a distance-based classifier is calculated349

for a given labeled data set, understanding the error ratio as the number of350

wrongly classified items divided by the total number of tested items. The351

standard choice for the classifier is the one-nearest neighbor (1NN) classifier.352

Following Wang et al. (2012), we can enumerate several advantages of using353

this approach. First, the error of the 1NN classifier critically depends on the354

similarity measure used. Second, the 1NN classifier is parameter-free and355

easy to implement. Third, there are theoretical results relating the error356
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of an 1NN classifier to errors obtained with other classification schemes.357

Fourth, some works suggest that the best results for time series classification358

come from simple nearest neighbor methods. For more details on these359

aspects we refer to Mitchell (1997); Hastie et al. (2009), and the references360

provided by Wang et al. (2012).361

3.2. Data sets362

We perform experiments with 45 publicly-available time series data sets363

from the UCR time series repository (Keogh et al., 2011). This is the world’s364

biggest time series repository, and some authors estimate that it makes up to365

more than 90% of all publicly-available, labeled data sets (Wang et al., 2012).366

The repository comprises synthetic, as well as real-world data sets, and367

also includes one-dimensional time series extracted from two-dimensional368

shapes (Keogh et al., 2011). The 45 data sets considered here correspond369

to the totality of the UCR repository, as by March 2013. Within such data370

sets, the number of classes ranges from 2 to 50, the number of time series371

per data set ranges from 56 to 9,236, and time series lengths go from 24372

to 1,882 samples. For further details on these data sets we refer to (Keogh373

et al., 2011).374

3.3. Cross-validation375

To properly assess a classifier’s error, out-of-sample validation needs to376

be done (Salzberg, 1997). In our experiments, we follow a standard 3-377

fold cross-validation scheme using balanced data sets (Mitchell, 1997; Hastie378

et al., 2009), i.e., using the same number of items per class. We repeat the379

validation 20 times and report average error ratios. Balancing the data sets380

allows for balanced error estimations regarding the class distribution, and381

repeating cross-fold validation several times allows for more precise estima-382

tions (Mitchell, 1997; Hastie et al., 2009). The use of a cross-fold validation383

scheme is essential for avoiding the bias that a particular split of the data384

could introduce (Salzberg, 1997; Hastie et al., 2009).385

We also computed error ratios for the original splits provided in the386

UCR time series repository (Keogh et al., 2011). This allowed us to confirm387

that the 1NN error ratios from our implementations of DTW and Euclidean388

distance agree with the values reported there. In addition, we observed that389

the error ratios obtained by such splits were substantially different from the390

ones obtained by cross-validation, up to the point of even modifying the391

ranking of some algorithms with respect to those error ratios in some data392

sets. This indicates a potential bias in such individual splits, an aspect that393

is well-known in the machine learning community (Salzberg, 1997; Mitchell,394
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1997; Hastie et al., 2009). We refer the interested reader to any machine395

learning textbook for a more in-depth discussion of cross-fold validation396

schemes and their appropriateness over individual splits. Besides, individual397

splits difficult statistical significance assessment (see below). A full account398

of the raw error ratios for all measures and data sets is available online3,399

including the error ratios for the aforementioned original splits.400

3.4. Statistical significance401

To assess the statistical significance of the difference between two error402

ratios we employ the well-known Wilcoxon signed-rank test (Hollander and403

Wolfe, 1999). The Wilcoxon signed-rank test is a non-parametric statistical404

hypothesis test used when comparing two repeated measurements (or related405

samples, or matched samples) in order to assess whether their population406

mean ranks differ. It is the natural alternative to the Student’s t-test for407

dependent samples when the population distribution cannot be assumed to408

be normal (Hollander and Wolfe, 1999). For a given data set, we use as409

input the 20 × 3 accuracy values obtained for each classifier (i.e., the test410

fold accuracies). Besides, for comparing similarity measures on a more global411

basis using all data sets, we employ as input the 45 average accuracy values412

obtained for each data set. Following common practice (Salzberg, 1997;413

Hollander and Wolfe, 1999), the threshold significance level is set to 5%.414

Additionally, to compensate for multiple pairwise comparisons, we apply415

the Holm-Bonferroni method (Holm, 1979), a post-hoc statistical analysis416

method controlling the so-called family-wise error rate that is more powerful417

than the usual Bonferroni correction (Demšar, 2006).418

3.5. Parameter choices419

Before performing the experiments, all time series from all data sets were420

z-normalized so that each individual time series had zero mean and unit vari-421

ance. Furthermore, we optimized the measures’ parameters in the training422

phase of our cross-validation. This optimization step consisted of a grid423

search within a suitable range of parameter values, forcing the same number424

of parameter combinations per algorithm (Table 1). The values of the grid425

are chosen according to common practice and the specifications given in the426

papers introducing each measure (Sec. 2). Specifically, for FC we used 25427

linearly-spaced integer values of θ ∈ [2, N/2]. For AR we used 25 linearly-428

spaced integer values of η ∈ [1, 0.25N ] (because of the z-normalization, we429

3http://www.iiia.csic.es/~jserra/downloads/2013_SerraArcos_

AnEmpiricalEvaluation.tar.gz (last accessed on September 15, 2013).
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Measure Parameter Minimum value Maximum value Number of steps Extra value

FC θ 2 0.5N 25 -
AR η 1 0.25N 25 -
DTW ω 0 0.25N 24 N
EDR ε 0.02σ σ 25 -
TWED ν 10−5 1 5 -
TWED λ 0 1 5 -
MJC β 0 25 24 1010

Table 1: Parameter grid for the considered similarity measures (recall that N corresponds
to the length of the time series and, since we z-normalize all time series, σ = 1). For DTW
and MJC we consider an extra value corresponding to unconstrained DTW and to the
Euclidean configuration of MJC, respectively. All parameter values were linearly spaced
except ν, which was logarithmically spaced.

remove a0 in Eq. 3). For DTW we used 24 linearly-spaced integer values430

of ω ∈ [0, 0.25N ] plus w = N , the unconstrained DTW variant (we also431

considered ω ∈ [0, 0.1N ] and ω ∈ [0, 0.15N ], but obtained no statistically432

significant differences from ω ∈ [0, 0.25N ] and none of the overall results433

changed; considering ω ∈ [0, 0.05N ] made DTW closely approach the results434

of the Euclidean distance). For EDR we used 25 linearly-spaced real values435

of ε ∈ [0.02σ, σ], σ being the standard deviation of the time series (because of436

the z-normalization σ = 1). For TWED we used all possible 25 combinations437

for ν = [10−4, 10−3, 10−2, 10−1, 1] and λ = [0, 0.25, 0.5, 0.75, 1]. For MJC we438

used 24 linearly-spaced real values of β ∈ [0, 25] plus β = 1010 (in practice439

corresponding to the squared Euclidean distance variant, Eq. 11). After the440

grid search, the parameter value yielding to the lowest leave-one-out error441

ratio for the training set was kept for out-of-sample testing.442

4. Results443

4.1. Classification performance: test444

If we look at the overall results, we see that all considered measures445

clearly outperform the random baseline for practically all the 45 data sets446

(Table 2). Furthermore, we see that some of them achieve near-perfect accu-447

racies for a number of data sets (e.g., CBF, CinC ECG torso, ECGFiveDays,448

Two Patterns, or TwoLeadECG). However, no single measure achieves the449

best performance for all the data sets. The Euclidean distance is found to450

be the best-performing measure in 2 data sets, FC is the best-performing in451

4 data sets, AR in 1, DTW in 6, EDR in 7, TWED in 20, and MJC in 5.452

If we count only the data sets where one measure statistically significantly453
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outperforms the rest, the numbers reduce to 0 for Euclidean, 2 for FC, 1 for454

AR, 2 for DTW, 2 for EDR, 6 for TWED, and 0 for MJC. Thus, interest-455

ingly, there are some data sets where choosing a specific similarity measure456

can make a difference.457

Beyond accuracies, this latter aspect can potentially highlight inherent458

data set qualities. For instance, the fact that a feature/model-based measure459

clearly outperforms the others for a particular data set indicates that such460

time series may be very well characterized by the extracted features/fitted461

model (e.g., FC with Adiac for features and AR with ChlorineConcentra-462

tion for models). In addition, the good or bad performance of Euclidean463

and elastic measures gives us an intuition of the importance of alignments,464

warping, or sample correspondences (e.g., these may be very important for465

Trace and the three Face data sets, where there is an order of magnitude466

difference between Euclidean and warping-based measures, but not much467

for DiatomSizeReduction or NonInvasiveFetalECG2, where Euclidean gets468

numbers that are very close, or even better than the ones obtained by the469

warping-based measures).470

In general, we see that TWED outperforms the other measures in several471

data sets, with an average rank of 2.29 (Table 2). In fact, if we compare472

the considered measures on a more global scale, taking the matched error473

ratios across data sets (Sec. 3.4), we obtain that TWED is statistically474

significantly superior to the rest (Fig. 2). Next, we see that DTW, MJC, and475

EDR form a group of equivalent measures, with no statistically significant476

difference between them. The performed statistical analysis also separates477

the remaining measures from these and also between themselves. Apart478

from this more global analysis, further pairwise comparisons can be made,479

confirming the aforementioned global tendencies (Fig. 3).480

4.2. Classification performance: test vs. train481

For choosing the parameters for a given measure and data set we solely482

dispose of the training data. Hence, it is important to know whether the483

error ratios for training and testing sets are similar, otherwise one could484

be incurring into the so-called “Texas sharpshooter fallacy” (Batista et al.,485

2011), i.e., one could not predict a measure’s utility ahead of time by just486

looking at training data. For comparing train and test error ratios, we can487

compute an error gain value for a couple of measures on each data set and488

check whether such values for train and test agree. To do so, a kind of real-489

valued contingency table can be plotted, called the “Texas sharpshooter490

plot” by Batista et al. (2011). Due to space reasons, we here only show such491

contingency tables for TWED against DTW and Euclidean distance (Fig. 4).492
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# Data set Random Euc FC AR DTW EDR TWED MJC

1 50words 0.969 0.503 0.685 0.867 0.332 0.289 0.237∗ 0.319
2 Adiac 0.970 0.345 0.266∗ 0.725 0.355 0.423 0.335 0.346
3 Beef 0.763 0.417 0.390 0.504 0.472 0.439 0.506 0.448
4 CBF 0.655 0.013 0.358 0.432 0.000 0.002 0.000 0.001
5 ChlorineConcentration 0.673 0.071 0.063 0.038∗ 0.072 0.094 0.093 0.070
6 CinC ECG torso 0.749 0.002 0.008 0.102 0.001 0.000∗ 0.001 0.002
7 Coffee 0.394 0.019 0.024 0.139 0.014 0.031 0.021 0.023
8 Cricket X 0.913 0.378 0.348 0.713 0.209 0.237 0.190∗ 0.253
9 Cricket Y 0.928 0.423 0.411 0.814 0.222 0.224 0.209 0.267

10 Cricket Z 0.920 0.380 0.353 0.731 0.212 0.235 0.194∗ 0.254
11 DiatomSizeReduction 0.744 0.008 0.011 0.222 0.010 0.016 0.012 0.007
12 ECG200 0.515 0.130 0.145 0.227 0.139 0.148 0.109 0.130
13 ECGFiveDays 0.505 0.007 0.000 0.072 0.003 0.003 0.005 0.001
14 FaceAll 0.931 0.139 0.152 0.649 0.053 0.019 0.019 0.034
15 FaceFour 0.679 0.111 0.149 0.545 0.069 0.028 0.025 0.024
16 FacesUCR 0.929 0.138 0.148 0.648 0.052 0.019 0.018 0.041
17 Fish 0.871 0.183 0.234 0.617 0.184 0.084 0.094 0.114
18 Gun Point 0.506 0.058 0.031 0.149 0.023 0.010 0.017 0.014
19 Haptics 0.793 0.604 0.610 0.678 0.554 0.611 0.544 0.563
20 InlineSkate 0.862 0.524 0.601 0.497 0.462 0.456 0.416 0.411
21 ItalyPowerDemand 0.489 0.035 0.083 0.261 0.033 0.042 0.036 0.034
22 Lighting2 0.488 0.297 0.281 0.450 0.162 0.220 0.161 0.254
23 Lighting7 0.817 0.371 0.463 0.707 0.252 0.362 0.256 0.336
24 Mallat 0.870 0.018 0.020 0.058 0.015 0.006 0.006 0.014
25 MedicalImages 0.912 0.313 0.455 0.458 0.247 0.330 0.228 0.305
26 MoteStrain 0.513 0.087 0.162 0.336 0.058 0.024 0.021 0.034
27 NonInvasiveFetalECG1 0.978 0.171 0.213 0.401 0.175 0.186 0.182 0.169
28 NonInvasiveFetalECG2 0.975 0.106 0.146 0.296 0.107 0.118 0.108 0.110
29 OliveOil 0.644 0.104 0.185 0.663 0.154 0.194 0.146 0.127
30 OSULeaf 0.832 0.409 0.306 0.617 0.359 0.191∗ 0.232 0.256
31 SonyAIBORobotSurface 0.510 0.017 0.040 0.079 0.018 0.026 0.017 0.015
32 SonyAIBORobotSurfaceII 0.489 0.018 0.032 0.113 0.021 0.023 0.016 0.019
33 StarLightCurves 0.671 0.124 0.070∗ 0.274 0.083 0.107 0.097 0.109
34 SwedishLeaf 0.932 0.196 0.142 0.376 0.129 0.101 0.094 0.100
35 Symbols 0.838 0.038 0.074 0.260 0.019 0.015 0.016 0.018
36 Synthetic control 0.834 0.087 0.393 0.511 0.009∗ 0.047 0.014 0.034
37 Trace 0.757 0.169 0.117 0.117 0.000∗ 0.034 0.011 0.038
38 Two Patterns 0.743 0.020 0.491 0.724 0.000 0.000 0.000 0.001
39 TwoLeadECG 0.507 0.006 0.012 0.202 0.001 0.002 0.001 0.003
40 UWaveGestureLibrary X 0.872 0.234 0.566 0.694 0.199 0.214 0.192∗ 0.203
41 UWaveGestureLibrary Y 0.876 0.288 0.631 0.645 0.263 0.280 0.265 0.267
42 UWaveGestureLibrary Z 0.879 0.298 0.546 0.678 0.265 0.271 0.250∗ 0.261
43 Wafer 0.497 0.004 0.003 0.013 0.005 0.002 0.003 0.005
44 WordsSynonyms 0.960 0.496 0.675 0.855 0.327 0.304 0.251∗ 0.310
45 Yoga 0.500 0.070 0.108 0.333 0.061 0.034 0.037 0.047

Average rank 7.99 4.40 5.07 6.80 3.00 3.42 2.29 3.04

Table 2: Error ratios for all considered measures and data sets. The symbol ∗ denotes a
statistically significant difference with respect to the other measures for a given data set
(p < 0.05, Sec. 3.4). The last row contains the average rank of each measure across all
data sets (i.e., the average position after sorting the errors for a given data set in ascending
order).

The results show that error gains between TWED and DTW/Euclidean493

mostly agree between training and testing. As mentioned in Sec. 3.3, a full,494

raw account of train and test errors is available online. Having a close look495
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Figure 2: Box plot for the distribution of performance ranks of each measure across data
sets. The dashed lines denote statistically significantly equivalent groups of measures
(p < 0.05, Sec. 3.4).

at those full results, we can see that, in general, the best-performing measure496

at the training stage is also the best-performing measure at the testing stage.497

The few exceptions can be easily listed (Table 3). The relative rankings for498

the measures that do not perform best also mostly agree between train and499

test.500

4.3. Parameter assessment501

We finally report on the parameters chosen for each measure after train-502

ing with 66% of balanced data (Fig. 5). Firstly, we observe that, in the503

vast majority of cases, a specific value for a given parameter is consistently504

chosen across the 20× 3 performed iterations (we see clear peaks in the dis-505

tributions of Fig. 5). Among these consistent choices, perhaps TWED and506

MJC present the most spread distributions. Such aspect, together with the507

fairly good accuracies obtained for these two specific measures (Sec. 4.1),508

indicates a certain degree of robustness against specific parameter choices.509

This is a very desirable quality of a time series similarity measure, even more510

if we have to train a classifier with a potentially incomplete set of training511

instances.512
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Figure 3: Error ratios comparison between DTW and TWED (notice the logarithmic axes).
The lower-right triangular part corresponds to TWED outperforming DTW, whereas the
upper-left part corresponds to the opposite case. The green squares indicate statistically
significant performance differences (p < 0.05, Sec. 3.4).

Next, we see that the selected parameters are generally not in the borders513

of the specified ranges, thus indicating that a reasonable choice for these has514

been made (Fig 5). This is particularly true for DTW and EDR. Moreover,515

in the case of DTW, we see that ω values generally coincide with the ones516

suggested in the original data source (Keogh et al., 2011). In a total of 45517

data sets we see 20 coincidences within ±0.02 and 32 coincidences within518

±0.04. The only measure that could potentially benefit from reconsidering519

the parameters’ range is TWED. As it can be seen, ν and λ seem to be520

consistently chosen in the lower and upper parts of the specified ranges,521

respectively. This suggests that the best combination for some data sets522

could lie outside the parameter space outlined by Marteau (2009), i.e., in523

0 < ν < 10−4 and/or λ > 1. If that was the case, TWED could potentially524

achieve even much higher accuracies. Interestingly, TWED is not the best-525

performing measure for some of the data sets where ‘border’ parameter526

values are chosen (e.g., CBF, Fish, StarLightCurves, TwoPatterns).527

Finally, we can comment on the particularities of some data sets with528

relation to classification. For instance, we see that a relatively large window529
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Figure 4: Texas sharpshooter plots for TWED against DTW (left) and Euclidean distance
(right). Here, error gain is measured by subtracting the TWED error ratio from the one of
DTW/Euclidean. Dots around the diagonal indicate agreement of error gain for train and
test. False positives, i.e., dots in the lower-right quadrant, indicate that TWED, being
the best measure after training, does not reach the lowest error at testing. For instance,
in the case of TWED vs. Euclidean (right), the OliveOil data set false positive stands out
at coordinates (0.008,−0.042) (see also Table 3). For further details on the construction
of Texas sharpshooter plots we refer to Batista et al. (2011).

parameter ω (DTW) is chosen for data sets 36 to 39 (i.e., Synthetic control,530

Trace, Two Patterns, and TwoLeadECG). This denotes that tracking align-531

ments or warping paths beyond the main diagonal of D (Eq. 4) might be532

advantageous for classification in these data sets. In fact, when we re-ran the533

same experiment restricting ω to be between 0 and 0.1 we obtained the same534

or worse error rates, an effect that can also be observed by comparing the535

results obtained for the UCR splits (Keogh et al., 2011) which, as mentioned536

in Sec. 3.3, are available online. The stiffness parameter ν (TWED), which537

accounts for a similar but opposite concept (Sec. 2.6), takes relatively small538

values. Such agreement across different measures reinforces the hypothesis539

that tracking intricate alignments or strongly warped paths may be advan-540

tageous for these data sets. Analogous and complementary conclusions can541

be derived for other data sets. For instance, in data sets 11 (DiatomSizeRe-542

duction) and 13 (ECGFiveDays), a small number of both FCs θ and AR543

coefficients η is chosen. As FC and AR achieve competitive accuracies in544

those specific data sets, we could suspect that low-frequency components are545

important for correctly classifying the instances in those data sets (Secs. 2.2546

and 2.3).547

20



# Data set Measure Outperf. by Gain

3 Beef FC EDR 0.049
4 CBF TWED DTW <0.001
7 Coffee DTW FC 0.004

12 ECG200 TWED MJC 0.002
15 FaceFour MJC EDR 0.007
18 Gun Point EDR MJC 0.004
19 Haptics TWED MJC 0.009
21 ItalyPowerDemand DTW EDR 0.001
28 NonInvasiveFetalECG2 Euclidean TWED 0.001
29 OliveOil Euclidean TWED 0.008
39 TwoLeadECG TWED DTW <0.001

Table 3: List of best-performing measures in testing (the column “Measure”) but actually
outperformed by others in training (the column “Outperf. by”). The column “Gain”
corresponds to the absolute value of the train error gain, i.e., the absolute difference
between error ratios at training stage (see also Fig. 4).

5. Conclusion548

From a general perspective, the obtained results show that there is a549

group of equivalent similarity measures, with no statistically significant dif-550

ferences among them (DTW, EDR, and MJC). The existing literature sug-551

gests that some longest common sub-sequence approaches, together with al-552

ternative variants of DTW and EDR, could potentially join this group (Marteau,553

2009; Wang et al., 2012). However, according to the results reported here,554

the TWED measure originally proposed by Marteau (2009) seems to consis-555

tently outperform all the considered distances, including DTW, EDR, and556

MJC. Thus, we believe this often unconsidered measure should take a base-557

line role in future evaluations of time series similarity measures (beyond558

accuracy, additional properties enumerated in Sec. 2.6 make it also very559

attractive). The Euclidean distance, although somehow competitive, gener-560

ally performs statistically significantly worse than TWED, DTW, MJC, and561

EDR. Its accuracy on large data sets was also not very impressive. Below562

Euclidean distance, but statistically significantly above the random baseline,563

we find FC and AR measures. Of course, the general statements above do564

not exclude the possibility that a particular measure or variant could be very565

well-suited for a specific data set and statistically significantly outperform566

the rest (cf. Keogh and Kasetty, 2003). In Sec. 4.1 have enumerated several567
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Figure 5: Percentage of times (color code) that a given parameter value (vertical axis) is
chosen for each data set (horizontal axis; for the names behind each number see Table 2).
From top to bottom, the plots correspond to FC (θ), AR (η), DTW (ω), EDR (ε), TWED
(ν), TWED (λ), and MJC (β).
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examples of that.568

When comparing train and test errors, we have seen that these mostly569

agree, with train errors generally providing a good guess of the test errors on570

unseen data. We have listed some notable exceptions to this rule and used571

Texas sharpshooter plots to further assess this aspect for TWED vs. DTW572

and Euclidean. When assessing the best parameter choices for each measure,573

we have seen that the considered ranges are typically suitable for the task574

at hand. We have also discussed some particularities regarding parameter575

choices and the nature of a few data sets.576

The similarity measure is a crucial step in computational approaches577

dealing with time series. However, there are some additional issues worth578

mentioning, in particular with regard to post-processing steps focused on579

improving similarity assessments (pre-processing steps are sufficiently well-580

discussed in the existing literature, see, e.g., Keogh and Kasetty (2003);581

Han and Kamber (2005); Wang et al. (2012) and references therein). A582

very interesting post-processing step is the complexity-invariant correction583

factor introduced by Batista et al. (2011). Such correction factor prevents584

from assigning low dissimilarity values to time series of different complexity,585

thus preventing the inclusion of time series of different nature in the same586

cluster. The way to assess complexity depends on the situation, but Batista587

et al. (2011) introduce a quite straightforward way: the L2 norm of the588

sample-based derivative of a time series. Overall, considering different types589

of ‘invariance’ is a sensible approach (Batista et al., 2011, provide a good590

overview). Here, we have already implicitly considered a number of them,591

although more as a pre-processing or method-specific strategy: global ampli-592

tude and scale invariance (z-normalization), warping invariance (any elastic593

measure, in our case DTW, EDR, TWED, and MJC), phase invariance594

(AR4), and occlusion invariance (EDR and TWED).595

Another interesting post-processing step is the hubness correction for596

time series classification introduced by Radovanovič et al. (2010). Based on597

the finding that some instances in high-dimensional spaces tend to become598

hubs by being unexpectedly (and usually wrongly) considered nearest neigh-599

bors of several other instances, a correction factor can be introduced. This600

usually does not harm classification accuracy and can definitely improve per-601

formance for some data sets (Radovanovič et al., 2010). A further strategy602

for enhancing time series similarity and potentially reducing hubness is the603

use of unsupervised clustering algorithms to prune nearest neighbor candi-604

4For FC we use both phase and magnitude (Sec. 2.2).
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dates (Serrà et al., 2012b). Future work should focus on the real quantitative605

impact of strategies for enhancing time series similarity like the ones above,606

with a special emphasis on its impact to different measures and classification607

schemes.608

The empirical comparison of multiple approaches across a large-scale case609

basis is an important and necessary step towards any mature research field.610

Besides getting a more global picture and highlighting relevant approaches,611

it pushes towards unified validation procedures and analysis tools. It is612

hoped that this article will serve as a steppingstone for those interested in613

advancing in time series similarity, clustering, and classification.614
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Demšar, J., 2006. Statistical comparison of classifiers over multiple data645

sets. Journal of Machine Learning Research 7, 1–30.646

Faloutsos, C., Ranganathan, M., Manolopoulos, Y., 1994. Fast subsequence647

matching in time-series databases, in: Proc. of the ACM SIGMOD Int.648

Conf. on Management of Data, pp. 419–429.649

Fu, T.C., 2011. A review on time series data mining. Engineering Applica-650

tions of Artificial Intelligence 24, 164–181.651

Geurts, P., 2002. Contributions to decision tree induction: bias/variance652

tradeoff and time series classification. Ph.D. thesis. University of Liège,653
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