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Abstract
In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), dis-

cussing both the constraints on the magnitudes of the three transition moments Λi as well as

the role of the CP violating phases present both in the mixing matrix and in the NMM matrix.

The scattering of solar neutrinos off electrons in Borexino provides the most stringent restric-

tions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit

on the effective neutrino magnetic moment which follows from the most recent Borexino data is

3.1 × 10−11µB at 90% C.L. This corresponds to the individual transition magnetic moment con-

straints: |Λ1| ≤ 5.6 × 10−11µB, |Λ2| ≤ 4.0 × 10−11µB, and |Λ3| ≤ 3.1 × 10−11µB (90% C.L.),

irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates

present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM

matrix. For this reason we also provide a global analysis including the case of reactor and accelera-

tor neutrino sources, and presenting the resulting constraints for different values of the relevant CP

phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin

the full profile of the neutrino electromagnetic properties.
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I. INTRODUCTION

Neutrino physics has now reached the precision age characterizing a mature science.

Underpinning the origin of neutrino mass remains an open challenge, whose investigation

could help us find our way towards the ultimate theory of everything [1]. Indeed, the search

for new phenomenological signatures associated to massive neutrinos may yield valuable

clues towards the structure of the electroweak theory beyond the Standard Model (SM).

Although the field is very active, most of the experimental efforts are devoted to explore the

neutrino mass pattern through the study of oscillations [2, 3]. However it is also of great

importance to investigate the implications of dimension-6 non-standard interactions [4–6] as

well as electromagnetic properties of the neutrinos [7–15]. Here we focus on the latter, which

has also been a lively subject of phenomenological research in the last few years [16–21].

Indeed, different experiments have set constraints coming mainly from reactor neutrino

studies [22, 23] as well as from solar neutrino data [16, 17]. Future tests from experiments

measuring coherent neutrino-nucleus scattering are expected to improve the current bounds

on neutrino electromagnetic properties [24–28]. Most of the constraints reported by the

experiments refer to the case of a Dirac neutrino magnetic moment, despite the fact that

Majorana neutrinos are better motivated from the theoretical point of view [29]. However

the Majorana case has been considered in Refs. [17, 18] where a more complete analysis

was performed. Other recent theoretical studies of the neutrino magnetic moment in the

case of Majorana neutrinos can be found in [30] and [31].

In this article we perform a combined analysis of reactor, accelerator and solar neutrino

data, in order to obtain constraints on the Majorana neutrino transition magnetic moments.

We include the most recent results from the TEXONO reactor experiment [23], as well as the

recent results from the Borexino experiment [32]. Data from the reactor experiments Kras-

noyarsk [33], Rovno [34] and MUNU [35] as well as the accelerator experiments LAMPF [36]

and LSND [37] are also included. Moreover, in our analysis we take into account the up-

dated values of the neutrino mixing parameters as determined in global oscillation fits [2],

including the value of θ13 implied by Daya-Bay [38, 39] and RENO reactor data [40], as

well as accelerator data [41]. Moreover, we pay attention to the role of the, yet unknown,

leptonic CP violating phases.

II. THE NEUTRINO MAGNETIC MOMENT

In this section we will establish the notation used in the description of neutrino magnetic

moments. This will be very important in order to understand the constraints and the

differences between Dirac and Majorana cases. For the general Majorana case we have the
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effective Hamiltonian [9]

HM
em = −1

4
νTLC

−1 λ σαβνLFαβ + h.c., (1)

where λ = µ − id is an antisymmetric complex matrix λαβ = −λβα, so that µT = −µ and

dT = −d are imaginary. Hence, three complex or six real parameters are needed to describe

the Majorana neutrino case.

On the other hand, for the particular case 1 of Dirac neutrino magnetic moments, the

corresponding Hamiltonian is given by [42]

HD
em =

1

2
ν̄R λ σ

αβνLFαβ + h.c., (2)

with λ = µ − id being an arbitrary complex matrix. Hermiticity now implies that µ and

d obey µ = µ† and d = d†. We should stress that experimental measurements usually

constrain some process-dependent effective parameter combination. Even in the case of

laboratory neutrino experiments, where the initial neutrino flux is fixed to have a well

determined given flavor, there is no sensitivity to the final neutrino state and therefore

several possibilities must be envisaged. For the case of solar neutrino experiments, one

needs to take into account that the original electron neutrino flux experiences oscillations

on its way to the Earth. Therefore, most of the neutrino magnetic moment constraints

discussed in the literature correspond to restrictions upon some process-dependent effective

parameter. The latter is expressed in terms of the fundamental parameters describing the

transition magnetic moments and their phases, as well as the neutrino mixing parameters.

From now on we are concerned with the case of three “genuine” active Majorana neu-

trinos. As already mentioned, the Dirac case, with three active plus three sterile neutrinos,

would be a particular case of the six-dimensional Majorana neutrino picture, in which the

standard Dirac magnetic moment is viewed as a transition moment connecting an “active”

with a “sterile” neutrino.

Before we express our results in terms of a general phenomenological notation, we can

illustrate the general features of the neutrino magnetic moment for the simplest model,

namely we consider the case of Majorana neutrino masses in the standard SU(2)L ⊗ U(1)Y

gauge theory [10], in which case the charged current contribution gives

µij =
3eGF

16π2
√

2
(mνi +mνj)

τ∑
α=e

i Im

[
U∗αiUαj

(
mlα

MW

)2
]
. (3)

Notice that, in this example, if the masses of the charged leptons were degenerate, then the

off-diagonal transition magnetic moments would be zero, due to the assumed unitarity of the

1 A Dirac neutrino is equivalent to two Majorana neutrinos of same mass and opposite CP [29]. Indeed, in

two-component form, the three Dirac neutrinos are described by a 6×6 transition moment matrix.
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U matrix. However, in reality, this is not the case and the transition magnetic moments are

nonzero. Moreover, the phases in µij will be the same as present in the lepton mixing matrix

U and, therefore, could in principle be reconstructed. However, due to the proportionality

with the neutrino mass, the magnetic moments expected just from the SU(2)L ⊗ U(1)Y

gauge sector are too small to be phenomenologically relevant.

Although enhanced Majorana transition moments are possible in extended theories, this

discussion is beyond the scope of this paper. However, we quote, as an illustrative example,

the case of an extended model with a charged scalar singlet η+ suggested in Ref. [43]. In

this case the neutrino transition magnetic moment would be dominated by a charged Higgs

boson contribution, and has been estimated as

µij = e
∑
k

fkig
†
kj + gikf

†
kj

32π2

mlk

m2
η

(
ln
m2
η

ml
2
k

− 1

)
. (4)

Indeed, in principle this scalar contribution could be higher than the one discussed in

Eq. (3). Note that in the case of Higgs-dominated NMM one could, in principle, introduce

new CP phases in addition to those characterizing the lepton mixing matrix.

The above discussion could be translated into a more phenomenological approach in which

the Dirac NMM is described by an arbitrary complex matrix λ = µ + id (λ̃) in the flavor

(or mass) basis, while for the Majorana case the matrix λ takes the form

λ =

 0 Λτ −Λµ

−Λτ 0 Λe

Λµ −Λe 0

 , λ̃ =

 0 Λ3 −Λ2

−Λ3 0 Λ1

Λ2 −Λ1 0

 , (5)

where we have used the notation λαβ = εαβγΛγ, where we assume the transition magnetic

moments Λα and Λi to be complex parameters: Λα = |Λα|eiζα , Λi = |Λi|eiζi . We now turn

to the issue of extracting information on these parameters from experiment.

A. The effective neutrino magnetic moment

For the particular case of neutrino scattering off electrons, the differential cross section

for the magnetic moment contribution will be given by(
dσ

dT

)
em

=
πα2

m2
eµ

2
B

(
1

T
− 1

Eν

)
µν

2, (6)

where µν is an effective magnetic moment accounting for the NMM contribution to the

scattering process.
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The effective magnetic moment µν is defined in terms of the components of the NMM

matrix in Eq. (5). In the flavor basis this can be written as [17, 42]

(µFν )2 = a†−λ
†λa− + a†+λλ

†a+ (7)

where a− and a+ denote the negative and positive helicity neutrino amplitudes, respectively.

One finds

(µFν )2 = |a1
−Λµ − a2

−Λe|2 + |a1
−Λτ − a3

−Λe|2 + |a2
−Λτ − a3

−Λµ|2 +

|a1
+Λµ − a2

+Λe|2 + |a1
+Λτ − a3

+Λe|2 + |a2
+Λτ − a3

+Λµ|2. (8)

In order to write the expression for the effective neutrino magnetic moment in the mass

basis we will need the transformations

ã− = U †a−, ã+ = UTa+, λ̃ = UTλU. (9)

leading to the expression

(µMν )2 = ã†−λ̃
†λ̃ã− + ã†+λ̃λ̃

†ã+. (10)

so that

(µMν )2 = |ã1
−Λ2 − ã2

−Λ1|2 + |ã1
−Λ3 − ã3

−Λ1|2 + |ã2
−Λ3 − ã3

−Λ2|2 +

|ã1
+Λ2 − ã2

+Λ1|2 + |ã1
+Λ3 − ã3

+Λ1|2 + |ã2
+Λ3 − ã3

+Λ2|2, (11)

where ãi± denotes the i-th component of the ã± vector.

Before starting the calculations of the effective Majorana magnetic moment parameter

combination corresponding to the different experimental setups we would like to comment

on the counting of relevant complex phases. First we write the three complex phases in the

transition magnetic moment matrix as ζ1, ζ2 and ζ3. From the leptonic mixing matrix we

have another 3 CP-violating phases: the Dirac phase characterizing neutrino oscillations, δ,

and the two Majorana phases involved in lepton number violating processes [29]. As noticed

in Ref. [42], three of these six complex phases are irrelevant, as they can be reabsorbed in

different ways. In what follows we give our results in terms of the Dirac CP phase δ and the

relative difference between the transition magnetic moment phases, ξ1 = ζ3−ζ2, ξ2 = ζ3−ζ1,

ξ3 = ζ2 − ζ1, of which only two are independent.

1. Effective neutrino magnetic moment at reactor experiments.

We now consider the effective neutrino magnetic moment parameter relevant for the case

of reactor neutrinos. In this case we have an initial electron antineutrino flux, so that the
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FIG. 1: Effective Majorana transition magnetic moment probed in reactor neutrino experiments,

versus the relative phases δij for three limiting cases where one of the absolute values |Λk| vanishes.

only non–zero entry in the flavor basis will be a1
+ = 1. Therefore, from Eq. (8) we get

the following expression for the effective Majorana transition magnetic moment strength

parameter describing reactor neutrino experiments:

(µFR)2 = |Λµ|2 + |Λτ |2. (12)

which in the mass basis leads to the expression

(µMR )2 = |Λ|2 − s2
12c

2
13|Λ2|2 − c2

12c
2
13|Λ1|2 − s2

13|Λ3|2 (13)

− 2s12c12c
2
13|Λ1||Λ2| cos δ12 − 2c12c13s13|Λ1||Λ3| cos δ13

− 2s12c13s13|Λ2||Λ3| cos δ23

where cij = cos θij, sij = sin θij and δ12 = ξ3, δ23 = ξ2 − δ, and δ13 = δ12 − δ23. As already

noted, δ is the Dirac phase of the leptonic mixing matrix and ξ3 = ζ2− ζ1, ξ2 = ζ3− ζ1, are

the relative phases introduced by the presence of the magnetic moment. This expression

takes into account that θ13 is different from zero, and hence generalizes the previous result

given in [17].

It in important to notice that the effective magnetic moment in Eq. (13) implies a

degeneracy between the leptonic phase δ and those present in the neutrino transition

magnetic moments, ξ2 and ξ3. As a result, it will not be possible to disentangle these phases

without further independent experimental information.
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In order to illustrate the dependence on the different relative phases δij we show in Fig. 1

the value of the effective Majorana transition magnetic moment for three particular cases,

in which the magnitude of one transition magnetic moment |Λi| is assumed to vanish. This

implies that the magnetic moment would depend only on one effective phase δij. Comparing

the three curves in Fig. 1, one sees a strong dependence on the phase δ12 (see solid black

line) while, due to the smallness of sin θ13, the value of the phases δ13 and δ23 has little

impact on the magnitude of the effective magnetic moment µMR .

2. Effective neutrino magnetic moment at accelerator experiments.

Another relevant measurement for neutrino magnetic moment comes from accelerator–

produced neutrinos arising from pion decays [36, 37]. In this case, pion decay produces

a muon neutrino, while the subsequent muon decay generates an electron neutrino plus a

muon antineutrino. We can write the effective magnetic moment strength parameter in the

flavor basis, considering for the moment the same proportion of νe, νµ and ν̄µ (a1
− = 1,

a2
− = 1, a2

+ = 1):

(µFA)2 = |Λ|2 + |Λe|2 + 2 |Λτ |2 − 2 |Λµ||Λe| cos η, (14)

where |Λ|2 = |Λe|2 + |Λµ|2 + |Λτ |2 and η = ζe−ζµ is the relative phase between the transition

magnetic moments Λe and Λµ.

The corresponding expression for the effective neutrino magnetic moment strength pa-

rameter in the mass basis, for θ13 = 0 will be given by

(µMA )2 = |Λ1|2[2− (c2
23 − s2

23)s2
12 + 2s12c12c23] (15)

+ |Λ2|2[2− (c2
23 − s2

23)c2
12 − 2s12c12c23] + |Λ3|2[1 + 2c2

23]

+ 2|Λ1||Λ2| cos ξ3[s12c12(c2
23 − s2

23)− (c2
12 − s2

12)c23]

+ 2|Λ1||Λ3| cos ξ2[−c12s23 + 2s12s23c23]

+ 2|Λ2||Λ3| cos(ξ3 − ξ2)[−s12s23 − 2c12s23c23]

As expected, the Dirac CP phase δ present in oscillations does not enter in this expression,

and therefore only the two Majorana phases from the NMM matrix ξ2 and ξ3 are present.

Note however that in our numerical analysis we have used the full expression with θ13 6= 0,

as
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(µMA )2 = |Λ1|2
[
sin 2θ12c13c23 + c2

12(2c2
23 + sin 2θ13s23 cos δ) (16)

+ c2
13(s2

12 + 2s2
23) + s13(s13 + 2s2

12s13s
2
23 − sin 2θ12 sin 2θ23 cos δ)

]
+

1

4
|Λ2|2

[
8− cos 2θ23(1 + 3 cos 2θ12 + 2 cos 2θ13s

2
12) + 4s2

12 sin 2θ13s23 cos δ

+ 4 sin 2θ12(−c13c23 + s13 sin 2θ23 cos δ)] + |Λ3|2
(
2 + c2

13 cos 2θ23 − sin 2θ13s23 cos δ
)

+ 2|Λ1||Λ2|
{

cos ξ3

[
−c2

12c13c23 + c23(s2
12c13 + sin 2θ12c23)

+ s12c12(−1 + cos 2θ23s
2
13 + sin 2θ13s23 cos δ)

]
+ s13 sin 2θ23(cos 2θ12 cos δ cos ξ3 + sin δ sin ξ3)}
+ |Λ1||Λ3| {2 cos(ξ2 − δ)(−c12c13 cos 2θ23 + s12c23)s13

+ 2
[
c13 cos ξ2(−c12c13 + 2s12c23) + c12s

2
13 cos(ξ2 − 2δ)

]
s23

}
− 2|Λ2||Λ3|

{
1

2
s12 cos(ξ1 − δ)(cos 2θ23 sin 2θ13 + 2 cos 2θ13s23 cos δ)

+ c12 [c23s13 cos(ξ1 − δ) + c13 sin 2θ23 cos ξ1] + s12s23 sin δ sin(δ − ξ1)

}

Notice that we have used here the phase ξ1 = ξ2 − ξ3. Although this is not an independent

phase, it is hepful to simplify the previous formula. Therefore, the final expression is given

in terms of the three independent phases δ, ξ2 and ξ3. One can check that in the limit θ13

= 0, the expression in Eq. (15) is recovered.

3. Effective neutrino magnetic moment in Borexino.

Here we calculate the effective magnetic moment strength parameter relevant for exper-

iments measuring solar neutrinos through their scattering with electrons, like Borexino 2.

In this case, the electron neutrinos originally produced in the solar interior undergo flavor

oscillation and they arrive to the Earth detector as an incoherent sum of mass eigenstates.

Using the well-justified approximation where [17]

P 3ν
e3 = sin2 θ13, P 3ν

e1 = cos2 θ13P
2ν
e1 , P 3ν

e2 = cos2 θ13P
2ν
e2 , (17)

with P 2ν
ej (j = 1, 2) being the effective two-neutrino oscillation probabilities for solar neutri-

nos, we arrive to the effective neutrino magnetic moment strength parameter in the mass

basis,

(µMsol)
2 = |Λ|2 − c2

13|Λ2|2 + (c2
13 − 1)|Λ3|2 + c2

13P
2ν
e1 (|Λ2|2 − |Λ1|2). (18)

2 The same result will apply for the Super-Kamiokande experiment, not included here due to its smaller

sensitivity to the neutrino magnetic moment [17].
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where the unitarity condition, P 2ν
e1 +P 2ν

e2 = 1, has also been assumed. The calculation of this

expression in the flavor basis is more complicated due to presence of the neutrino transition

probabilities and therefore we do not include it here.

As we can see from Eq. (18), the expression of the effective magnetic moment for solar

neutrinos is independent of any phase, as has already been noticed [17]. Here we take into

account the non-zero value of θ13 for the first time in this kind of analysis. Taking advantage

of the previous equation we obtain constraints on the individual neutrino transition magnetic

moments. After obtaining the neutrino magnetic moment expressions for the case of θ13 6= 0,

we now turn our attention to the relevant experiments for our analysis.

III. NEUTRINO DATA ANALYSIS

Having evaluated the effective neutrino magnetic moment strength parameter for reactor,

accelerator and solar neutrino experiments, we are ready to perform a combined analysis of

the experimental data in order to get constraints on the three different transition magnetic

moments Λi. In order to perform this analysis we make some assumptions on the phases δ,

ξ2 and ξ3. In the next section we will describe the data used in the fit and show the results.

We now briefly describe the statistical analysis performed in this article.

A. Reactor antineutrinos

We start by describing the reactor antineutrino experiments. They use the antineutrino

flux coming from a nuclear reactor, in combination with a detector sensitive to the electron

antineutrino scattering off electrons. The total number of events (in the i-th bin) in these

experiments is given by

N i
R = κ

∫
dEν

∫
dT

∫ Ti+1

Ti

dT ′λ(Eν)
dσ

dT
(Eν , T, µ)R(T, T ′), (19)

where the integrals run over the detected electron recoil energy T ′, the real recoil energy T ,

and the neutrino energy Eν . Ti and Ti+1 are the minimum and maximum energy of the i-th

bin, respectively. The parameter κ stands for the product of the total number of targets

times the total antineutrino flux times the total exposure time of the experimental run and

λ(Eν) is the antineutrino energy spectrum coming from the nuclear reactor [44, 45]. Some

of the experiments under consideration reported their resolution function R(T, T ′), given by

R(T, T ′) =
1√
4πσ

exp

(
−(T − T ′)2

2σ2

)
. (20)

where σ stands for the error in the kinetic energy determination. When the information

on this resolution function is not available, we have assumed perfect energy resolution and

9



TABLE I: 90% C.L. limits (95% C.L. for Rovno) on the effective neutrino magnetic moment from

reactor and accelerator data.

Experiment Bounds

Reactors [Expression in Eqs.(12)-(13)]

KRASNOYARSK [33] µν̄e ≤ 2.7× 10−10µB

ROVNO [34] µν̄e ≤ 1.9× 10−10µB

MUNU [35] µν̄e ≤ 1.2× 10−10µB

TEXONO [23] µν̄e ≤ 2.0× 10−10µB

Accelerators [Expression in Eqs. (14)-(15)-(16)]

LAMPF [36] µνe ≤ 7.3× 10−10µB

LAMPF [36] µνµ ≤ 5.1× 10−10µB

LSND [37] µνe ≤ 1.0× 10−9µB

LSND [37] µνµ ≤ 6.5× 10−10µB

taken it as a delta function: R(T, T ′) = δ(T − T ′).
Finally, the standard differential cross section for the process of ν̄e-electron scattering is

given by
dσ

dT
=

2G2
Fme

π

[
g2
R + g2

L(1− T

Eν
)2 − gLgRme

T

E2
ν

]
, (21)

where me is the electron mass and GF is the Fermi constant. For this process, at tree level,

the coupling constants gL,R are given by gL = 1/2 + sin2 θW and gR = sin2 θW. The assumed

non-zero neutrino magnetic moment yields a new contribution to the cross section, given by(
dσ

dT

)
em

=
πα2

m2
e

(
1

T
− 1

Eν

)
µR

2 , (22)

where µR = µF,MR is the reactor effective neutrino magnetic moment, either in the mass or

flavor basis, as already discussed in Eqs. (12) and (13). This gives rise to an additional

neutrino signal at reactor experiments. Finally, we perform our statistical analysis using the

following χ2 function:

χ2 =

Nbin∑
i=1

(
Oi
R −N i

R(µR)

∆i

)2

, (23)

where Oi
R and N i

R are the observed number of events and the predicted number of events

in the presence of an effective magnetic moment µR at the i-th bin, respectively. Here ∆i is

the statistical error at each bin.

In our analysis, we have used the experimental results reported by Krasnoyarsk [33],

Rovno [34], MUNU [35], and TEXONO [23] reactor experiments. As a first step we have

10



calibrated our numerical analysis by reproducing the constraints on the effective neutrino

magnetic moment reported by each experiment. To do this we performed an analysis as

similar as possible to the original references, using the antineutrino spectrum description

available at the time of the corresponding experiment as well as the antineutrino electron

cross section. Afterwards, we have recalculated our limits on the NMM by introducing

the new antineutrino reactor spectrum. Our results on reactor neutrino experiments are

summarized in the upper part of Table I.

Although it is not listed in Table I, we have also analyzed the case of the GEMMA [46]

experiment. In this case there is no detection of the SM signal and therefore, the statistical

analysis is a bit different from what we have described above. It is important to notice

that this experiment gives a stronger constraint compared with other reactor experiments

(µν̄e ≤ 2.9 × 10−11µB). However, the different statistical treatment employed to analyze

GEMMA’s data makes it difficult to establish a direct comparison with the remaining reactor

results.

B. Accelerator data

For the case of accelerator neutrinos we have considered the experimental data reported

by the LAMPF [36] and LSND [37] collaborations. The expected number of events for

electron and muon neutrinos is calculated as

NA =

∫
dEν

∫ Tf

Ti

dT ′λ(Eν)
dσ

dT
(Eν , T

′, µ), (24)

where A refers to the type of event (νe, νµ or ν̄µ), Eν corresponds to the neutrino energy, T ′

is the electron recoil energy, and λ(Eν) is the neutrino energy spectrum from the accelerator

experiments [36, 37]. The statistical analysis is similar to the one for reactor antineutrinos

described in the previous subsection. As a first step we try to reproduce the individual lim-

its on the magnetic moment of electron and muon neutrinos reported by the experimental

collaborations. To do this we have used the χ2 function given by Eq. (23), comparing the

expected event number reported by the experiments with the calculated number of events.

The limits on the muon and electron neutrino magnetic moments are derived taking into

account the following relations for the effective neutrino magnetic moment (see Refs. [36]

and [37] for details): µ2
νe + αµ2

νµ < µ2
eff , where α stands for the rate between muon and

electron neutrinos in the detector. This ratio is expected to be equal to two as first approx-

imation, since each pion decay produces a muon antineutrino plus a muon neutrino plus

an electron neutrino. The values reported by the experimental collaborations are α = 2.1

for LAMPF [36] and α = 2.4 for LSND [37]. The limits on the effective neutrino magnetic

moment derived from LAMPF and LSND data are reported in the lower part of Table I. For
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the more complete analysis including the complex phases in the neutrino magnetic moment

matrix we take α = 2, as included in Eqs. (14)-(16).

C. Borexino data

The Borexino experiment has successfully measured a large part of the neutrino flux

spectrum coming from the Sun [47–50] and has set limits on the effective neutrino magnetic

moment by using their observations of the Beryllium solar neutrino line [51, 52]. In this

paper we will consider the more recent measurements of the Beryllium solar flux reported

in Ref. [32] in order to obtain a stronger constraint.

For reactor and accelerator experiments, our statistical analysis followed the covariant

approach. In the case of the Borexino, however, we have adopted the pull approach [53].

Focusing on the Beryllium neutrino flux, the expected number of events at the i-th bin, N th
i ,

will be given by

N th
i = κ

∫
dσ

dTe
(Eν , Te)R(Te, T

′
e)dTedT

′
e +N bg

i , (25)

where N bg
i represents the number of expected background events at the considered energy

bin. Here κ stands for the product of the number of target electrons, the detection time

window (740.7 days in this case), and the total Beryllium neutrino flux. Te is the real electron

kinetic energy and T ′e is the reconstructed one. The energy resolution function R(Te, T
′
e) of

the experiment is given by

R(Te, T
′
e) =

1√
2πσ2

exp

(
(Te − T ′e)2

2σ2

)
(26)

with σ/Te = 0.06
√
Te/MeV [54]. Finally the differential cross section is given by

dσα
dTe

(Eν , Te) = P ee
dσe
dTe

(Eν , Te) + (1− P ee)
dσµ−τ
dTe

(Eν , Te), (27)

where the average survival electron-neutrino probability for the Beryllium line, P ee, deter-

mines the flavour composition of the neutrino flux detected in the experiment. According

to the most recent analysis of solar neutrino data in Ref. [2] (excluding Borexino data to

avoid any correlation with the present analysis) this value is set to P th
ee = 0.54± 0.03.

In order to explore the sensitivity of the Borexino experiment to the neutrino magnetic

moments, we include the new contribution to the differential cross section in Eq. (27):(
dσ

dT

)
em

=
πα2

m2
eµ

2
B

(
1

T
− 1

Eν

)
µsol

2, (28)

where µsol is the effective magnetic moment strength parameter relevant for the Borexino

solar neutrino experiment derived in Eq. (18) in the mass basis. This yields a new contribu-

tion to the expected number of events, which will determine the sensitivity to the presence

of a neutrino magnetic moment.
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TABLE II: 90% C.L. limits on the effective neutrino magnetic moment from Borexino data. We

show for comparison the constraint previously reported and the bound obtained in this work

Experiment Previous limit [52] This work Full expression

Borexino µν ≤ 5× 10−11µB µν ≤ 3.1× 10−11µB Eq. (18)

With the expected event number, we have fitted our predictions to the experimental

data in the statistical analysis. There we have considered the Borexino systematic errors

associated to the fiducial mass ratio uncertainty (πvol = 6%), the energy scale uncertainty

(πbscl = 1%) and the energy resolution uncertainty (πres = 10%). We have also included in the

fit the electron-neutrino survival probability P ee as a free parameter (using the value of P th
ee

given above as a prior) with the corresponding penalty in the χ2 function. The constraint

we have obtained for the effective neutrino magnetic moment using the latest Borexino

data is given in Table II. For comparison, we have also included in the table the previous

bound, derived by the Borexino Collaboration in Ref. [52]. Note that our updated limit

is comparable to the strongest bound reported by the GEMMA experiment and previously

discussed in Sect. III A.

Using the expression of the effective neutrino magnetic moment in Borexino given by

Eq. (18), we can also obtain limits on the individual elements of the transition magnetic

moment matrix Λi. In this case, the calculations involve the neutrino oscillation probability

P 2ν
e1 , which, as before, is considered in our χ2 analysis as a free parameter with an associated

penalty term. As a prior, we have considered again the value of the probability predicted by

the analysis of all other solar neutrino data except Borexino, given by P 2ν
e1

∣∣
th

= 0.61±0.06 [2].

Our results are summarized in the last row of Table III.

IV. LIMITS ON THE NEUTRINO MAGNETIC MOMENT

In the previous section we have derived bounds on the effective neutrino magnetic

moment parameter combinations relevant in reactor, accelerator and solar neutrino experi-

ments. Our results are summarized in Tables I and II. The most remarkable result is the

limit obtained with the latest Borexino data: µsol ≤ 3.1 × 10−11µB , which is comparable

to the constraint reported by the GEMMA [46] collaboration using reactor antineutrinos,

µR ≤ 2.9× 10−11µB
3.

One can go one step further and make a combined analysis using all the data studied

3 Both limits correspond to 90% C.L.

13



TABLE III: 90% C.L. limits on the neutrino magnetic moment components in the mass basis, Λi,

from reactor, accelerator, and solar data from Borexino. In this particular analysis we constrain

one parameter at a time, setting all other magnetic moment parameters and phases to zero.

Experiment |Λ1| |Λ2| |Λ3|

KRASNOYARSK 4.7× 10−10µB 3.3× 10−10µB 2.8× 10−10µB

ROVNO 3.0× 10−10µB 2.1× 10−10µB 1.8× 10−10µB

MUNU 2.1× 10−10µB 1.5× 10−10µB 1.3× 10−10µB

TEXONO 3.4× 10−10µB 2.4× 10−10µB 2.0× 10−10µB

GEMMA 5.0× 10−11µB 3.5× 10−11µB 2.9× 10−11µB

LSND 6.0× 10−10µB 8.1× 10−10µB 7.0× 10−10µB

LAMPF 4.5× 10−10µB 6.2× 10−10µB 5.3× 10−10µB

Borexino 5.6× 10−11µB 4.0× 10−11µB 3.1× 10−11µB

so far. This combined study can not be done in terms of the effective magnetic moments,

since they are different for each type of experiment, but we need to use a more general

formalism, as the one we have discussed in section II. We choose to work in the mass basis

and hence we consider the NMM parameters Λ1, Λ2 and Λ3. As a first step in our analysis,

we take all elements as real, setting the complex phases to zero, and we also take one nonzero

transition magnetic moment element Λi at a time. The results from this analysis are shown

in Table III, where one sees that the Borexino constraint is considerably stronger than the

others, except for GEMMA, as we already commented 4.

We have also considered a more complete analysis taking into account the role of the

phases in the reactor and accelerator data. Notice that the effective magnetic moment for

the Borexino experiment is independent of all the complex phases (see Eq. (18)) since solar

neutrinos arrive to the Earth as an incoherent sum of mass eigenstates and therefore, no

interference terms appear in the calculation. For the case of reactor neutrinos, we have

performed a statistical analysis of TEXONO data [23] for different choices of the complex

phases of Λi, ζi, and taking all transition magnetic moment amplitudes as nonzero. The

results of this analysis are shown in Fig. 2. There we present the 90% C.L. allowed regions for

the transition magnetic moments in the mass basis in the form of two-dimensional projections

in the planes (|Λi|, |Λj|). In all cases the regions have been obtained marginalizing over the

undisplayed parameter |Λk|. Concerning the complex phases, in the two cases considered

we have fixed the mixing matrix CP phase δ to its currently preferred value [2]: δ = 3π/2.

4 Due to the complexity of the statistical analysis in GEMMA, here we have only translated their reported

bound [46] into Λi by using Eq. (13), instead of including GEMMA data explicitly in the global analysis.

14



1 10

|Λ
1
| [10

−10
µ

B
]

1

10

|Λ
2
| [

1
0

−
1

0
µ

B
]

1 10

|Λ
1
| [10

−10
µ

B
]

|Λ
3
| [

1
0

−
1

0
µ

B
]

1 10

|Λ
2
| [10

−10
µ

B
]

|Λ
3
| [

1
0

−
1

0
µ

B
]

FIG. 2: 90% C.L. allowed regions for the transition neutrino magnetic moments in the mass basis

from the reactor experiment TEXONO. The two-dimensional projections in the plane (|Λi|, |Λj |)
have been calculated marginalizing over the third component. The magenta (outer) region is

obtained for δ = 3π/2 and ξ2 = ξ3 = 0, while the orange (inner) region appears for δ = 3π/2,

ξ2 = 0 and ξ3 = π/2.

For the complex phases in the transition magnetic moments we have considered two cases.

The magenta (outer) region in Fig. 2 corresponds to the case with all phases equal to zero:

ξ2 = ξ3 = 0 while the orange (inner) displayed region has been obtained for ξ2 = 0 and

ξ3 = π/2. One can see in this plot the role of the CP phases, since the resulting restrictions

on the transition magnetic moments |Λ1| and |Λ2| depend on the chosen phase combinations.

Note, however, that in the two cases analyzed the bound on |Λ3| is practically unchanged,

showing that in this particular case the complex phases are not very relevant. As discussed

in Fig. 1, this is due to the fact that the terms involving simultaneously |Λ3| and any complex

phase in the expression of the effective magnetic moment in Eq. (13) are proportional the

small quantity sin θ13 and therefore they are subdominant with respect to the real terms in

µMR .

Finally, we have performed a combined analysis of all the reactor and accelerator data

discussed in this paper, for a particular choice of phases (δ = 3π/2 and ξi = 0) and compared

it with the corresponding χ2 analysis of Borexino data. The results, shown in Fig. 3, illustrate

how Borexino is more sensitive in constraining the magnitude of the transition neutrino

magnetic moments. Since the Borexino effective magnetic moment depends only on the

square magnitudes of these transition magnetic moments, its constraints are in practice the

same as those in the one-parameter-at-a-time analysis. In this sense, a detailed analysis of

GEMMA data, not performed here, is not expected to give a result as robust as the one

obtained with Borexino data. However, one should notice that future reactor and accelerator

experiments are the only ones that could give information on individual transition magnetic
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FIG. 3: 90% C.L. allowed regions for the transition neutrino magnetic moments in the mass basis.

The result of this plot was obtained for the two parameters |Λi| vs |Λj | marginalizing over the third

component. We show the result of a combined analysis of reactor and accelerator data with all

phases set to zero except for δ = 3π/2 (magenta region). We also show the result of the Borexino

data analysis only, that is phase-independent (grey region). It is visible that Borexino data gives

a more stringent constraint. See text for details.

moments as well as on the Majorana phases discussed here, an information inaccessible at

Borexino. This information is crucial in certain analyses of the neutrino Majorana nature

such as those recently performed in Refs. [30, 31].

V. CONCLUSIONS

In this work we have analyzed the current status of the constraints on neutrino magnetic

moments. We have presented a detailed discussion of the constraints on the absolute value

of the transition magnetic moments, as well as the role of the CP phases, stressing the com-

plementarity of different experiments. Thanks to the low energies observed, below 1 MeV,

and its robust statistics, the Borexino solar experiment plays a very important role in con-

straining the electromagnetic neutrino properties. Indeed, it provides stringent constraints

on the absolute magnitude of the the transition magnetic moments, which we obtain as

|Λ1| ≤ 5.6× 10−11µB ,

|Λ2| ≤ 4.0× 10−11µB , (29)

|Λ3| ≤ 3.1× 10−11µB ,

However, the incoherent nature of the solar neutrino flux makes Borexino insensitive to the

Majorana phases which characterize the transition moments matrix. Although less sensitive

to the absolute value of the transition magnetic moment strengths, reactor and accelerator
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experiments provide the only chance to obtain a hint of the complex CP phases. We illustrate

this fact by presenting the constraints resulting from our global analysis for different values of

the relevant CP phases. Although less stringent than astrophysical limits say, from globular

clusters [55, 56] or searches for anti-neutrinos from the sun [57, 58], laboratory limits are

model independent and should be further pursued. Indeed, as we have illustrated, improved

reactor and accelerator neutrino experiments will be crucial towards obtaining the detailed

structure of the neutrino electromagnetic properties.

VI. ADDENDUM

After the publication of this work we noticed that the uncertainties in the considered

backgrounds in Borexino may affect our reported limit on the neutrino magnetic moment

from Borexino data. Indeed, we have found that a more precise treatment of the uncer-

tainties in the total normalization of these backgrounds results in a weaker sensitivity on

the neutrino magnetic moment. This point will be hopefully improved in the near future

thanks to the purification processes carried out in the second phase of the Borexino experi-

ment. Meanwhile, however, we think it would be more reliable to adopt the bound on the

neutrino magnetic moment reported by Borexino: µν < 5.4× 10−11µB [52]. In this case, our

Fig. 3 should be replaced by the new version, Fig. 4. There, we have added a new region

obtained by allowing the free normalization of backgrounds in Borexino. The grey region,

in contrast, has been obtained for fixed normalization of the backgrounds in Borexino. We

thank Gianpaolo Bellini from the Borexino Collaboration for pointing out this issue.
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