
The Complexity of 3-Valued Łukasiewicz Rules ?

Miquel Bofill1, Felip Manyà2, Amanda Vidal2, and Mateu Villaret1

1 Universitat de Girona, Girona, Spain
2 Artificial Intelligence Research Institute (IIIA, CSIC), Bellaterra, Spain

Abstract. It is know that determining the satisfiability of n-valued Łukasiewicz
rules is NP-complete for n ≥ 4, as well as that it can be solved in time linear
in the length of the formula in the Boolean case (when n = 2). However, the
complexity for n = 3 is an open problem. In this paper we formally prove that the
satisfiability problem for 3-valued Łukasiewicz rules is NP-complete. Moreover,
we also prove that when the consequent of the rule has at most one element, the
problem is polynomially solvable.

1 Introduction

The proof theory of many-valued logics has been deeply studied for a wide variety of
logics [1, 8, 9]. Nevertheless, the development of satisfiability solvers has received less
attention despite of the fact that, without competitive solvers, it is extremely difficult to
apply many-valued logics to solve real-world problems.

Given the recent development of Satisfiability Modulo Theory-based (SMT-based)
solvers for many-valued logics [2, 4, 3, 10, 11], there is the need to empirically evaluate
and compare them with other existing approaches. Because of that we are interested
in developing instance generators that produce instances of varying difficulty, as well
as in analyzing the complexity of relevant fragments of many-valued logics. It is ex-
tremely difficult to advance in the development of fast satisfiability solvers without the
availability of challenging benchmarks.

Before describing the related work and contributions of the present paper, let us
recall that developing satisfiability solvers for Łukasiewicz logics is particularly inter-
esting because SATŁ SATBool, where SATŁ is the set of formulas in Łukasiewicz
logic that evaluate to 1 for some interpretation, and SATBool is the set of satisfiable
Boolean formulas [8]. This implies that some propositional formulas are satisfiable
in Łukasiewicz logic whereas they are unsatisfiable in Boolean logic. However, in
other relevant many-valued logics such as Gödel (G) and Product (Π) we have that
SATG = SATΠ = SATBool and, therefore, satisfiability testing in these logics can
be proved directly with a Boolean SAT solver.

We have recently investigated, in [5], how the Conjunctive Normal Forms (CNFs)
used by Boolean SAT solvers can be extended to Łukasiewicz logics. In a first attempt,
? Research partially supported by the Generalitat de Catalunya grant AGAUR 2014-SGR-118,

and the Ministerio de Economía y Competividad projects AT CONSOLIDER CSD2007-0022,
INGENIO 2010, CO-PRIVACY TIN2011-27076-C03-03, EDETRI TIN2012-39348-C02-01
and HeLo TIN2012-33042. The second author was supported by Mobility Grant PRX14/00195
of the Ministerio de Educación, Cultura y Deporte.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC

https://core.ac.uk/display/45448172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we replaced the classical disjunction in Boolean CNFs with Łukasiewicz strong disjunc-
tion, and interpreted negation using Łukasiewicz negation. Interestingly, we proved that
the satisfiability problem of these clausal forms has linear-time complexity,1 regardless
of the size of the clauses and the cardinality of the truth value set (assuming it is greater
than two). This result is surprising because deciding the satisfiability of Boolean CNFs
is NP-complete when there are clauses with at least three literals [7]. So, we identified
a problem that is NP-complete in the Boolean case but has linear-time complexity in
Łukasiewicz logic.

With the aim of producing computationally difficult instances, we defined a new
class of clausal forms, called Łukasiewicz (Ł-)clausal forms, that are CNFs in which,
besides replacing classical disjunction with Łukasiewicz strong disjunction, we allow
negations above the literal level; i.e., clauses are strong disjunctions of terms, and terms
are either literals or negated strong disjunctions of literals. We proved that, in this case,
3-SAT is NP-complete whereas 2-SAT has linear-time complexity.2 Hence, we defined
problems in Łukasiewicz logic that have the same complexity as their Boolean counter-
parts.

Independently of our work, Borgwardt et al. [6] investigated the complexity of
finitely-valued Łukasiewicz rules (c.f. Section 2), and proved that the problem of de-
ciding the satisfiability of such rules is NP-complete when the cardinality of the truth
value set is at least four, but they left as an open problem the complexity of 3-valued
Łukasiewicz rules. Analyzing the complexity of Łukasiewicz rules is appealing because
this problem has linear-time complexity in the Boolean case whereas it is NP-complete
for n-valued Łukasiewicz logics in which n ≥ 4.

In this paper we prove that the satisfiability problem for 3-valued Łukasiewicz rules
is NP-complete, solving this way an open problem. Moreover, we also prove that if the
consequent of the rule has at most one element, the problem is polynomially solvable.

The paper is structured as follows. Section 2 defines basic concepts in Łukasiewicz
logics, and n-valued Łukasiewicz rules. Section 3 shows that the satisfiability problem
for 3-valued Łukasiewicz rules is NP-complete, but it is polynomially solvable in any
finitely-valued Łukasiewicz logic if the consequent of the rule has at most one element.
Section 4 concludes and points out future research directions.

2 Preliminaries

This section formally defines the finitely-valued and infinitely-valued logics of
Łukasiewicz, as well as the language of Łukasiewicz rules.

Definition 1. A propositional language is a pair L = 〈Θ,α〉, where Θ is a set of log-
ical connectives and α : Θ → N defines the arity of each connective. Connectives
with arity 0 are called constants. A language 〈Θ,α〉 with a finite set of connectives
Θ = {θ1, . . . , θr} is denoted by 〈θ1/α(θ1), . . . , θr/α(θr)〉.

1 In the following, when we say linear-time complexity we mean that the complexity is linear in
the size of the formula.

2 When the number of literals per clause is fixed to k, the corresponding SAT problem is called
k-SAT.

Given a set of propositional variables V , the set LV of L-formulas over V is induc-
tively defined as the smallest set with the following properties: (i) V ⊆ LV ; (ii) if θ ∈ Θ
and α(θ) = 0, then θ ∈ LV ; and (iii) if φ1, . . . , φm ∈ LV , θ ∈ Θ and α(θ) = m, then
θ(φ1, . . . , φm) ∈ LV .

Definition 2. A many-valued logic L is a triplet 〈L, N,A〉 where L =< Θ,α > is
a propositional language, N is a truth value set, and A is an interpretation of the
operation symbols that assigns to each θ ∈ Θ a function Aθ : Nα(θ) → N .

Many-valued logics are equipped with a non-empty subset D of N called the desig-
nated truth values, which are the truth values that are considered to affirm satisfiability.

Definition 3. Let L be a many-valued logic. An interpretation on L is a function I :
V → N . I is extended to arbitrary formulas φ in the usual way:

1. If φ is a logical constant, then I(φ) = Aφ.
2. If φ = θ(φ1, . . . , φr), then I(θ(φ1, . . . , φr)) = Aθ(I(φ1), . . . , I(φr)).

A formula φ is satisfiable iff there is an interpretation such that I(φ) ∈ D.

Through this work, we focus on a particular family of many-valued logics: the
Łukasiewicz logics. These were born from the generalization of a three valued logic
proposed by J. Łukasiewicz in the early 20th century, and have been deeply studied
both from theoretical and practical points of view. For a deeper study on these matters,
see for instance [8].

The language of Łukasiewicz logic is given by

LŁuk = 〈⊥/0,>/0,¬/1,→ /2,∧/2,∨/2,�/2,⊕/2〉.

We refer to ⊥ as bottom, to > as top, to ¬ as negation, to → as implication, to ∧ as
weak conjunction, to ∨ as weak disjunction, to � as (strong) conjunction, and to ⊕ as
(strong) disjunction.

Definition 4. The infinitely-valued Łukasiewicz logic, denoted by [0, 1]Ł, is the many-
valued logic 〈LŁuk, N,A〉 equipped with the set of designated values D = {1}, where
N is the real unit interval [0, 1], and the interpretation of the operation symbols A is
given by:

A⊥ = 0

A> = 1

A¬(x) = 1− x
A→(x, y) = min{1, 1− x+ y}

A∧(x, y) = min{x, y}
A∨(x, y) = max{x, y}
A�(x, y) = max{0, x+ y − 1}
A⊕(x, y) = min{1, x+ y}

The n-valued Łukasiewicz logic, denoted by Łn, is the logic defined from the
infinitely-valued Łukasiewicz logic by restricting the universe of evaluation to the set
Nn = {0, 1

n−1 , ...,
n−1
n−1}. That is to say, Łn = 〈LŁuk, Nn, A〉 equipped with D = {1}.

Note that the operations are well defined because Nn is a subalgebra of [0, 1] with the
interpretation of the operation symbols A (for any operation A∗ and any value/pair of
values of Nn, the result of A∗ over this/these values also belongs to Nn).

The function interpreting negation is called Łukasiewicz negation, the function in-
terpreting strong conjunction is called Łukasiewicz t-norm, the function interpreting
implication is called its residuum, and the function interpreting strong disjunction is
called Łukasiewicz t-conorm.

We say that a logic L is a Łukasiewicz logic if it is either [0, 1]Ł or Łn for some
natural number n.

Given a Łukasiewicz logic L, we denote by SATL the set of satisfiable formulas in
L; i.e.,

SATL = {ϕ : I(ϕ) = 1 for some interpretation I on L}.

The problem of deciding whether or not a formula belongs to the set SATL is called
the L-satisfiability problem.

Definition 5. Given a finite truth value set Nn, an n-valued Łukasiewicz rule is an
expression of one of the following two forms:

– x1 � · · · � xk → y1 � · · · � ym ≥ r
– x1 � · · · � xk → ⊥ ≥ r′

where k ≥ 0,m ≥ 1, r, r′ ∈ Nn, and x1, . . . , xk, y1, . . . , ym are propositional vari-
ables (if k = 0, x1 � ...� xk stands for >).

Definition 6. An interpretation I satisfies a Łukasiewicz rule of the form

x1 � · · · � xk → y1 � · · · � ym ≥ r

iff I(x1 � · · · � xk → y1 � · · · � ym) ≥ r, and a Łukasiewicz rule of the form

x1 � · · · � xk → ⊥ ≥ r′

iff 1− I(x1 � · · · � xk) ≥ r′.
A set of n-valued Łukasiewicz rules is satisfiable iff there exists an interpretation

that satisfies all the rules.

Remark 1. Łukasiewicz rules are called fuzzy Horn clauses by Borgwardt et al. [6], but
we prefer not to refer to them as Horn clauses for the following reason: In Boolean
propositional logic, a Horn clause is defined as a clause having at most one positive
literal. Given a finite set of m Boolean Horn clauses of the form x1, . . . , xk → yi,
where 1 ≤ i ≤ m and all the clauses have the same antecedent, we have that such a set
is equivalent to the clause x1, . . . , xk → y1, . . . , ym, whose extension to Łukasiewicz
logic corresponds to the first type of Łukasiewicz rules. However, in Lukasiewicz logic,
a finite set of m rules of the form x1 � · · · � xk → yi ≥ r, where 1 ≤ i ≤ m, is not
equivalent to the rule x1 � · · · � xk → y1 � · · · � ym ≥ r.

In Section 3, we show that deciding the satisfiability of a set of 3-valued
Łukasiewicz rules containing only rules of the form x1 � · · · � xk → yi ≥ r or
x1 � · · · � xl → ⊥ ≥ r′ has linear-time complexity as in the Boolean case. How-
ever, deciding the satisfiability of the rules defined by Borgwardt et al. is polynomially
solvable in the Boolean case, but is NP-complete in the Łukasiewicz case.

Remark 2. Observe that Łukasiewicz rules of the form x1 � · · · � xk → y1 � · · · �
ym ≥ r can be represented using strong disjunctions instead of strong conjuntions
as ¬x1 ⊕ · · · ⊕ ¬xk ⊕ ¬(¬y1 ⊕ · · · ⊕ ¬ym) ≥ r, and Łukasiewicz rules of the form
x1�· · ·�xk′ → ⊥ ≥ r′ can be represented as ¬x1⊕· · ·⊕¬xk′ ≥ r′. So, Łukasiewicz
rules are a fragment of the Łukasiewicz clausal forms defined in [5].

3 Complexity of the Satisfiability Problem of 3-Valued
Łukasiewicz Rules

In this section we prove that the satisfiability problem of 3-valued Łukasiewicz rules is
NP-complete, and give one subcase in which it can be solved in polynomial time.

Lemma 1. The satisfiability problem of 3-valued Łukasiewicz rules is NP-complete.

Proof. We will show that (i) this problem belongs to NP, and (ii) the Boolean 3-SAT
problem is polynomially reducible to our problem.

The satisfiability problem of 3-valued Łukasiewicz rules clearly belongs to NP:
given a set of rules, a nondeterministic algorithm can guess a satisfying interpretation
and check that it satisfies the formula in polynomial time.

For what respects the second claim, let φ =
∧n
i=1(l

1
i ∨ l2i ∨ l3i) be a Boolean 3-SAT

instance, where l1i , l
2
i , l

3
i are literals over the set of Boolean variables {x1, . . . , xm}.

We construct the following set φ′ of 3-valued Łukasiewicz rules from φ, over the set of
three-valued variables {y1, y′1, . . . , ym, y′m} 3 as follows:

1. For every Boolean variable xk, 1 ≤ k ≤ m, we add to φ′ the following two rules:

Ak) yk � y′k → ⊥ ≥ 1
2

Bk) → yk � y′k ≥ 1
2

Observe that any interpretation I that satisfies the previous two rules has a very
determined behaviour. From Bk), it must hold that I(yk � y′k) ≥ 1

2 , and thus,
by definition of the Łukasiewicz conjunction operation, either both yk and y′k are
interpreted to 1 or one of them is interpreted to 1

2 , while the other is interpreted to
1. Moreover, if I must satisfy also rule Ak), it is not possible that yk and y′k are
both interpreted to 1, so the only interpretations that meet all the requirements are
those that send one of these variables to 1 and the other to 1

2 . In other words, exactly
one of yk and y′k is evaluated to 1 in a satisfying interpretation, while the other is
evaluated to 1

2 . The intuition behind this is that I(yk) = 1 means that xk is true ,
and I(y′k) = 1 means that xk is false .

2. Let ρ be the function that maps (Boolean) literals to three-valued variables given
by:

ρ(lji) =

{
yk if lji = xk
y′k if lji = ¬xk

3 Observe that only literals with positive polarity appear in Łukasiewicz rules, but the 3-SAT
instance φ can contain occurrences of both positive and negative literals. Thus, we introduce
the variable y′k to simulate the literal ¬xk, whereas yk will simulate the literal xk.

Then, for every clause δi = l1i ∨ l2i ∨ l3i in φ, we add to φ′ the rule

Cδi) ρ(¬l1i)� ρ(¬l2i)� ρ(¬l3i)→ ⊥ ≥ 1
2

Observe that this rule is only falsified if ρ(¬l1i) = ρ(¬l2i) = ρ(¬l3i) = 1. This
is equivalent to say that any interpretation that satisfies Cδi) must send at least
one ρ(¬l1i), ρ(¬l2i) or ρ(¬l3i) to a value that is less than or equal to 1

2 (and if this
interpretation also satisfies the family or rules {Ak), Bk)}1≤k≤m, this value will
be in fact equal to 1

2). Notice that the clause l1i ∨ l2i ∨ l3i is only falsified if a Boolean
interpretation sets l1i , l

2
i , l

3
i to false . Also notice that the clause l1i ∨ l2i ∨ l3i is

equivalent to the Boolean rule ¬l1i ∧ ¬l2i ∧ ¬l3i → ⊥.

This reduction can clearly be performed in polynomial time, and the size of φ′ is
linear in the size of φ. We also prove that φ′ is satisfiable if and only if φ is satisfiable.

First, let I ′ be an evaluation on Ł3 such that I ′ satisfies φ′. By construction of φ′,
from rules Ak) and Bk) we have that either I ′(yk) = 1 and I ′(y′k) =

1
2 or I ′(y′k) = 1

and I ′(yk) = 1
2 (for each 1 ≤ k ≤ m). Moreover, for each δi = l1i ∨ l2i ∨ l3i of φ, rule

Cδi) implies that I ′ sets to 1
2 at least one of the literals ρ(¬l1i), ρ(¬l2i), ρ(¬l3i). Let then

I be the Boolean interpretation defined by

I(xk) =

{
true if I ′(yk) = 1
false if I ′(y′k) = 1

I satisfies at least one literal from each clause of φ. Indeed, consider without loss of
generality that I ′(ρ(¬l1i)) = 1

2 .

– If l1i = xj , for some 1 ≤ j ≤ m, then ρ(¬l1i) = y′j , and so, it is mandatory that
I ′(yj) = 1, making I(xj) = I(l1i) = true .

– If l1i = ¬xj then ρ(¬l1i) = yj , and similarly, I ′(y′j) = 1. This implies that I(xj) =
false , making I(l1i) = true .

Then, I is a Boolean evaluation satisfying φ.
For the other direction, assume that I is a Boolean interpretation satisfying φ. We

construct a three-valued interpretation I ′ from I as follows:

I ′(yk) =

{
1 if I(xk) = true
1
2 if I(xk) = false

I ′(yk
′) =

{
1
2 if I(xk) = true
1 if I(xk) = false

I ′ is constructed in such a way that it naturally satisfies the family of rules
{Ak),Bk)}1≤k≤m. On the other hand, for every clause δi = l1i ∨ l2i ∨ l3i in φ, since
I satisfies φ, at least one of the literals l1i , l

2
i , l

3
i is set to true. Assume without loss of

generality that the satisfied literal is l1i . There are two possibilities:

– If l1i = xs for some 1 ≤ s ≤ m, (and so, I(xs) = true), I ′ satisfies rule Cδi)
because I ′(y′s) =

1
2 due to the fact that I(xs) = true.

– If l1i = ¬xs for some 1 ≤ s ≤ m, (and so, I(xs) = false), I ′ satisfies rule Cδi)
because I ′(ys) = 1

2 due to the fact that I(xs) = false .

In all these cases, I ′ satisfies φ′, which concludes the proof.

Remark 3. Observe that all the Łukasiewicz rules used in the reduction have either
the consequent or the antecedent empty. So, the satisfiability problem of this frag-
ment of 3-valued Łukasiewicz rules is NP-complete too. Also observe that this frag-
ment corresponds to Łukasiewicz clausal forms only containing clauses of the form
(¬x1 ⊕ · · · ⊕ ¬xk) ≥ r and of the form (¬x1 ⊕ · · · ⊕ ¬xk′) ≤ r′.

Lemma 2. The problem of deciding the satisfiability of a finite set φ of 3-valued
Łukasiewicz rules containing only rules of the form x1 � · · · � xk → yi ≥ r or
x1 � · · · � xl → ⊥ ≥ r′ is polynomially solvable.

Proof. We can assume that there is no rule in which r = 0 or r′ = 0 because such rules
are tautologies and can be removed. Assume that r and r′ are either 1

2 or 1. If φ contains
a rule of the form xj → ⊥ ≥ 1, then xj should be evaluated to 0 and, therefore, all
the rules having xj in the antecedent can be removed, and all the occurrences of xj in
the consequent of a rule can be substituted by ⊥. This process is repeated until there
are no more rules of the form xj → ⊥ ≥ 1 or the empty rule is derived. If the empty
rule is derived, it means that φ is unsatisfiable. Otherwise, we continue simplifying φ
as follows: if φ contains a rule of the form → yi ≥ 1, then yi should be evaluated
to 1 and, therefore, all the rules having yi in the consequent can be removed, and all
the occurrences of yi in the antecedent of a rule can be removed too. This process is
repeated until there are no more rules of the form→ yi ≥ 1 or the empty rule is derived.
If the empty rule is derived, it means that φ is unsatisfiable.

Otherwise, φ is satisfied by the interpretation I that sets to 1
2 all the variables. To

see this, observe that the only remaining rules with exactly one literal are either of the
form xj → ⊥ ≥ 1

2 or→ yi ≥ 1
2 and, hence, they are satisfied by I . Besides, any rule

containing more than one literal is also satisfied by I: when there are at least two literals
in the antecedent, the rule evaluates to 1 under I because 1

2 �
1
2 = 0; and when there is

a literal in the antecedent and one literal in the consequent, the rule evaluates also to 1
under I because min{1, 1− 1

2 + 1
2} = 1.

Since the number of rules with exactly one literal that can be derived is bounded by
the total number of rules, deciding the satisfiability of φ can be performed in polynomial
time.

Lemma 2 proves that the satisfiability problem of the generalization of Horn clauses
to our setting is polynomial solvable. We claim that a linear-time algorithm could be im-
plemented by adapting the Boolean linear-time unit propagation algorithm for Boolean
CNFs described in [12].

4 Conclusions

We proved that the satisfiability problem of 3-valued Łukasiewicz rules is NP-complete,
but is polynomially solvable when the rules have at most one literal in the consequent.
Actually, to get intractable instances is enough to require that the rules have an empty
antecedent or an empty consequent. These results solve an open problem posed by
Borgwardt et al. in [6], and the 3-valued Łukasiewicz rules become a challenging bench-
mark for Łukasiewicz satisfiability solvers.

As future work we propose to analyze the complexity of infinitely-valued
Łukasiewicz rules, as well as identify —when testing the satisfiability of 3-valued
Łukasiewicz rules with a fixed number of variables per rule, and generated uniformly at
random— an easy-hard-easy pattern, and a phase transition phenomenon as the clause-
to-variable ratio varies, similar to the ones identified for Łukasiewicz clausal forms
in [5].

References

1. Stefano Aguzzoli, Brunella Gerla, and Zuzana Haniková. Complexity issues in Basic logic.
Soft Computing, 9(12):919–934, 2005.

2. Carlos Ansótegui, Miquel Bofill, Felip Manyà, and Mateu Villaret. Building automated
theorem provers for infinitely-valued logics with satisfiability modulo theory solvers. In
Proceedings, 42nd International Symposium on Multiple-Valued Logics (ISMVL), Victoria,
BC, Canada, pages 25–30. IEEE CS Press, 2012.

3. Carlos Ansótegui, Miquel Bofill, Felip Manyà, and Mateu Villaret. Automated theorem
provers for multiple-valued logics with satisfiability modulo theory solvers. Fuzzy Sets and
Systems, 2015. http://dx.doi.org/10.1016/j.fss.2015.04.011.

4. Carlos Ansótegui, Miquel Bofill, Felip Manyà, and Mateu Villaret. SAT and SMT technology
for many-valued logics. Multiple-Valued Logic and Soft Computing, 24(1-4):151–172, 2015.

5. Miquel Bofill, Felip Manyà, Mateu Villaret, and Amanda Vidal. Finding hard instances
of satisfiability in Łukasiewicz logics. In Proceedings, 45th International Symposium on
Multiple-Valued Logics (ISMVL), Waterloo, Canada, page In press. IEEE CS Press, 2015.

6. Stefan Borgwardt, Marco Cerami, and Rafael Peñaloza. Many-valued Horn logic is hard. In
Proceedings of the First Workshop on Logics for Reasoning about Preferences, Uncertainty,
and Vagueness, PRUV 2014, co-located with IJCAR 2014, Vienna, Austria, pages 52–58,
2014.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco, 1979.

8. Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
9. George Metcalfe, Nicola Olivetti, and Dov M. Gabbay. Proof Theory of Fuzzy Logics, vol-

ume 36 of Applied Logic Series. Springer, 2009.
10. Amanda Vidal. NiBLoS: a nice BL-logics solver. Master’s thesis, Universitat de Barcelona,

Barcelona, Spain, 2012.
11. Amanda Vidal, Félix Bou, and Lluis Godo. An SMT-based solver for continuous t-norm

based logics. In Proceedings of the 6th International Conference on Scalable Uncertainty
Management, SUM 2012, Marburg, Germany, pages 633–640. Springer LNCS 7520, 2012.

12. Hantao Zhang and Mark E. Stickel. An efficient algorithm for unit propagation. In In Pro-
ceedings of the Fourth International Symposium on Artificial Intelligence and Mathematics
(AI-MATH’96), Fort Lauderdale (Florida), USA, pages 166–169, 1996.

