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Abstract: It is well established that the performance of lipase B from Candida antarctica 

(CALB) as catalyst for esterification reactions may be improved by the use of ultrasound 

technology or by its immobilization on styrene-divinylbenzene beads (MCI-CALB). The 

present research evaluated the synthesis of butyl acetate using MCI-CALB under ultrasonic 

energy, comparing the results against those obtained using the commercial preparation, 

Novozym 435. The optimal conditions were determined using response surface 

methodology (RSM) evaluating the following parameters: reaction temperature, substrate 

molar ratio, amount of biocatalyst, and added water. The optimal conditions for butyl 

acetate synthesis catalyzed by MCI-CALB were: temperature, 48.8 °C; substrate molar 

ratio, 3.46:1 alcohol:acid; amount of biocatalyst, 7.5%; and added water 0.28%, both as 
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substrate mass. Under these conditions, 90% of conversion was reached in 1.5 h. In terms 

of operational stability, MCI-CALB was reused in seven cycles while keeping 70% of its 

initial activity under ultrasonic energy. The support pore size and resistance are key points 

for the enzyme activity and stability under mechanical stirring. The use of ultrasound 

improved both activity and stability because of better homogeneity and reduced 

mechanical stress to the immobilized system.  

Keywords: esterification; lipase; ultrasound; enzyme reuse; enzyme stability; butyl acetate 

 

1. Introduction 

The use of lipases as catalysts for esterification reactions of short carboxylic acids has great interest 

because the esters thus obtained enzymatically may be labeled as “natural” [1]. These esters are used 

as flavor or fragrance ingredients by a variety of industries (food, pharmaceutical, cosmetics, etc.) [2]. 

Esterification is a simple reaction from a chemical point of view, consisting on the reaction between 

unmodified substrates, being the yields determined by the thermodynamic constant of the reaction.  

Lipase-catalyzed esterifications have been performed in monophasic, low water activity systems, 

aiming at shifting the equilibrium towards the desired synthetic direction (water is a product of the 

esterification), usually using organic solvents [3,4], but also ionic liquids or supercritical fluids [5–7]. 

It has been shown that the water produced may be accumulated in the enzyme environment, producing 

its inhibition or even its inactivation. This problem may be solved by washing with solvents every few 

reaction cycles [8], or by using molecular sieves to remove the water from the medium [9]. Carboxylic 

acids and alcohols are also compounds capable of inactivating the enzyme. It has been suggested that 

the accumulation of all these substances is the main cause of observed lipase activity reduction during 

esterification reactions [8]. Therefore, an improved mixing of all reaction components might prevent 

the formation of an aqueous phase around the enzyme caused by a better dispersion of the carboxylic 

acids in the solvents, thus improving the enzyme performance. This improved mixing may be achieved 

by using ultrasound [10,11]. Ultrasound technology increases the interaction between phases by 

cavitation caused by the collapse of bubbles, and because of improved mixing, shearing, and mass 

transfer in aqueous solutions or suspensions [12,13]. Ultrasound technology has recently been used as 

an efficient way of mixing lipase-catalyzed reactions, such as transesterifications [14,15], or esterifications 

for the synthesis of isoascorbyl ester [16], sugar esters [17], and flavor esters [18,19]. However, few 

studies are found in the literature and scarce information is available on the mechanism(s) of 

ultrasound activation and its interaction with the enzymes and the immobilization supports.  

The present work is part of a continued research project in our group in the field of flavor ester 

production, specifically of butyl acetate, an ester with apple notes, catalyzed by lipase B from Candida 

antartica (CALB) [8,19,20]. This lipase, in its free and immobilized forms, is the most used lipase, 

showing very good activity and stability properties [21]. In previous studies, Novozym 435 was used 

for butyl acetate synthesis obtaining high conversions (over 90%) in relatively short reaction times  

(2.5 h) [8]. Using ultrasonic energy, the process productivity was improved in the presence of higher 

amounts of substrate and the biocatalyst could be recycled for more reaction batches [19]. 
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Additionally, CALB was immobilized via interfacial activation on very hydrophobic styrene-

divinylbenzene beads (MCI-CALB) [22]. This preparation was also evaluated for the butyl acetate 

synthesis, where it displayed better performance than Novozym 435 under mechanical stirring [20].  

In this context, the objective of this work was to analyze the performance of MCI-CALB as a 

catalyst for the esterification of acetic acid and butanol using ultrasound technology, comparing the 

effects with those previously found for Novozym 435 and with the same MCI-CALB, but using 

mechanical stirring. Therefore, reactions parameters were determined by an experimental design. 

Moreover, the effects of different carrier materials on the operational stability of the enzyme  

were investigated.  

2. Results and Discussion 

2.1. Experimental Design, Model Fitting and ANOVA  

Initially, the four variables (temperature, substrate molar ratio, amount of biocatalyst, and added 

water) were evaluated measuring their effects on the initial reaction rate for the ultrasound-assisted 

butyl acetate synthesis catalyzed by MCI-CALB. The 27 experiments for the central composite design 

(CCD) with their results are shown on Table 1.  

Table 1. Experimental design and results of CCD. 

Treatment X1 X2 X3 X4 Initial Reaction Rate (mmol·L−1h−1) 
1 −1 −1 −1 −1 114.7 
2 −1 −1 −1 1 92.9 
3 −1 −1 1 −1 81.1 
4 −1 −1 1 1 195.1 
5 −1 1 −1 −1 82.2 
6 −1 1 −1 1 98.2 
7 −1 1 1 −1 223.7 
8 −1 1 1 1 219.9 
9 1 −1 −1 −1 202.1 

10 1 −1 −1 1 146.2 
11 1 −1 1 −1 264.0 
12 1 −1 1 1 256.2 
13 1 1 −1 −1 169.6 
14 1 1 −1 1 99.9 
15 1 1 1 −1 241.5 
16 1 1 1 1 199.4 
17 −2 0 0 0 140.4 
18 2 0 0 0 143.9 
19 0 −2 0 0 184.9 
20 0 2 0 0 209.3 
21 0 0 −2 0 44.5 
22 0 0 2 0 273.9 
23 0 0 0 −2 231.6 
24 0 0 0 2 240.3 
25 0 0 0 0 240.0 
26 0 0 0 0 234.8 
27 0 0 0 0 232.1 

X1: temperature; X2: substrate molar ratio; X3: amount of biocatalyst; X4: added water. 
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The highest reaction rate (273.9 mmol·L−1h−1) was obtained in treatment 22 (45 °C, 3:1 alcohol:acid, 

amount of biocatalyst 10%, added water 0.5%), whereas the lowest activity was in treatment 21, with a 

reaction rate of 44.5 mmol·L−1h−1 (45 °C, 3:1 alcohol:acid, amount of biocatalyst 1%, added water 

0.5%). In general, half of the treatments presented good reaction rates, over 200 mmol·L−1h−1, which 

represents almost 70% of conversion in 1 h. These were better results than those obtained using CALB 

for the butyl acetate synthesis in ionic liquids [23]. 

According to Fisher’s statistical test for analysis of variance (ANOVA), the model was statistically 

significant and adequate to represent the actual relationship between the responses and the variables, as 

suggested by the model F-value (6.51) and the very low p-value (p = 0.0012). The values of the 

determination coefficient, R2, and correlation coefficient, R, were, 0.88 and 0.94, respectively. This 

denotes a highly satisfactory representation of the process model and a good correlation between the 

experimental results and the theoretical values predicted by the model equation. The coefficients of 

variables were determined for the second-order polynomial model and the statistical significant (5%) 

are given below: 

Y = 232.46 + 19.91X1 + 47.24X3 − 2.24X4 − 25.19X1
2 − 11.45X2

2 − 20.92X3
2 − 

18.63X1X2 − 17.49X1X4 + 12.13X2X3 − 8.00X2X4 − 11.98X3X4 
(1) 

where Y is the percentage conversion, and X1, X2, X3, and X4 are the coded values of temperature, 

substrate molar ratio, amount of biocatalyst and added water, respectively. 

2.2. Effect of Process Parameters and Optimal Conditions 

The obtained results can only describe the reaction within the range of variable values investigated 

in the experimental design. The linear effects of the four variables were: temperature (39.9), substrate 

molar ratio (2.5), amount of biocatalyst (94.5), and added water (−4.5). Only substrate molar ratio was 

not statistically significant at a 95% confidence level, in contrast with results seen when using 

Novozym 435 [19]. Reaction temperature and amount of biocatalyst presented the highest effects in 

the ultrasound-assisted butyl acetate synthesis catalyzed by MCI-CALB. The increase in both variables 

leads to an increase in the initial reaction rate. However, added water presented a negative effect on the 

initial reaction rate, which means that increasing the initial water content decreases the reaction rate. 

The tendency of the effect of these three variables was similar to that found using Novozym 435, 

although optimal values were slightly different. Thus, some differences could be found in this 

preliminary study comparing Novozym 435 and MCI-CALB [19]. 

The optimal conditions for the ultrasound-assisted butyl acetate synthesis catalyzed by MCI-CALB 

were found using the software Statistica 7.0, and were: temperature, 48.8 °C; substrate molar ratio, 

3.46:1 alcohol:acid; amount of biocatalyst, 7.5%; and added water 0.28%, both by substrate mass. This 

could be better observed through the contour plots in Figure 1a, where it is possible to obtain an initial 

reaction rate over 250 mmol·L−1h−1. These conditions were similar to those found when Novozym 435 

was used as catalyst under ultrasound stirring [19], but it was quite different from the optimal 

conditions for MCI-CALB when the mechanical stirring was used [20]. However, using our previous 

experience, we fixed substrate molar ratio and water content at their lowest level (−2), since substrate 

molar ratio was not statistically significant and added water showed a negative effect, and a new curve 
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was plotted. This curve was represented in Figure 1b and it is possible to observe a new optimal 

condition: temperature, 60 °C; substrate molar ratio, 1:1 alcohol:acid; amount of biocatalyst, 5%; and 

added water 0%, both by substrate mass. This optimal condition differs from the previous regarding 

the two most important variables, temperature and amount of biocatalyst. In the optimal condition I, a 

lower temperature was used at the expense of higher amount of biocatalyst, whereas at the optimal 

condition II (see Figure 1b), it was possible to use lower amounts of biocatalyst and increase the 

temperature.  

Figure 1. Contour plots for the ultrasound-assisted synthesis of butyl acetate catalyzed by 

MCI-CALB. (a) Condition I: Substrate molar ratio was fixed at level 0.46 (3.46:1 alcohol:acid) 

and added water was fixed at level −0.8 (0.28%); (b) Condition II: Substrate molar ratio 

was fixed at level −2 (1:1 alcohol:acid) and added water was fixed at level −2 (0%). 

 

For model validation, experiments under both optimal conditions were performed, and the results of 

time courses for the ultrasound assisted butyl acetate catalyzed by MCI-CALB are shown in Figure 2, 

as well as the comparison with the previous results. The predicted values by the model were 276.2 and 

248.4 mmol·L−1h−1, whereas the observed values were 278.7 and 256.5 mmol·L−1h−1 for conditions I 

and II, respectively, showing a good correlation of the experimental results with the statistical 

predicted by the model. 

As it can be seen in Figure 2, the reaction courses were quite similar under both conditions, i.e., it is 

possible to reduce the enzyme content while increasing the reaction temperature and reaching the same 

conversion. Higher than 90% of conversion was obtained after 1 h, which is much better than the 

results obtained using mechanical stirring (50% in 1 h, and over 90% in 2 h) [20], or when using 

Novozym 435 under ultrasound-assisted conditions (less than 80% in 1 h, and over 90% in 1.5 h) [19]. 

In conclusion, MCI-CALB used under ultrasonic energy was two times faster than when used under 

mechanical stirring [20] It was also 2.5 and 1.5 times more rapid than Novozym 435 under mechanical 

stirring and ultrasonic energy, respectively [8,19]. 
  



Molecules 2014, 19 9567 

 

 

Figure 2. Time-course of butyl acetate synthesis at 0.3 M acetic acid: () MCI-CALB 

under optimal condition I; () MCI-CALB under Condition II; () MCI-CALB under 

mechanical stirring conditions; () Novozym 435 under ultrasound conditions; () 

Novozym 435 mechanical stirring conditions. 

 

2.3. Enzyme Reuse 

Since the immobilized enzyme showed similar activities under both conditions, the other relevant 

parameter to be considered for the final choice between the use of higher temperature with lower 

amount of biocatalyst or the use of more biocatalyst and lower temperature, is the operational stability 

of the enzyme. The reuse of the biocatalyst under conditions I and II was tested, and the results of the 

repeated batches for ultrasound-assisted butyl acetate synthesis are presented in Figure 3. After four 

reuses under conditions II (lower amount of biocatalyst and higher temperature), the MCI-CALB was 

fully inactivated, whereas under condition I, the biocatalyst still kept over 70% of its initial activity  

after seven reuses. As expected, the effect of temperature improved enzyme activity, but simultaneously 

decreased enzyme stability. Although the reaction rates were similar, because the operational stability 

of the biocatalyst under condition I was higher, this was selected for the next experiments.  

MCI-CALB showed slightly higher activity and stability under ultrasound stirring when compared 

to mechanical stirring, [20]. In relation to Novozym 435, one of the advantages of MCI-CALB under 

standard stirring was the increased operational stability of the enzyme in esterification reactions. 

However, under ultrasound stirring, the stability of Novozym 435 was strongly increased, whereas for 

MCI-CALB the improvement was small under condition I [19]. Thus, in the ultrasound-assisted 

reaction, the operational stability for MCI-CALB in the condition I was around half of the presented by 

the commercial preparation under its respective optimal conditions. The main advantage of the new 

preparation was the activity, which is 1.5-fold higher than Novozym 435. 
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Figure 3. Operational stability of CALB during repeated batches on butyl acetate 

synthesis. () MCI-CALB under optimal condition I; ()MCI-CALB under optimal 

Condition II; () MCI-CALB under mechanical stirring conditions; () Novozym 435 

under ultrasound conditions; () Novozym 435 under mechanical stirring conditions. 

 

2.4. Effect of Acid Concentration on Enzyme Activity  

As demonstrated for Novozym 435, it is possible to use a higher acid concentration under ultrasonic 

energy when compared to mechanical stirring [19]. This fact might be explained by the better mixing 

of the acetic acid in the organic solvent caused by ultrasounds, which prevents the acid from becoming 

accumulated in the microenvironment of the enzyme, perhaps also avoiding the formation of a water 

phase in this microenvironment that could inactivate the enzyme [8]. 

The time course of ultrasound-assisted esterifications with 0.3 M and 2.0 M acid concentrations are 

presented in Figure 4. Using 0.3 M, conversion reached to 97% after 1.5 h, whereas the conversion 

was 90% after 2.5 h when 2.0 M acetic acid was used. In terms of productivity, the ultrasound-assisted 

butyl acetate synthesis catalyzed by MCI-CALB using 2.0 M of acetic acid represents approximately 

840 mmol·L−1h−1, which is six times higher than the productivity in the same reaction, but with 

mechanical stirring, (140 mmol·L−1h−1) [20]. Additionally considering the 1.5-fold enhancement in the 

operational stability caused by the ultrasound technology, the final improvement in the overall process 

productivity is almost 10 times higher.  
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Figure 4. Time course of ultrasound-assisted butyl acetate synthesis catalyzed by MCI-

CALB under condition I (temperature, 48.8 °C; substrate molar ratio, 3.46:1 alcohol:acid; 

amount of biocatalyst, 7.5%; and added water 0.28%) at () 2.0 M and () 0.3M acetic acid. 

 

2.5. Discussion 

As part of a continued research effort studying esterification catalyzed by lipases, we improved the 

results reported in the literature by developing a fast and efficient procedure for the synthesis of butyl 

acetate catalyzed by Novozym 435 [8]. Furthermore, biocatalyst activities and operational stabilities 

were enhanced by the development of an immobilized system on styrene-divinylbenzene beads [20]. 

Novozym 435 was then used as a catalyst under the same reaction conditions, but using ultrasonic 

energy, allowing the use of seven times higher substrate concentration, thus obtaining improved 

activity and much higher stability of the biocatalyst [19]. Based on these facts, we raised the hypothesis 

that the use of MCI-CALB under ultrasonic energy could enhance enzyme activities and stabilities, 

when compared to previous researches [8,19,20]. However, there is a complexity in this apparently 

simple process that requires explanation. This complexity starts with the differences between the 

biocatalysts used. A summary of the properties of both biocatalysts is presented in Table 2.  

Novozym 435 is the commercial preparation of Novozymes for immobilized CALB. The support 

used is Lewatit VP OC 1600, which is a macroporous, DVB-crosslinked polymer in spherical  

bead form, based on methacrylic esters, according to the supplier. Lewatit support has a particle size  

of 300–800 μm, which is adequate for filtration recovery for multiple reuses [24]. MCI-CALB was 

prepared by the immobilization through interfacial activation of CALB on the MCI GEL CHP20P [22]. 

This support has a styrene-divinylbenzene matrix and it has a smaller particle diameter than Lewatit 

VP OC 1600, 75–150 μm [24]. The structural differences of both supports, in terms of matrix and 

particle size, could affect the mechanical resistance, thus the operational stabilities. Comparing both 

preparations under mechanical stirring, MCI-CALB presented higher activity and operational stability 
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than Novozym 435. The better performance of MCI-CALB can be explained by the following  

facts. MCI GEL CHP20P has higher pore diameter than Lewatit VP OC 1600. The mean pore size  

of MCI GEL CHP20P is around 400–600 Å [22], whereas for Lewatit VP OC 1600 it is around  

150–300 Å [24,25]. The higher pore size eases the substrates/products mass transfer through the 

support and may explain the higher activity of MCI-CALB. Additionally, Lewatit VP OC 1600 is by 

far more hydrophilic than styrene-divinylbenzene beads of MCI GEL CHP20P. This might facilitate 

the accumulation of water, acid, and alcohol in the enzyme environment, reducing enzyme operational 

stability. This accumulation of substrates and products in the enzyme environment may be strongly 

reduced using ultrasound stirring technology. Moreover, Lewatit VP OC 1600 has shown to have a 

relatively low mechanical resistance [24]. In stirred-reactor systems, fragmentation of the carrier can 

be observed, resulting in decreased enzymatic activity by failure in enzyme recovery [26]. Thus, the 

lower operational stability of Novozym 435 under mechanical stirring could also be attributed to 

fragmentation, whereas the ultrasound stirring does not promote such negative effect on the bead integrity. 

Table 2. Summary of the properties of the biocatalysts. 

 MCI-CALB Novozym 435 

Support MCI GEL CHP20P Lewatit VP OC 1600 
Matrix Styrene-divinylbenzene DVB-crosslinked polymer based on methacrylic esters 

Particle size 75–150 μm 300–800 μm 
Pore size 400–600 Å 150–300 Å 

Mass transfer High Low 
Hydrophilicity Low High 

Nevertheless, it was observed that MCI-CALB did not present any significant advantage over 

Novozym 435 for the esterification reaction under ultrasound energy. There are also some possible 

reasons for this. Although MCI-CALB has higher pore size than Novozym 435, and this was an 

advantage under mechanical stirring, the use of ultrasound allowed better mixing in the reaction 

mixture, reducing the mass transfer limitations. It was reported by other authors that the use of 

mechanical stirring for enzymatic esterification using immobilized enzymes generally has a limitation 

in internal mass transfer that might reduce the rate of ester formation [27,28]. Moreover, the use of 

ultrasounds allowed the increase in the concentration of substrate that could be used in the reaction. 

The maximum concentration was improved seven times for Novozym 435 and four times for  

MCI-CALB. Besides the reduction of the mass transfer limitations, the more homogeneous mixing 

obtained under ultrasound avoids substrate/product/water gradients inside the porous matrix of the 

support. Avoiding the formation of water layer surrounding the enzyme, the acid will not be 

concentrated in the enzyme environment, which could lead to a lower pH, thus decreasing the enzyme 

stability. In addition, the use of ultrasounds reduced the mechanical stress caused by mechanical 

stirring, thus Novozym 435 presented better operational stability than MCI-CALB under ultrasound. 

The higher particle size of Lewatit VP OC 1600 as compared to MCI GEL CHP20P allowed an easier 

separation and recovery of the biocatalyst, which is important in the reusability.  

Nevertheless, results strongly support that ultrasound energy improved the activity and the 

operational stability for both biocatalysts. In the present research, MCI-CALB preparation was quite 

stable under operational conditions, and it could be reused several cycles without any washings, even 
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under standard stirring techniques. Ultrasound technology improved this operational stability 1.5 times 

and the activity was twice as high as compared to mechanical stirring. Novozym 435 also improved the 

same parameters under ultrasonic technology. The effect of this technology was even more significant 

in the operational stability of Novozym 435, as compared to MCI-CALB, making unnecessary the 

washings between reaction cycles, whereas it was almost fully inactivated under conventional stirring 

in only 2 to 3 cycles [8], for the reasons discussed above. Optimal conditions for Novozym 435 under 

ultrasound, as determined by RSM, were similar to those determined in this work for MCI-CALB: 

temperature of 46 °C; substrate molar ratio of 3.6:1 butanol:acetic acid; amount of biocatalyst of 7%; 

added water of 0.25%. Using 2 M acetic acid, 82% of conversion was reached using Novozym 435 

after 2.5 h, whereas conversion of 90% was obtained using MCI-CALB in the same time, even when 

the amount of protein per mass of dried biocatalyst was about two times higher for Novozym 435 [20]. 

Therefore, even under ultrasound stirring that greatly improved the Novozym 435 performance,  

MCI-CALB remained with a better productivity per cycle than Novozym 435 per mass unit, and much 

higher comparing the productivity per enzyme molecule.  

Another interesting characteristic associated to ultrasound technology is that it is considered a green 

technology because of its high efficiency, low instrumental requirements, and significant reduction of 

the processing time when compared to other techniques [29]. Moreover, is an excellent tool for 

improvement of chemical, physical and biological processes [12,28,30–32]. Ultrasound has been used 

in many applications, such as homogenizing, disintegration, sonochemistry, degassing and cleaning, 

extraction, emulsification, and chemical synthesis [33]. The mechanism of ultrasound is based on the 

high-energy waves that create cavitation in the liquid solution. The subsequent collapses of the 

cavitation bubbles release the energy. This mechanism is one of the factors that contribute to the 

acceleration of the chemical and/or enzymatic reaction in the solution [34].  

3. Experimental Section  

3.1. Materials 

Lipase B from Candida antarctica was kindly donated by Novozymes (Madrid, Spain). The  

styrene–divinylbenzene MCI GEL CHP20P  porous support, substrates, solvents, and other chemicals 

were purchased from Sigma-Aldrich (Sigma, St. Louis, MO, USA) and were of analytical grade. 

Ultrasonic bath (Unique, model USC 2880A, 40 kHz, 220 W, Indaiatuba, Brazil) with temperature 

control was used in all experiments. 

3.2. Enzyme Immobilization 

The immobilization of CALB on the styrene-divinylbenzene support was carried out following a 

previously described protocol [22]. The immobilized preparations presented 120 mg of protein per g of 

wet support.  

3.3. Esterification Reaction 

The substrates n-butanol and acetic acid (0.3 M) [8] were dissolved in n-hexane at different molar 

ratios in 50 mL Erlenmeyer flasks (working volume of 10 mL), followed by the addition of various 
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amounts of water and enzyme. The reaction was carried out in an ultrasonic bath, at various 

temperatures, according to the experimental design (Table 1). 

The progress of the esterification was monitored determining the residual acid content by titration 

of 0.5 mL of sample with NaOH (0.005 M) until pH 7, using ethanol as quenching agent. The amount 

of ester was calculated as being equivalent to the consumed acid. A calibration curve was constructed 

to ensure the reliability of this acid determination using laboratory-made mixtures of acetic acid,  

n-butanol, and commercial butyl acetate in n-hexane. In some points, the accuracy of this method was 

also tested by the determination of ester concentration on gas chromatograph (Shimadzu, Tokyo, 

Japan, GC-2010 Plus), equipped with a flame ionization detector (FID) and an AT.FFAP column  

(30 m × 0.32 mm × 0.25 μm). The carrier gas was nitrogen. The temperatures of the injector and 

detector were both set to 250 °C, and the split ratio was 1:10. The oven temperature program was: start 

at 60 °C, 10 °C min−1 to 90 °C, 30 °C min−1 to 240 °C, and then held at 240 °C for 2.5 min. 

3.4. Experimental Design 

In order to obtain the optimal conditions for the esterification a central composite design (CCD) 

with four variables was performed. The four variables, each with five levels, are presented in Table 3 

with their coded and uncoded values. The CCD, with 28 experiments, was composed of 16 factorial 

points, eight axial points (two axial points on the axis of design variable), and four replications at the 

central point. In each case, the initial reaction rate for esterification was calculated.  

Table 3. Process variables and their levels used in CCD. 

Variables Name 
Coded Levels 

−2 −1 0 1 2 

X1 Temperature (°C) 30 37.5 45 52.5 60 
X2 Substrate Molar Ratio a 1:1 2:1 3:1 4:1 5:1 
X3 Amount of biocatalyst b 1 2.5 5 7.5 10 
X4 Added Water b 0 0.25 0.5 0.75 1 

a (butanol:acetic acid); b (% by mass of substrate).  

The second-order polynomial equation for the variables was as follows: 

  +++= 2
0 iiijiijii XXXXY ββββ  (2)  

where Y is the response variable, β0 the constant, βi, βii, βij were the coefficients for the linear, 

quadratic, and for the interaction effects, respectively, and Xi and Xj the coded level of variables xi and 

xj. The above quadratic equation was used to plot surfaces for all variables. 

3.5. Enzyme Reuse  

After the esterification reaction, the immobilized enzyme was separated from the reaction medium 

by vacuum filtration using a sintered glass funnel, and placed in a fresh reaction batch. 
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3.6. Statistical Analysis 

The experimental design and analysis of results were carried out using Statistica 12.0 (Statsoft, 

Tulsa, OK, USA). The statistical analysis of the model was performed as analysis of variance 

(ANOVA). The significance of the regression coefficients and the associated probabilities, p(t), were 

determined by Student’s t-test; the second order model equation significance was determined by 

Fisher’s F-test. The variance explained by the model is given by the multiple determination 

coefficients, R2. For each variable, the quadratic models were represented as contour plots (2D). 

4. Conclusions  

This work has demonstrated the improvement of the synthesis of butyl acetate catalyzed by  

MCI-CALB when using the more efficient homogenizing technology of ultrasound energy. The 

optimal conditions for butyl acetate synthesis by MCI-CALB were: temperature, 48.8 °C; substrate 

molar ratio, 3.46:1 alcohol:acid; amount of biocatalyst, 7.5%; and added water 0.28%, both by 

substrate mass. Under these conditions, 90% of conversion was reached in 1.5 h of reaction. The use of 

the ultrasound increased the process productivity by six times, allowing the use of higher (up to  

four-fold) acid concentrations, while reducing the reaction time compared to the classical mechanical 

stirring. Additionally, concerning the effects of the stirring system and the differences of supports, it 

was possible to conclude that: 

- A higher pore size is better for substrate/products diffusion when using mechanical stirring; 

- The pore size was not so significant on the diffusion rates when using ultrasound because the 

stirring was more vigorous and homogeneous; 

- The lower mechanical stress caused by ultrasound improves operational stability, in special for 

more sensitive supports.  

Acknowledgments 

This work was supported by grants from CNPq (Conselho Nacional de Desenvolvimento Científico 

e Tecnológico), and CTQ2013-41507-R from Spanish MINECO. We would like to thank Novozymes 

Spain for its comprehensive support of this research, in special Ramiro Martínez (Novozymes, Spain) 

for kindly supplying the enzymes used in the work. We also thank CNPq (Brazil) for a fellowship to 

A.M. Silva and FAPERGS (Brazil) for a fellowship to J.S. Alves. A Ph D. fellowship from Spanish 

Goberment to Miss Garcia-Galan is also acknowledged The help and suggestions from Ángel 

Berenguer-Murcia (Instituto de Materiales, Universidad de Alicante) are gratefully recognized.  

Author Contributions 

The experiments were performed by Joana S. Alves, Cristina Garcia-Galan, Mirela F. Schein, 

Alexandre M. Silva, and Oveimar Barbosa. Marco A. Z. Ayub, Roberto Fernandez-Lafuente, and 

Rafael C. Rodrigues designed the experiments and wrote the paper. 
  



Molecules 2014, 19 9574 

 

 

Conflicts of Interest 

The authors declare no conflict of interests.  

References  

1. Serra, S.; Fuganti, C.; Brenna, E. Biocatalytic preparation of natural flavours and fragrances. 

Trends Biotechnol. 2005, 23, 193–198. 

2. Yahya, A.R.M.; Anderson, W.A.; Moo-Young, M. Ester synthesis in lipase-catalyzed reactions. 

Enzyme Microb. Technol. 1998, 23, 438–450. 

3. Milašinović, N.; Knežević-Jugović, Z.; Jakovljević, Ž.; Filipović, J.; Kalagasidis Krušić, M. 

Synthesis of n-amyl isobutyrate catalyzed by Candida rugosa lipase immobilized into  

poly(N-isopropylacrylamide-co-itaconic acid) hydrogels. Chem. Eng. J. 2012, 181–182, 614–623. 

4. Friedrich, J.L.R.; Peña, F.P.; Garcia-Galan, C.; Fernandez-Lafuente, R.; Ayub, M.A.Z.;  

Rodrigues, R.C. Effect of immobilization protocol on optimal conditions of ethyl butyrate 

synthesis catalyzed by lipase B from Candida antarctica. J. Chem. Technol. Biotechnol. 2013, 88, 

1089–1095. 

5. Lozano, P.; Bernal, J.M.; Navarro, A. A clean enzymatic process for producing flavour esters by 

direct esterification in switchable ionic liquid/solid phases. Green Chem. 2012, 14, 3026–3033. 

6. Diaz, M.D.R.; Gómez, J.M.; Díaz-Suelto, B.; García-Sanz, A. Enzymatic synthesis of short-chain 

esters in n-hexane and supercritical carbon dioxide: Effect of the acid chain length. Eng. Life Sci. 

2010, 10, 171–176. 

7. Varma, M.N.; Madras, G. Kinetics of synthesis of butyl butyrate by esterification and 

transesterification in supercritical carbon dioxide. J. Chem. Technol. Biotechnol. 2008, 83,  

1135–1144. 

8. Martins, A.B.; Graebin, N.G.; Lorenzoni, A.S.G.; Fernandez-Lafuente, R.; Ayub, M.A.Z.; 

Rodrigues, R.C. Rapid and high yields of synthesis of butyl acetate catalyzed by Novozym 435: 

Reaction optimization by response surface methodology. Process Biochem. 2011, 46, 2311–2316. 

9. Verma, M.L.; Azmi, W.; Kanwar, S.S. Enzymatic synthesis of isopropyl acetate by immobilized 

Bacillus cereus lipase in organic medium. Enzyme Res. 2011, 2011, doi:10.4061/2011/919386. 

10. Konwarh, R.; Pramanik, S.; Kalita, D.; Mahanta, C.L.; Karak, N. Ultrasonication-A 

complementary ‘green chemistry’ tool to biocatalysis: A laboratory-scale study of lycopene 

extraction. Ultrason. Sonochem. 2012, 19, 292–299. 

11. Lerin, L.A.; Feiten, M.C.; Richetti, A.; Toniazzo, G.; Treichel, H.; Mazutti, M.A.;  

Vladimir Oliveira, J.; Oestreicher, E.G.; de Oliveira, D. Enzymatic synthesis of ascorbyl palmitate 

in ultrasound-assisted system: Process optimization and kinetic evaluation. Ultrason. Sonochem. 

2011, 18, 988–996. 

12. Kwiatkowska, B.; Bennett, J.; Akunna, J.; Walker, G.M.; Bremner, D.H. Stimulation of 

bioprocesses by ultrasound. Biotechnol. Adv. 2011, 29, 768–780. 

13. Zheng, M.M.; Wang, L.; Huang, F.H.; Dong, L.; Guo, P.M.; Deng, Q.C.; Li, W.L.; Zheng, C. 

Ultrasonic pretreatment for lipase-catalyed synthesis of phytosterol esters with different acyl 

donors. Ultrason. Sonochem. 2012, 19, 1015–1020. 



Molecules 2014, 19 9575 

 

 

14. Gharat, N.; Rathod, V.K. Ultrasound assisted enzyme catalyzed transesterification of waste 

cooking oil with dimethyl carbonate. Ultrason. Sonochem. 2013, 20, 900–905. 

15. Batistella, L.; Lerin, L.A.; Brugnerotto, P.; Danielli, A.J.; Trentin, C.M.; Popiolski, A.;  

Treichel, H.; Oliveira, J.V.; de Oliveira, D. Ultrasound-assisted lipase-catalyzed transesterification 

of soybean oil in organic solvent system. Ultrason. Sonochem. 2012, 19, 452–458. 

16. Cui, F.J.; Zhao, H.X.; Sun, W.J.; Wei, Z.; Yu, S.L.; Zhou, Q.; Dong, Y. Ultrasound-assisted 

lipase-catalyzed synthesis of D-isoascorbyl palmitate: Process optimization and Kinetic evaluation. 

Chem. Cent. J. 2013, 7, doi:10.1186/1752-153X-7-180. 

17. Zhang, J.C.; Zhang, C.; Zhao, L.; Wang, C.T. Lipase-catalyzed synthesis of sucrose fatty acid 

ester and the mechanism of ultrasonic promoting esterification reaction in non-aqueous media. 

Adv. Mater. Res. 2014, 881–883, 35–41. 

18. Fallavena, L.P.; Antunes, F.H.F.; Alves, J.S.; Paludo, N.; Ayub, M.A.Z.; Fernandez-Lafuente, R.; 

Rodrigues, R.C. Ultrasound technology and molecular sieves improve the thermodynamically 

controlled esterification of butyric acid mediated by immobilized lipase from Rhizomucor miehei. 

RSC Adv. 2014, 4, 8675–8681. 

19. Martins, A.B.; Schein, M.F.; Friedrich, J.L.R.; Fernandez-Lafuente, R.; Ayub, M.A.Z.;  

Rodrigues, R.C. Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: 

Enhanced activity and operational stability. Ultrason. Sonochem. 2013, 20, 1155–1160. 

20. Graebin, N.G.; Martins, A.B.; Lorenzoni, A.S.G.; Garcia-Galan, C.; Fernandez-Lafuente, R.; 

Ayub, M.A.Z.; Rodrigues, R.C. Immobilization of lipase B from Candida antarctica on porous 

styrene–divinylbenzene beads improves butyl acetate synthesis. Biotechnol. Prog. 2012, 28,  

406–412. 

21. Anderson, E.M.; Larsson, K.M.; Kirk, O. One biocatalyst-many applications: The use of Candida 

antarctica B-lipase in organic synthesis. Biocatal. Biotransform. 1998, 16, 181–204. 

22. Hernandez, K.; Garcia-Galan, C.; Fernandez-Lafuente, R. Simple and efficient immobilization of 

lipase B from Candida antarctica on porous styrene-divinylbenzene beads. Enzyme Microb. 

Technol. 2011, 49, 72–78. 

23. Kim, H.S.; Koo, Y.M. Effects of physicochemical properties of ionic liquids on butyl acetate 

synthesis using Candida antarctica lipase B. Korean J. Chem. Eng. 2012, 29, 1610–1614. 

24. Basso, A.; Froment, L.; Hesseler, M.; Serban, S. New highly robust divinyl benzene/acrylate 

polymer for immobilization of lipase CALB. Eur. J. Lipid Sci. Technol. 2013, 115, 468–472. 

25. Chen, B.; Hu, J.; Miller, E.M.; Xie, W.; Cai, M.; Gross, R.A. Candida antarctica Lipase B 

chemically immobilized on epoxy-activated micro- and nanobeads: Catalysts for polyester 

synthesis. Biomacromolecules 2008, 9, 463–471. 

26. Hilterhaus, L.; Thum, O.; Liese, A. Reactor Concept for Lipase-Catalyzed Solvent-Free 

Conversion of Highly Viscous Reactants Forming Two-Phase Systems. Org. Process Res. Dev. 

2008, 12, 618–625. 

27. Kuo, C.H.; Hsiao, F.W.; Chen, J.H.; Hsieh, C.W.; Liu, Y.C.; Shieh, C.J. Kinetic aspects of 

ultrasound-accelerated lipase catalyzed acetylation and optimal synthesis of 4'-acetoxyresveratrol. 

Ultrason. Sonochem. 2013, 20, 546–552. 



Molecules 2014, 19 9576 

 

 

28. Zheng, M.M.; Wang, L.; Huang, F.H.; Guo, P.M.; Wei, F.; Deng, Q.C.; Zheng, C.; Wan, C.Y. 

Ultrasound irradiation promoted lipase-catalyzed synthesis of flavonoid esters with unsaturated 

fatty acids. J. Mol. Catal. B: Enzym. 2013, 95, 82–88. 

29. Lerin, L.; Loss, R.; Remonatto, D.; Zenevicz, M.; Balen, M.; Netto, V.; Ninow, J.; Trentin, C.; 

Oliveira, J.V.; de Oliveira, D. A review on lipase-catalyzed reactions in ultrasound-assisted systems. 

Bioprocess Biosyst. Eng. 2014, doi:10.1007/s00449-00014-01222-00445. 

30. Sinisterra, J.V. Application of ultrasound to biotechnology: An overview. Ultrasonics 1992, 30, 

180–185. 

31. Xiao, Y.M.; Wu, Q.; Cai, Y.; Lin, X.F. Ultrasound-accelerated enzymatic synthesis of sugar esters 

in nonaqueous solvents. Carbohydr. Res. 2005, 340, 2097–2103. 

32. Yu, D.; Tian, L.; Wu, H.; Wang, S.; Wang, Y.; Ma, D.; Fang, X. Ultrasonic irradiation with 

vibration for biodiesel production from soybean oil by Novozym 435. Process Biochem. 2010, 45, 

519–525. 

33. Fazlena, H.; Norsuraya, S.; Nadiah, S.N. Ultrasonic assisted enzymatic reaction: An overview on 

ultrasonic mechanism and stability-activity of the enzyme. In Proceedings of the 2013 IEEE 

Business Engineering and Industrial Applications Colloquium, Langkawi, Malaysia, 7–9 April 2013; 

pp. 85–90. 

34. Chen, H.-C.; Chen, J.-H.; Chang, C.; Shieh, C.-J. Optimization of ultrasound-accelerated 

synthesis of enzymatic caffeic acid phenethyl ester by response surface methodology. Ultrason. 

Sonochem. 2011, 18, 455–459. 

Sample Availability: Samples of the biocatalysts and esters are not available from the authors.  

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


