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Molecular dynamics simulations and integral equation calculations of a simple equimolar mixture of
diatomic molecules and monomers interacting via attractive and repulsive short-range potentials show
the existence of pattern formation (microheterogeneity), mostly due to depletion forces away from
the demixing region. Effective site-site potentials extracted from the pair correlation functions using
an inverse Monte Carlo approach and an integral equation inversion procedure exhibit the features
characteristic of a short-range attractive and a long-range repulsive potential. When charges are
incorporated into the model, this becomes a coarse grained representation of a room temperature ionic
liquid, and as expected, intermediate range order becomes more pronounced and stable. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4928524]

I. INTRODUCTION

Spontaneous pattern formation is a feature present in a
diverse collection of physical, chemical, and biological sys-
tems.1 In spite of the diverse nature of these systems, the
appearance of the emerging microphases is quite similar: in
2D systems, circular droplets, stripes, or “bubbles” occur, and
in 3D systems, one may find spherical droplets, sheets, or
tubes. In some cases, the patterns appear as transient states
due to energy or mass fluctuations that occur in the process
of spinodal decomposition, but sometimes, these states can be
stabilized due to the presence of competitive interactions, in
which one of the interactions is responsible for inhibiting the
phase separation.2,3

The understanding of this self-organizing capability of
soft and fluid matter is critical for a wide panoply of appli-
cations of great relevance nowadays. These self-assembly
mechanisms play a crucial role in processes involving protein
solutions in food products,4,5 therapeutic monoclonal anti-
bodies,6–8 nanolithography,9 or gelation processes.10

In the realm of colloidal science, systems with extremely
short ranged repulsive interactions are often used as an exper-
imental realization of the hard sphere fluid,11 a system noto-
rious for its theoretical interest. On the other hand, the addi-
tion of non-adsorbing polymers to the colloidal solution typi-
cally activates an attractive inter-particle interaction, due to the
depletion mechanism. Moreover, changing the concentration
and molecular weight of the polymer, the attraction range
and strength of the colloid-colloid interaction can be tuned.
Clustering is to be expected due to the presence of the attractive
forces,12,13 but in principle, it would correspond to meta-stable
states and/or irreversible processes of kinetic nature. Never-
theless, microphases formed by clusters and percolating struc-
tures can be stabilized in protein solutions and colloid-polymer
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mixtures both in experiment14 and in theoretical descriptions15

due to the presence of additional repulsive interactions stem-
ming from electrostatic forces. An extreme example of the
stabilizing role of charges is the nanostructural organization
that appears in room temperature ionic liquids (RTILs).16 In
fact, it has been shown that long range repulsive interactions
alone can give rise to nanostructural order,17 the driving force
of attractive interactions to induce spontaneous aggregation
being replaced by external forces (e.g., pressure).

In the case of colloidal systems, in which charged colloidal
particles are screened by ions in the solvent, the colloid-
colloid interaction has been shown on theoretical grounds to be
adequately represented by a Yukawa potential18,19 according
to the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.
Following this, numerous works have resorted to potentials
with a combination of a short range attraction and a long range
repulsion (SALR) in the form of a double Yukawa,20,21 or a
Lennard-Jones (LJ) plus a Yukawa interaction2,22,23 in order to
model the spontaneous emergence of microstructured patterns
in fluids. On the other hand, back in 1999, Sear et al.24 made
use of an empirical two exponential form with SALR char-
acteristics in order to explain the experimental appearance of
stable microphases of nanoparticles at the air-water interface.
This potential has been studied in depth in model systems, both
in bulk and in confinement,25–29 and as a rough approximation
to account for vegetation patterns in ecosystems with limited
resources.30

In this work, we will explore the possibility of pattern
formation in a system in which only short ranged forces are
present. Our model system, composed of heteronuclear dimers
and monomers, combines attractive and repulsive potentials
so as to mimic the interactions present in RTILs, but without
electrostatic forces. To that aim, we have performed extensive
molecular dynamics simulations in the canonical and in the
isothermal-isobaric ensembles. We will address the emergence
of intermediate range order (IRO) analyzing the behavior of the
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partial and concentration-concentration structure factors and
performing a cluster analysis for various degrees of asymmetry
in the sites of the diatomic particles. Reference Interaction
Site Model (RISM) integral equation calculations have also
been carried out and are shown to agree remarkably well with
the simulation results. By means of an Inverse Monte Carlo
(IMC) approach,31 we have extracted effective interactions
from the pair correlation functions of the simulated mixtures.
For comparison, another set of effective potentials has been
obtained from the RISM results using an integral equation
inversion procedure. We will see that despite the fact that all
interactions at play are short ranged, their net effect leading to
the pattern formation (microheterogeneity, or microstructure
segregation at the nanoscale) translates into the appearance of
effective interactions that agree with the characteristic trends
of a short range attraction and a long range repulsion, i.e., a
SALR potential. We have found that the effective potentials ex-
tracted from the simulation and those derived by the theoretical
approach agree remarkably well. Finally, we have analyzed the
role of charges on our model, which in fact by the addition of
electrostatic site-site interactions becomes a rough representa-
tion of a RTIL. As expected, charges will be shown to enhance
the pattern formation and the stability of the nanostructured
phases.

The rest of the paper can be sketched as follows. In Sec. II
we introduce the model in full detail and briefly summarize the
methodology. In Section III, we introduce our most significant
results. Conclusions and future prospects are to be found in
Section IV.

II. MODEL AND METHODS

Our model consists in an equimolar fluid mixture of two
different species, a two-site dimer AB and a monomer C. The
dimers are represented by a two center LJ site-site potential, in
which the sites are separated by a distance l. Our monomers
also interact via LJ potentials. In all cases, the interactions are
cut and shifted at a distance rc, by which the explicit form of
the site-site potentials is

ui j(r) = 4ϵ
(σi j

r

)12
−

(σi j

r

)6

−
(
σi j

rc

)12

+

(
σi j

rc

)6
if r < rc, (1)

and ui j(r) = 0 otherwise. Our model is to a certain degree
inspired by the simple coarse-grained model for imidazolium
based RTIL of Merlet et al.32 We will see to what extent a
simple model, with just two sites and purely short ranged inter-
actions can reproduce the presence of nano-structural order as
found in RTILs. To that aim, we will however preserve the
attractive/repulsive character of the interactions in the RTIL. In
our model then, C monomers would correspond to anions, AB
dimers to the molecular cations, with the imidazolium ring that
contains the positive charge, being represented by site A, and
the non-polar tail, by the larger site B. This implies that AA and
CC interactions will be repulsive, BB and AC are attractive,
finally BC and AB interactions are also repulsive. For the
sizes of A and C particles, we have chosen σAA = σCC = 4 Å,
the elongation of the dimer l = 8 Å. The AB distances of the

TABLE I. Lennard-Jones potential parameters.

Particle
i

Particle
j Interaction ϵ (kJ/mol) σi j rc

A A Repulsive 2.092 4.0 Å 21/6 ·σAA

A B Repulsive 2.092 (σAA+σBB)/2 21/6 ·σAB

A C Attractive 2.092 4.0 Å 3 ·σBB

B B Attractive 2.092 σBB 3 ·σBB

B C Repulsive 2.092 (σBB+σCC)/2 21/6 ·σBC

C C Repulsive 2.092 4.0 Å 21/6 ·σCC

dimers are fixed as constraints of the equations of motion. The
LJ well is set to ϵ = 2.092 kJ/mol, identical for all interactions.
Since the size of the non-polar tail is essential to determine the
nanostructural ordering,16 we have considered various sizes
for σBB (with σBB > σAA always). For the attractive inter-
actions, we have truncated and shifted the LJ potential at rc
= 3σBB. For the repulsive interactions, we have simply used rc
= 21/6σi j, thus defining purely repulsive soft spheres follow-
ing the prescription of Weeks, Chandler, and Andersen
(WCA).33 The complete set of parameters for all interactions
is summarized in Table I. Finally, in order to analyze the effect
of charges on the intermediate range order, we have considered
explicitly the same model with a positive charge +q on the A
sites and a corresponding negative charge−q on the monomers.
The value of q is varied between 0 and 0.25e, where e is the
elementary electron charge. Again these values are of the same
order as those considered in the model of Ref. 32.

A. Simulations and analysis

We have carried out extensive molecular dynamics simu-
lations of the system previously described using the LAMMPS
package,34–36 in the canonical and isothermal-isobaric ensem-
bles using a Nose-Hoover thermostat and barostat.37 Our sam-
ples contained 16 384 particles (samples of up to 65 536 parti-
cles were investigated and no significant size dependence was
found). For simplicity, we considered equal masses for the
three interaction centers: mA = mB = mc = 16 g mol−1. Initial
thermalization runs at a temperature of 226 K were 2 × 106

steps long, with a time step of 1 fs. Production runs were
5 × 106 steps long, and averages were carried out every 5000
steps.

One of the problems one can encounter when performing
canonical simulations in this type of system is the occur-
rence of phase transitions, either vapor-liquid equilibria or
demixing. In order to guarantee that the states under consid-
eration correspond to thermodynamic equilibrium conditions,
and consequently, any potential intermediate range order is not
the result of a spinodal decomposition, we have run additional
isothermal-isobaric simulations and analyzed the volume fluc-
tuation of the samples. In this way, one can avoid those states
that lie inside the liquid-vapor spinodal. Moreover, one can
compute the partial structure factors, defined as

Si j(k) = xiδi j + xix jρ

 �
gi j(r) − 1

�
e−krdr, (2)

where ρ is the total number density, δi j is a Kronecker δ, and
xi is the molar fraction of component i. Here, sites A and B
are considered as different particles and gi j is the atom-atom
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pair distribution function. Our samples are large enough to
allow for an accurate integration of the pair distribution func-
tions, and the results are consistent with direct k-sampling.
Notice that as far as Eq. (2) is concerned, xA = xB = xC = 1/3;
hence, in the large k limit, all structure factors will tend to
1/3. From the partial structure factors, it is possible to evaluate
the concentration-concentration structure factor introduced by
Bathia and Thornton,38 for which we have defined

Scc(k) = x2
ABSCC(k) + x2

CSAB−AB(k) − 2xABxCSC−AB(k),
(3)

where now one has to consider explicitly the structure fac-
tors corresponding to the molecular species AB, and as a
consequence, xC = xAB = 1/2. We can simply approximate
gAB−AB = gBB and gC−AB = gCB, as if the scattering length
or form factor of A sites was negligible compared to that of
B sites. This is in principle not unreasonable given the much
larger size of the B sites, but in a realistic situation, one should
take explicitly into account the true scattering lengths or form
factors of sites A and B. Now, one has to correct for the different
values of the molar fraction when AB is considered as a single
species and Eq. (2) is used in (3). In this way, limk→∞ Scc(k)
= xcxAB = 1/4. With all this in mind, the presence of a diver-
gence when k → 0 in Scc(k) is a signal of a demixing transi-
tion, so this quantity will be essential to assess the stability of
the thermodynamic states chosen for our simulations.

Finally, back to the vapor-liquid transition, one can ana-
lyze the corresponding k-dependent linear response suscepti-
bility in density fluctuations, namely,39

ρkBT χT(k) = |S(k)|
ab(xaxb)|S(k)|ab , (4)

whose k = 0 limit is precisely the isothermal compressibility.
In Eq. (4), kB is Boltzmann’s constant, T the absolute temper-
ature, and the elements of the matrix Si j are just the partial
structure factors as defined in Eq. (2). | . . . | denotes the matrix
determinant and | . . . |ab the corresponding minor of the matrix
S(k). The presence of a divergence—or a substantial increase
in χT(0)—is a clear indication of the vicinity of a vapor-liquid
transition. A careful monitoring of this quantity together with
the use of NPT simulations provides a reliable assessment of
the stability of the state points under consideration during the
simulation runs.

All systems and conditions studied in this work are sum-
marized in Table II. In the case of system 8, when increasing
the charge from 0.10e to 0.25e, the conditions of temperature
and density corresponding to systems 3, 6, and 7 lie in the
two-phase region. Consequently, we resorted to an isothermal-
isobaric simulation at low positive pressure to achieve thermo-
dynamic equilibrium conditions in our system with q = 0.25e.
The final value of the total particle density achieved in this way
is indicated in Table II.

B. Inverse Monte Carlo method

With the pair correlation functions produced along the
simulation runs and the corresponding statistical uncertainties
calculated using block averages, we have used the IMC proce-
dure proposed by Almarza and Lomba31 in order to produce

TABLE II. Potential parameters and thermodynamic state variables for the
systems under study.

Potential thermodynamic state

|q |(e) σB (Å) ρ (Å−3) T (K) P (MPa)

System 1 0 8.0 0.001 226.4 27.05
System 2 0 8.0 0.001 25 226.5 39.5
System 3 0 8.0 0.001 5 226.5 59.4

System 4 0 9.0 0.001 226.5 30.4
System 5 0 9.0 0.001 25 226.4 53.2
System 6 0 9.0 0.001 5 226.4 96.7

System 7 0.1 8.0 0.001 5 226.4 39.4
System 8 0.25 8.0 0.001 95 226.3 0.61

single component site-site effective potentials able to repro-
duce the microscopic structure exhibited by our mixture model.
The procedure starts from a simple approximation βueff

in (r)
= − log g(r) and proceeds to modify the pair potential along the
simulation run in such a way that the calculated geff (r)matches
the input g(r). Explicit details of the method can be found in
Ref. 31. In our case, we have used a total of 4000 particles.
The procedure of inversion was carried out in 20 stages. In
the last stages, the effective potentials hardly varied, and the
convergence between input and calculated g(r)’s according to
the prescription of Ref. 31 was achieved successfully in all the
cases.

In this way, one can use as input of the IMC procedure
either gAA(r), gBB(r), or gCC(r) and obtain a corresponding
set of ueff

AA
(r), ueff

BB(r), and ueff
CC

(r), which will obviously be
different, but in the case of emergence of intermediate range,
order should exhibit some common features.

C. RISM integral equation

The site-site correlations are obtained by solving the usual
set of 2 equations, the site-site Ornstein-Zernike (SSOZ) equa-
tion and the closure equation, which we choose here to be the
site-site hypernetted (SS-HNC) equation. The SSOZ equation
for the present system is explicitly given in the matrix form

(W + ρ

3
H)(W−1 − ρ

3
C) = I, (5)

where the 3 × 3 matrix H (or C) has for elements Hi j = h̃i j(k)
(or Ci j = c̃i j(k)), the Fourier transform (FT) of the site-site pair
correlation functions hi j(r) = gi j(r) − 1 (or the direct correla-
tion function ci j(r)), where the indices i and j stand for one
of the sites A, B, and C. The matrix W represents the intra-
molecular correlations, which for the present system gives

W =
*...
,

w̃AA w̃AB w̃AC

w̃AB w̃BB w̃BC

w̃AC w̃BC w̃CC

+///
-

=
*...
,

1 j0(kl) 0
j0(kl) 1 0

0 0 1

+///
-

, (6)

where j0(x) is a spherical Bessel function. The matrix I is the
identity matrix. The SS-HNC equations are written as

gi j(r) = exp

−

ui j(r)
kBT

+ hi j(r) − ci j(r)

, (7)

and there are 9 such independent equations to solve.
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Both equations are approximate and their respective
inconsistencies have been discussed many times in the past
literature.39,40 Based on empirical evidence from the literature,
we expect that the correlations obtained through these equa-
tions for the present systems, both charged and uncharged,
should be relatively good for the short range part, but perhaps
not at long range. We are particularly interested to see if the
correlations related to the appearance of the local structures
can be reproduced by this theory. The structure factor defined
in Eq. (3) is the appropriate function for this purpose, as illus-
trated in Sec. III.

The practical solution of these equations consists in dis-
cretizing all the functions on an equidistant grid, both in r and
k space. We use 2048 points with a r-grid of ∆r = 0.01σA,
which is enough for the present case to properly describe the
asymptotic behavior of the correlations in direct and reciprocal
space. The set of two equations are solved iteratively following
techniques well documented in the literature.

It is also possible to obtain the effective potentials which
would correspond to the equivalent one-component represen-
tation of the system. This is achieved by imposing the pair
correlation function to be the desired site-site correlation,
namely, g(r) = gXX(r), in the set of the two integral equations
for the 1-component system and solve these equations for the
direct correlation function and effective pair interaction. The
direct correlation function can be obtained through the OZ
equation for 1-component system (which is an exact relation),

(1 + ρS h̃(k))(1 − ρSc̃(k)) = 1, (8)

where h(r) = g(r) − 1 = hXX(r) = gXX(r) − 1, and the den-
sity ρS is that of the effective 1 component made solely of
sites X . Once c(r) is obtained, one solves the HNC closure,
which has the same form as Eq. (7), but now for the effective
interaction ue f f (r), one gets

ue f f (r) = −kBT [ln gXX(r) + hXX(r) − c(r)] . (9)

III. RESULTS

A. Pair structure

Here, we have analyzed the effect of the molecular geom-
etry on the nanostructure formation changing the diameter of
σBB. We have first consideredσBB = 8 Å, 9 Å, 10 Å, and 12 Å.
Some snapshots of configurations for varyingσBB are depicted
in Figure 1. We have found that for σBB > 9 Å, clustering
or microheterogeneity of C particles can only be appreciated
when the packing of the B sites is so high that it resembles
that of a solid. In fact in this case, the height of the first peak
of SBB(k) exceeds 2.7, which according to the Hansen-Verlet
rule41 indicates that freezing conditions have been reached.
Moreover, the prepeak in the structure factor characteristic of
the presence of IRO is absent from SBB(k). The clustering of
C particles results from a merely steric effect, since these are
restricted to occupy the holes between the large B particles.
These effects can be appreciated in the snapshots of Figure 1,
where the dense packing of B sites (red spheres) is readily
apparent.

For the reason mentioned above, we will concentrate on
the results for σBB = 8 Å and 9 Å. Already in the correspond-
ing snapshot of Figure 1, one can appreciate the formation of a
bicontinuous network of percolating clusters, connecting both
AB dimers and C monomers. By bicontinuous network, we
mean that the clusters formed by B-sites and C particles will
be seen to both span practically the whole sample, forming two
continuous interpenetrated percolating microphases. This can
be analyzed from a more quantitative perspective by first taking
a look at the corresponding pair distribution functions and par-
tial structure factors, which are depicted in Figures 2 and 3,
respectively, for Systems 1–6. Focusing first on the gAA pair
distribution function, one first appreciates the large exclusion
hole after the first layer, which is a simple consequence of the
large size of B-sites. Obviously, the exclusion hole grows with
the size of the B-sites, as can be seen when comparing figures

FIG. 1. Snapshots of configurations for total particle density ρ = 0.001 25 Å−3 and temperature T = 226.45 K for two B-site diameters. As the size of
B-sites grows, C monomers cluster in the cavities formed by the B-sites due to excluded volume effects. All other diameters and total density are kept fixed,
σAA=σCC = 4.0 Å. (a) σBB = 8 Å. (b) σBB = 12 Å.
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FIG. 2. The figures show the radial
distribution functions for A, B, and C
particles, respectively. Column (a) cor-
responds to σBB = 8 Å for system
3 (theory vs. simulation) and column
(b) presents the simulations results for
systems 4–6 for σBB = 9 Å. Total den-
sity is indicated in the legend. Simu-
lation results are represented by solid
lines and dashed-dotted curves corre-
spond to integral equation calculations.

on the left and right columns. Correlations between A-sites
extend up to five σAA, and the width of the gCC correlation
is ≈2σCC. These features hint at the presence of some degree
of IRO. B-B correlations (graphs in the middle row) behave
like those of a dense fluid, and no apparent sign of clustering
or IRO is evident. In contrast, the wide first peak of gCC is
characteristic of clusters of particles confined in cavities, in
this case formed by B-sites. This effect, as mentioned before,
is maximized for the largest σBB. We will see later that these
clusters of partly occluded C-particles are connected, forming
a three dimensional percolating structure.

If we take now a look at the partial structure factors, we
immediately appreciate a feature characteristic of the emer-
gence of IRO, namely, the presence of a prepeak at 0.25 Å −1.
This corresponds to correlations in the range of 25 Å, the
distance at which any sign of structure of the pair distribution
function dies out. Interestingly, the prepeak is almost absent in
SAA, except for a small maximum visible for the σBB = 9 Å
and the highest density. This quantity shows otherwise very
little structure for k > 0.5 Å−1. As seen in the gAA’s, the
most relevant feature in the AA correlations is the exclu-
sion hole due to the presence of the B-sites. In contrast, SBB

does exhibit a prepeak, even when no evidence of IRO was
visible in gBB. This prepeak is more apparent in the mono-
mer structure factor SCC. When the density is lowered, the
prepeak in the B-site structure factor shifts to lower k-values
and vanishes at ρ = 0.001 Å−3. In the case of SCC, the posi-
tion of the prepeak is preserved, but its magnitude decreases.
In Figure 4, the corresponding concentration-concentration
structure factor is displayed. The prepeak at k0 ≈ 0.25 Å−1 is
preserved, although its magnitude decreases when the total
density is lowered. In contrast, no increase when k → 0 is
visible. This implies that we are encountering concentration
fluctuations inducing spatial inhomogeneities, but no demix-
ing transition. In Figure 5, we have plotted the k-dependent

susceptibility corresponding to density fluctuations. The pre-
peak is visible except for the lowest density, which implies
that density inhomogeneities with a spatial patterns are also
correlated with the corresponding concentration inhomogene-
ities. But now, the k → 0 behavior is different. As density is
decreased, the susceptibility (i.e., the isothermal compress-
ibility) grows, an indication of the vicinity of a vapor-liquid
transition. This means, that lowering the density from the value
of ρ = 0.001 Å−1 at the same temperature could move the sys-
tem across the spinodal curve into the two-phase region. Our
analysis indicates that the thermodynamic conditions we have
simulated can be considered equilibrium states. Moreover, we
have confirmed that the results do not have a significant sample
size dependence, by which metastability can also be ruled out.

The site-site correlation functions and structure factors
obtained from the RISM theory are represented in dashed
lines in Figs. 2-3. It is seen that the agreement is excellent
in most cases, particularly in what concerns the BB and CC
correlations. The AA correlations are systematically underes-
timated near contact and overestimated at larger distances. The
most significant differences are seen for the structure factors
in Fig. 3. Integral equations tend to exaggerate concentration
fluctuations and often tend to interpret small aggregate forma-
tions as such.42,43 We observe here a similar trend for the low
density case ρ = 0.001 Å−3, for which fluctuations compete the
most with aggregate formation. The prediction of aggregation,
through the prepeak is in very good agreement with simula-
tions for the highest density ρ = 0.0015 Å−3, precisely when
the denser packing tends to favor aggregation. This is also in
line with previous observations of similar type of behavior for
model ionic liquids. These features are a direct consequence of
the fact that the HNC closure approximation misses high order
correlations, hence high order cluster contributions, which are
represented in the bridge term bi j(r) that is neglected in the
exponential of Eq. (7). We observe that in all cases, the k = 0
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FIG. 3. The figures show the structure
factors for A, B, and C particles, re-
spectively. Column (a) corresponds to
σBB = 8 Å for system 3 (theory vs.
simulation) and column (b) presents the
simulations results for systems 4–6 for
σBB = 9 Å. Total density is indicated in
the legend. Simulation results are repre-
sented by solid lines and dashed-dotted
curves correspond to integral equation
calculations.

behavior of the RISM structure factor always overestimates the
concentration fluctuations.

B. Effective pair potentials

In Figure 6, we present the effective potentials obtained
from the site-site pair distribution functions. By construction,
using these effective potentials in a simulation for a single
component system will lead to a pair distribution function
coincident with the original site-site correlation of the mixture.
This is one of the possible alternatives to reduce the behavior
of a complex system to a simpler one component system. Other
alternatives, such as the force-matching approach,44 will lead
to quantitatively different results, but certainly retaining the
essential features of the effective potentials found here. Among
these features, we see that in all cases, the effective potential
has a short range (extremely short in the case of AA potentials)
attractive well and this is followed by a long range repulsive

FIG. 4. Concentration-concentration structure factor for the systems 1–3.

region, which extends to 20-30 Å. The repulsive region of Ueff
CC

is much less visible and is illustrated in the inset. The repulsive
range is more influenced by the change in the total density. The
attractive part of AA and CC effective interactions is due to
depletion forces (in this case, the plain site-site interactions are
repulsive). In the case of AA interactions, most of the attractive
wells are masked by the excluded volume effect of the B sites
in the AB molecules (the large repulsive potential between
5-15 Å corresponds to the exclusion hole in gAA). Note that
even if in gBB long range correlations due to nanostructure
organization are clearly not visible, there are long range repul-
sions in the BB effective potential, which are reflected in
the prepeak in SBB as an indication of IRO. The long range
repulsion vanishes for ρ = 0.001 Å−3, which we have seen is
a state approaching the gas-liquid transition.

Fig. 6 shows the effective pair potentials as obtained by
the integral equation approach outlined in Section II C. The
comparison with the simulations is overall quite good in all

FIG. 5. Isothermal compressibility as a function of k for systems 1–3.
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FIG. 6. Effective potentials for A, B,
and C particles, respectively. Column
(a) corresponds to σBB = 8 Å for sys-
tem 3 (theory vs. simulation) and col-
umn (b) presents the simulations results
for systems 4–6 for σBB = 9 Å. Total
density is indicated in the legend. Sim-
ulation results are represented by solid
lines and dashed-dotted curves corre-
spond to integral equation calculations.

cases. However, it is seen that the repulsive shoulder-which is
the signature of the clustering ability-is always systematically
underestimated by the theory. This is a direct consequence of
the weaker tendency of the integral equation theory to predict
clustering.

Taken into account that B-sites are much larger than A-
sites, we can think of our model as a system of B particles in a
“sea” of C monomers, just like colloids in solution. Following
the work of Mani et al.,23 we can use a functional form of the
type

U(r)/kBT = 4a0

(
σBB

r

)12
−

(
σBB

r

)a1

+

a2a3

r
e−

r
a3 (10)

to represent the BB effective interactions. Note that given the
large size of the B-sites, we have retained the repulsive part
of the bare LJ interaction in order to account for the repulsive
component of the effective potential. One can see that the fits
of the effective interactions Ueff

BB/(kBT) to Eq. (10) represented
in Figure 7 are fairly accurate except for the minor inflection of
the curve around 13 Å. The parameters of the fit are collected
in Table III. Notice that the exponent of the attractive LJ
component, a1, deviates substantially from the standard value
of 6, being its range shorter as density increases. The range
parameter a3 grows considerably with the density, reflecting
the increase of intermediate range ordering as the total density
is increased. We observe that a single component representa-
tion of our system can be well performed by a standard SALR
potential in which the long range repulsion has the form of a
Yukawa interaction, even when the original bare interactions
in the mixture are relatively short ranged LJ potentials.

C. Cluster analysis

In order to go beyond the mere qualitative information
provided by simulation snapshots and the two-body level

information furnished by pair distribution functions or site-
site structure factors, we have also performed a geometric
cluster analysis on the B sites and the C monomers, using
different values for the link distance rcl. Essentially, this dis-
tance defines two particles as linked, and in this work, it has
been defined in terms of the position of the inflection point

FIG. 7. B-B effective interaction for systems 1–3, fitted to a generalized
LJ+Yukawa interaction.
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TABLE III. Parameters of SALR effective interaction (10) between B sites
fitted to the data extracted from the IMC procedure. Note that the potential is
scaled with kBT , by which a0 is dimensionless.

a0 a1 a2 (Å) a3 (Å)

System 1 1.788 8.185 3.749 4.297
System 2 2.066 8.667 0.843 7.282
System 3 3.578 9.927 0.231 14.816

of the corresponding effective potentials depicted in Figure 6.
We will use various values of rcl in the range 10-12 Å for
B-sites and C monomers and 6-8 Å for A-sites. The effects
of the particular choice of rcl on the cluster distribution will
be analyzed. Specifically, we have calculated the normalized
cluster size distribution, N(s), as proposed by Stauffer.45 This
quantity is defined as the fraction of particles contained in
clusters of size s, i.e., N(s) = n(s)(s/N), where n(s) is the
number of clusters of size s. With this definition,


N(s) = 1.

Of all the systems analyzed, in Figure 8, we have chosen to plot
the results of system 6, which exhibits a significant prepeak
in its partial structure factors. We observe that the normalized
cluster size distributions of both A and B-sites and C mono-
mers present the same qualitative features: first, one finds a
maximum for isolated particles which decays monotonously
to zero at a value of cluster size, s, that strongly depends on rcl.
This is a typical behavior of a non-associating fluid, in which
instantaneous clusters are created and destroyed as particles
explore their configurational space. If stable finite clusters
were formed, the cluster size distribution should exhibit the

FIG. 8. Normalized cluster distribution function for A and B sites and C
monomers of system 3.

corresponding maxima for the preferred sizes. On the other end
of the s-axis, interestingly, one finds large clusters that span
all the simulation cell. Here, N(s) shows little dependence on
rcl, particularly for the B-sites and C monomers. Finally, the
cluster size distribution of A and B sites is qualitatively very
similar, which is understandable taking into account that both
sites are linked into single molecular units. In Sec. III D, we
will see that this symmetry is broken by the presence of charges
and a new symmetry between A-sites and C particles emerges.

Thus, from our analysis, a more clear picture shows up,
in which we have a large portion of the sample linked into mi-
crosegregated clusters forming bicontinuous structures, with a
remnant of disconnected particles that form short lived struc-
tures up to tens or hundreds of particles depending on the
choice of rcl, as one would expect in a non-associating fluid.

D. The effect of charges

Our previous results have shown that microheterogeneity
or stable intermediate range order can be induced by competing
short range interactions in a simple mixture model of dimers
and monomers. Our model was somehow inspired by a coarse
grained representation of ionic liquids, which are in reality
characterized by the presence of Coulombic interactions, ab-
sent from our model. An immediate question that deserves to
be answered is then how the presence of charges affect the
stability of the aforementioned bicontinuous structures. To that
aim, we have carried out the corresponding analysis on systems
7 and 8 that, as mentioned, correspond to system 3 with charges
+q added to sites A and −q to the C monomers. For q = 0.1e,
standard canonical molecular dynamics simulations were run.
Recall that in the case of q = 0.25e, density had to be increased
in order to move out of the vapor-liquid coexistence region.
This was simply achieved by means of an isothermal-isobaric
simulation run at the same T as the original system and a
pressure of 0.61 MPa, leading to a total ρ = 0.001 95 Å−3.
In the snapshots of Figure 9, one can readily see that the
charges enhance the formation of microstructural order, and
particularly for the highest charge, one see very well defined
stripes of C particles, stripes that now appear to be finite. A
more clear picture emerges when taking a look at the partial
structure factors, presented in left panels of Figure 10. Now, the
prepeak is perfectly defined even for the SAA structure factor
for the lowest charge, in contrast with the uncharged system
SAA. The extremely large values of Sαβ(k0) for k0 ≈ 0.25 Å−1

resemble Bragg peaks and indicate the presence of quasi-
periodic order in the microstructural domains. Moreover, if
now one looks at the cluster size distributions plotted on the
right panels of Figure 10, together with the percolating clusters,
one finds now a maximum centered at s ≈ 20 for q = 0.25e for
C and A-sites, which indicates the presence of finite clusters
of monomers and A-sites. This maximum is preserved in the
results obtained for other charges up to q = 0.2e (not shown
for the sake of brevity), to disappear for weaker Coulombic
interactions. It is obvious that the net effect of charges on
the microstructuring of our model mixture is to enhance the
formation of nanostructures, also giving rise to the formation of
finite size clusters for sufficiently high charges. In contrast, B-
sites form a percolating bicontinuous structure coexisting with
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FIG. 9. Snapshots of the equimolar mixture of AB dimers and C monomers with embedded charges (indicated on the figures). (a) qA= 0.10e; qC =−0.10e.
(b) qA= 0.25e; qC =−0.25e.

some disconnected B-sites or short lived aggregates. A-sites
and C monomer form aggregates embedded in the percolating
network of B-sites. All this suggests that the network of B-sites
forms cavities, with the A-sites pointing inside the cavity. This
in turn is filled by C monomers. This configuration is favored
both by steric effects and by the net attraction between the
positively charge A sites and negatively charged C monomers.

On the other hand, despite the fact that A-sites form part of
the AB dimers and C monomers are independent particles, due
to the symmetry of the electrostatic interactions and the sym-
metry in shape and density—σAA = σCC, ρA = ρC—as the
charges increase, AA and CC correlations become extremely

similar—compare SAA and SCC in Figure 10—as one would
encounter in a simple fully symmetric electrolyte.

The next question is how this is all reflected on the effec-
tive potentials. These are plotted in Figure 11. In all cases,
one observes the characteristic SALR structure, obviously be-
ing the CC and AA effective interactions those that are most
affected by the introduction of charges. In spite of the fact that
these two effective interactions result from the coarse graining
of many body effects, the dominant role of electrostatic inter-
actions already reflected in the partial structure factors leads to
surprisingly similar effective potentials when charges are pres-
ent. On the other hand, the changes in Ueff

BB are just quantitative.

FIG. 10. (a) Charge dependence of the
partial structure factors for A (top),
B (middle), and C (bottom) particles.
(b) Charge dependence of the clus-
ter size distribution. Charge magnitudes
are specified in the legend.
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FIG. 11. Charge dependency of the effective potentials for A (top), B (mid-
dle) and C (bottom) particles. Charge magnitudes are specified in the legend.
Values of rcl correspond to the inflexion points of the effective potentials in
their first minimum, i.e., rcl(A–A)= 6 Å, rcl(B–B)= 11 Å, and rcl(C–C)
= 10 Å.

The attractive part is hardly influenced by the charges, since
it results mostly from the depletion interactions and the bare
attractive uBB. The long range repulsion is enhanced, and as
the charge reaches q = 0.25e, oscillations appear. These oscil-
lations recall the Friedel oscillations characteristic of effec-
tive cation-cation potentials in liquid metals.46 In the latter
instance, the oscillations result from the quantum nature of the
electrons. Here, they result from the interplay of the Coulombic
interactions and depletion forces. Thus, for sufficiently large
charges, the long range attractive interaction between C and
A sites propagates through the AB bonds and induces the
attraction well around 30 Å as a result of a many body effect.

IV. CONCLUSIONS

In summary, we have shown that a simple mixture of
heteronuclear AB dimers and C monomers, with short range
attractive and repulsive interactions designed so as to mimic
the interactions present in RTILs can give rise to the pres-
ence of nanostructural order in the form of micro-segregation
in bicontinuous structures. This in turn translates into the
characteristic presence of a prepeak in the site-site structure
factors. These features are found both in simulation and in
the integral equation results. The effective site-site potentials
extracted from the pair distribution functions by means of an
IMC and integral equation approach display the characteristic
features of the SALR interactions, with the repulsive long

range increasing as the total density (and hence the ordering)
increases. The addition of charges to the model enhances the
nanostructural order. When charges are large enough, one finds
well structured phases in which bicontinuous structures coexist
with finite size aggregates of monomers, caged in cavities
formed by a network of the large uncharged sites and with the
cationic sites facing the inner part of the cavity. The effect of
charges on our simple and rather symmetric model induces the
symmetrization of the correlations of the anionic monomers
and the cationic sites. The microscopic structure formed by
the uncharged sites (apolar head in the RTILs) retains its
bicontinuous nature and even if it is stabilized and enhanced
by the charges, it is still mostly dominated by depletion effects
and the bare short range attraction of the B-sites. In this regard,
it is interesting to note that the appearance of a prepeak in the
wide angle scattering experiments and computer simulations
of RTILS have been a subject of much investigations47,48 and
have been related to the charge ordering and the subsequent
appearance of segregated charged and uncharged molecular
domains. Our work presents a unified view of microsegregated
bi-continuous domains, pre-peaks in structure factors, and
SARL type interactions, which are common to many complex
systems.

Obviously, a much richer variety of structures would result
from longer attractive uncharged tails, beyond the single B-site
model used here. On the other hand, our simple model when
reduced to two dimensions most likely will also give rise to
more complex structures, which in three dimensions are hin-
dered by entropic effects. This is certainly a problem relevant
to the behavior at interfaces which we intend to address in the
future.
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