

Omar Santín and Gabriel Moncalián

santino@unican.es

Protein Engineering Group, Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC, Universidad

de Cantabria), Santander, Spain

Background

Wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) is a family of enzymes able to perform the esterification of acyl-CoA and diacylglycerol or fatty alcohols to produce triglycerides (TAGs) or wax esters, respectively¹. Both products can be used for diverse fatty acid-derived products such as biodiesel².

WS/DGAT protein from *Thermomonospora curvata* (tDGAT) is able to produce TAGs and waxes in *E. coli*.

Objectives

- Improve TAG production in *E. coli*.
- Acquire information about amino acids residues involved in substrate recognition.
- Elucidate possible key interactions between WS/DGAT and lipid droplets.

TAG production in *E. coli* could be improved through directed evolution of this enzyme.

Results

In order to confirm that the mutants actually improved TAG accumulation, lipid extraction and further thin layer chromatography were performed.

Fatty acid alkyl esters

Figure_2. 96-well plates fluorescence (490-620nm) is using VICTORX3 Multilabel Plate Reader. Red line represents the average of each plate fluorescence after normalized by the OD_{600.} We selected the best mutants of each plate for a second selection step.

Methodology

To perform directed evolution we have developed a protocol where we constructed mutant libraries by MEGAWHOP³ after mutagenic PCR in order to obtain thousands of variants of the protein.

Using Nile Red, a fluorescent dye that binds to neutral lipids, we can select improved variants of tDGAT. A library of \simeq 12.000 was analysed through a high throughput selection system based on Nile Red fluorimetry using 96-well plates and a Victor fluorometer (Perkin Elmer).

Figure_3. Thin layer chromatography analysis. M) Marker. Lipid fractions were extracted from BW27783 E. coli cells containing : -) PBAD, +) PBAD::tDGAT, 1,2,3,4) four selected mutants.

Mutants producing higher amount of TAG are further selected and sequenced. This way we were able to localize in the protein structure mutations that lead to a 2-fold increase in the TAG production.

Figure_4. Phyre 2 server was used to generate WS/DGAT 3D models⁴. a) General structure prediction of tDGAT with two domains conected by an helix loop. b) Some of the positive mutants into the N domain appear only on the surface of the protein.

Figure_1. Schematic representation of the procedure for creating mutant libraries. A. Mutagenic PCR product was used as megaprimer for a second PCR step. The plasmid library is screened after subsequent electroporation of the synthetic plasmid collection in E. coli. Cells are further grown and induced in 96-well plates. Nile Red (B) is added directly to the culture plate (C) to measure changes if fluorescence.

References

Interestingly, we have found a pattern in the mutation sites that led us to generate a possible model of protein-lipid droplets interaction.

Figure_5. Proposed model for the WS/DGAT proteins assembly surrounding the lipid droplets. Mutations highlighted in green and red could facilitate the settlement of the proteins on the lipid monolayer by protein-protein or protein-lipids interactions.

- 1. Annika Röttig and Alexander Steinbüchel, "Acyltransferases in Bacteria," Microbiology and Molecular Biology Reviews 77, 277–321.
- 2. M. Balat, "Biodiesel Fuel from Triglycerides via Transesterification—A Review," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31, 1300–1314.
- Kentaro Miyazaki, "MEGAWHOP Cloning: A Method of Creating Random Mutagenesis Libraries via Megaprimer PCR of Whole Plasmids," Methods in Enzymology 498, 399–406.
- 4. Juan A Villa et al., "Use of Limited Proteolysis and Mutagenesis to Identify Folding Domains and Sequence Motifs Critical for Wax Ester Synthase/acyl Coenzyme A: diacylglycerol Acyltransferase Activity," Applied and Environmental Microbiology 80, no. 3 (February 2014): 1132–41, doi:10.1128/AEM.03433-13.

Acknowlwdgements

This work was supported by Ministerio de Ciencia e Innovación (BIO2010-240512). We are grateful to the Intergenomics group at IBBTEC for helpful discussions and advice.