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Abstract

A model for S-wave ηπ scattering is proposed which could be realistic in an
energy range from threshold up to above one GeV, where inelasticity is dominated
by the KK̄ channel. The T -matrix, satisfying two-channel unitarity, is given in a
form which matches the chiral expansion results at order p4 exactly for the ηπ →
ηπ, ηπ → KK̄ amplitudes and approximately for KK̄ → KK̄. It contains six
phenomenological parameters. Asymptotic conditions are imposed which ensure a
minimal solution of the Muskhelishvili-Omnès problem, thus allowing to compute
the ηπ and KK̄ form factor matrix elements of the I = 1 scalar current from the
T -matrix. The phenomenological parameters are determined such as to reproduce
the experimental properties of the a0(980), a0(1450) resonances, as well as the
chiral results of the ηπ and KK̄ scalar radii which are predicted to be remarkably
small at O(p4). This T -matrix model could be used for a unified treatment of the
ηπ final-state interaction problem in processes such as η′ → ηππ, φ → ηπγ, or the
ηπ initial-state interaction in η → 3π.
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1 Introduction

The properties of the ηπ scattering amplitude are much less known than those of ππ
or Kπ scattering. In the framework of three-flavour chiral symmetry (in which the η
is a pseudo-Goldstone boson) a specific prediction can be made that the ηπ interaction
should be considerably weaker than the ππ or Kπ interactions [1] at low energies. This
feature has not yet been verified either experimentally or in lattice QCD. It is possibly
related to the apparent absence of a broad light I = 1 scalar resonance.

A global description of πη scattering (in particular of the elastic channel and the
leading inelastic channel πη → KK̄) would enable one to perform a universal treatment
of the final-sate (or initial-sate) interaction involving the πη system. A particularly
interesting application would be to the η → 3π amplitude. Precision measurements
of these decay modes should be exploited in an optimal way for the determination
of isospin violating quark mass ratios. For this purpose, it is necessary to combine
chiral expansion expressions with general dispersive treatments of rescattering [2, 3]. An
extension of these approaches to include ηπ rescattering would allow one to take into
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account explicitly the a0 − f0 “mixing” effect1, which was claimed to be significant [5]
for η → 3π.

The available experimental information on ηπ scattering have been derived via the
final state interaction effects in production processes and they concern, essentially, the
properties of the resonances. The two prominent resonances which have been observed
in the S-wave are the a0(980) and the a0(1450). We wish to address here the problem
of determining more global properties of the S-wave amplitude i.e. the determination
of phase shifts and inelasticities in the small to medium energy range such as to be
compatible with the properties of the resonances and also obey further theoretical con-
straints.

Several models of the ηπ S-wave scattering amplitude have been proposed in the
literature [6–9]. Our approach enforces a correct matching with the chiral expansion
of the amplitudes at low energy in a way somewhat similar to refs. [6, 7]. In addition,
we propose here to consider the form factor F ηπ

S (and FKK̄
S ) associated with the scalar

isovector current operator ūd, in parallel with the T -matrix. Form factors are the
simplest quantities to which analyticity based final-state interaction methods can be
applied. We will follow the same general method which was proposed for the scalar
isoscalar pion (and kaon) form factors [10] and proved capable of determining the scalar
radius of the pion 〈r2〉ππS rather accurately (see refs. [10–16] for theoretical calculations,
and refs. [17–19] for lattice determinations). Its application to the strangeness changing

Kπ scalar form factor and the corresponding scalar radius 〈r2〉Kπ
S were discussed in

refs. [20–22]. Form factors are constrained by chiral symmetry at low energy and, even
though the convergence of the three flavour chiral expansion may be rather slow, one
still expects correct order of magnitudes to be provided at order p4. At this order, a
simple relation between the ηπ and the Kπ scalar radii is predicted

〈r2〉ηπS
〈r2〉Kπ

S

∣

∣

∣

∣

∣

p4

= 0.52± 0.02 . (1)

This relation implies that the ηπ radius is remarkably small 〈r2〉ηπS ≃ 0.1 fm2. We will
show that this result provides a stringent constraint in the determination of the phase
shifts and inelasticities.

The plan of the paper is as follows. We start with the chiral perturbation theory
(ChPT) expansions of the scalar form factors F ηπ

S , FKK̄
S and with the ηπ and KK̄ scat-

tering amplitudes at next to leading order (NLO). Next, we recall the general dispersive
integral equations from which one can compute the form factors starting from a given
T -matrix, provided suitable asymptotic conditions are imposed. We then describe our
chiral K-matrix type model for the T -matrix, which involves six phenomenological pa-
rameters. It is designed such that, at low energies, the contributions involving these

1This effect was first discussed in ref. [4]. It can be seen as a superposition of the two physical
resonances a0(980), f0(980) in the ηπ → ππ scattering amplitude.
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parameters have chiral order p6 (that is, NNLO) and that a proper matching with the
ChPT expressions at NLO holds except, however, for the KK̄ → KK̄ amplitude, for
which the matching is only approximate. Finally, the determination of the phenomeno-
logical parameters is discussed such as to satisfy the experimental constraints on the a0
resonances and the chiral constraints on the scalar form factors.

2 ChPT expansions of ηπ+, K̄0K+ form factors and

scattering amplitudes

2.1 Form factors and scalar radii

Let us introduce the following two form factors associated with the isospin one charged
scalar operator ūd

B0 F
ηπ
S (s) = 〈η(p1)π+(p2)|ūd(0)|0〉

B0 F
KK̄
S (s) = 〈K̄0(p1)K

+(p2)|ūd(0)|0〉 (2)

where s = (p1 + p2)
2. We have computed these form factors at next-to-leading order

(NLO) in the chiral expansion. The detailed expressions are given in appendix A. From
eqs. (52), (53) in that appendix, it is easy to derive the expressions of the scalar radii,
which are defined as

〈r2〉PQ

S = 6Ḟ PQ
S (0)/F PQ

S (0) . (3)

For ηπ and KK̄ one obtains

〈r2〉ηπS =
6

F 2
π

[

4Lr
5 +

1

16π2

(

− 3

4
LK − 11

12

)

+
m2

π

3
J̄ ′
πη(0)

]

(4)

〈r2〉KK̄

S =
6

F 2
π

[

4Lr
5 +

1

16π2

(

− 1

2
Lη −

1

4
LK − 1

2
Rπη −

1

4

)

− 2m2
K

3
J̄ ′
πη(0)

]

, (5)

where LP , RPQ are logarithmic functions of the pseudo-scalar meson masses,

LP = log
m2

P

µ2
, RPQ =

m2
P log(m2

P/m
2
Q)

m2
P −m2

Q

, (6)

with µ a renormalisation scale. These scalar radii depend on only one of the Gasser-
Leutwyler coupling constants [23], Lr

5. It is instructive to compare them with the anal-
ogous Kπ scalar radius associated with the strangeness changing scalar current, which
also depends only on Lr

5 [24],

〈r2〉Kπ

S =
6

F 2
π

[

4Lr
5 −

1

8

1

16π2

(

6LK + 5RπK +RηK

)]

+ δ2 (7)
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The explicit expression of δ2, from ref. [24], is reproduced in appendix A. One remarks

that the three scalar radii 〈r2〉ηπS , 〈r2〉KK̄
S , 〈r2〉Kπ

S have exactly the same dependence on
the coupling Lr

5, which means that they should be equal in the large Nc limit of QCD.
In reality, they are rather different. Using e.g. Lr

5 = (1.23± 0.06) · 10−3 (from ref. [25],
see sec. 2.3 below) one finds2 for ηπ and KK̄

〈r2〉ηπS = 0.092± 0.007 fm2 ,

〈r2〉KK̄
S = 0.136± 0.007 fm2 ,

(8)

while for Kπ, one finds,

〈r2〉Kπ

S = 0.177± 0.007 fm2 . (9)

This shows that the ηπ scalar radius is suppressed by a factor of two as compared to
the Kπ scalar radius.

2.2 Scattering amplitudes at O(p4)

We consider the three scattering amplitudes involving the ηπ+ and the K̄0K+ channels
and we label the ηπ+ channel as 1 and the K̄0K+ channel as 2. At chiral order p2 the
amplitudes read,

T 11
(2)(s, t, u) =

m2
π

3F 2
π

T 12
(2)(s, t, u) =

√
6

12F 2
π

(3s− 4m2
K)

T 22
(2)(s, t, u) =

1

4F 2
π

(s+ (t− u)) .

(10)

The corrections of chiral order p4 to these amplitudes can be expressed in terms of a set
of functions of one variable, analytic with a right-hand cut, according to the so-called
reconstruction theorem [26] (see also the review [27]),

T 11
(4)(s, t, u) = U11

0 (s) + U11
0 (u) +W 11

0 (t)

T 12
(4)(s, t, u) = U12

0 (s) + [W 12
0 (t) + (s− u)W1(t) + (t ↔ u)]

T 22
(4)(s, t, u) = U22

0 (s) + (t− u)U1(s) + V0(t) + (s− u)V1(t) +W 22
0 (u) .

(11)

The detailed expressions of the functions Uab
0 , W ab

0 , Uj, Vj are given in appendix B.
The resulting amplitudes are equivalent to previous calculations [1, 7]. We define the
partial-wave amplitudes as

T ab
J (s) =

1

32π

∫ 1

−1

T ab(s, t(zab), u(zab)) dzab (12)

2The following input numerical values are used throughout this paper (all in GeV): mπ = 0.139568,
mK = 0.4957, mη = 0.547853, Fπ = 0.09221.
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such that the unitarity relation, in matrix form, reads

ImTJ(s) = TJ(s)Σ(s)T †
J (s) = T †

J (s)Σ(s)TJ(s) (13)

with

Σ(s) =

(

σ1(s)θ(s− (mη +mπ)
2) 0

0 σ2(s)θ(s− 4m2
K)

)

, (14)

and

σ1(s) =

√

ληπ(s)

s
, σ2(s) =

√

s− 4m2
K

s
, ληπ(s) = (s− (mη −mπ)

2)(s− (mη+mπ)
2) .

(15)
The relation between the partial wave S- and T -matrices then reads

SJ(s) = 1 + 2i
√

Σ(s)TJ (s)
√

Σ(s) . (16)

In eq. (12), zab designate the cosines of the centre-of-mass scattering angles, which are
related to the Mandelstam variables by

t, u(z11) = 1
2

(

2m2
η + 2m2

π − s±
ληπ(s)z

11 −∆2
ηπ

s

)

t, u(z12) = 1
2

(

m2
η +m2

π + 2m2
K − s±

√

ληπ(s)σ2(s) z
12
)

t, u(z22) = 1
2
(4m2

K − s)(1∓ z22)

(17)

with ∆ηπ = m2
η − m2

π. The first two of these relations become singular when s → 0.
This implies that the chiral expansions of the ηπ → ηπ and ηπ → KK̄ partial-wave
amplitudes become invalid when s is too close to zero. If we assume a domain of validity
for the expansion of the unprojected amplitudes when |s|, |t|, |u| <∼ 0.5 GeV2, then the
chiral expansions of the partial-wave amplitudes T 11

J , T 12
J should converge with s lying

in the range 0.17 <∼ s <∼ 0.5 GeV2 and 0.05 <∼ s <∼ 0.5 GeV2 respectively.
From now on, we will consider only the J = 0 partial-wave and will drop the J

subscript. With the subscript now indicating the chiral order, the J = 0 partial-wave
amplitudes at O(p2) are simply derived from (10)

T 11
(2)(s) =

1

16π

m2
π

3F 2
π

, T 12
(2)(s) =

1

16π

√
6(3 s− 4m2

K)

12F 2
π

, T 22
(2)(s) =

1

16π

s

4F 2
π

. (18)

The corrections of chiral order p4 to these J = 0 partial-wave amplitudes can be written
as

T ij
(4)(s) =

1

16π

(

U ij
0 (s) + Û ij

0 (s)
)

(19)

where

Û11
0 (s) =

1

2

∫ 1

−1

dz11
(

U11
0 (u) +W 11

0 (t)
)
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Û12
0 (s) =

∫ 1

−1

dz12
(

W 12
0 (t) + (s− u)W1(t)

)

(20)

Û22
0 (s) =

1

2

∫ 1

−1

dz22
(

V0(t) + (s− u) V1(t) +W 22
0 (u)

)

The functions Û ij
0 (s) carry the left-hand cuts of the partial-wave amplitudes T ij. These

cuts are as follows [28]:

T 11: A real cut on [−∞, (mη −mπ)
2] and a complex circular cut centred at s = 0 with

radius ∆ηπ.

T 12: A real cut on [−∞, 0] and a complex quasi-circular cut which intersects the real
axis at −∆ηπmK/(mK +mη) and ∆ηπmK/(mK +mπ).

T 22: A real cut on [−∞, 4m2
K − 4m2

π].

As a final remark, at NLO, each one of the functions U ij
0 , W ij

0 , U1, Vj can be written
as the sum of a polynomial part and one involving a combination of functions J̄PQ (see
appendix B). The latter part is constrained by unitarity. For instance, for the functions
U ij
0 , one can write, in matrix form,

U0(s) = P0(s) + (16π)2 T(2)(s)

(

J̄πη(s) 0
0 J̄KK̄(s)

)

T(2)(s) . (21)

2.3 Influence of the 1/Nc suppressed couplings

103 Lr
1 103 Lr

2 103 Lr
3 103 Lr

4 103 Lr
5 103 Lr

6 103 Lr
7 103 Lr

8

(A) 1.11 1.05 -3.82 1.87 1.22 1.46 -0.39 0.65
(B) 1.00 1.48 -3.82 0.30 1.23 0.14 -0.27 0.55

Table 1: Two sets of central values of Lr
i (µ) with µ = 0.77 GeV from NLO fits performed

ref. [25].

The values of the low-energy couplings (LEC’s) Lr
i , i = 1 · · ·8 are needed in order

to evaluate numerically the chiral amplitudes. A recent update of the values of the
couplings Lr

i has been presented in ref. [25] based on global fits involving a number of
low energy observables. We reproduce in table 1 two sets of values which correspond to
NLO expansions (which seem appropriate here since we are using NLO formulae). The
set labelled (A) in table 1 corresponds to an unconstrained fit and it leads to rather
large values of the couplings L4, L6 and L2 − 2L1 which are suppressed in the large Nc

limit [23]. The set (B) in the table corresponds to a fit which is constrained to enforce
compatibility with the results from lattice QCD simulations on Lr

4 and Lr
6. We will
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consider it to be more plausible, since the strong deviations from the large Nc limit are
possibly an artifact of attempting to reproduce certain observables which are sensitive
to NNLO rescattering effects (like the I = J = 0 ππ scattering length) using NLO
formulae. Fig. 1 illustrates the sensitivity of the I = 1 amplitudes considered here to
the 1/Nc suppressed couplings. The shape of the ηπ → ηπ amplitude is quite different
if one uses the set (A) or the set (B). This is also reflected in the values of the J = 0
threshold parameters. Defining the scattering length a0 and the scattering range b0 as
in ref. [1],

2√
s
T 11(s) = a0 + b0 p

2 + · · · (22)

with
√
s =

√

m2
π + p2 +

√

m2
η + p2, one finds

mπ a0 = 6.7 · 10−3, mπ b0 = −15.0 · 10−3 (Large L4, L6)
mπ a0 = 16.2 · 10−3, mπ b0 = 10.6 · 10−3 (Small L4, L6) .

(23)

The two sets of couplings thus lead to rather different values of the scattering length a0
while the values of the scattering range b0 differ in their sign. At leading chiral order,
one has mπ a0 = 6.2 · 10−3, b0 = 0. At NLO, a low-energy theorem (LET) for a0 was
derived in ref. [29], in the form of a linear relation

a0|NLO = λ a20,ππ
∣

∣

NLO
+ µ (24)

where a20,ππ is the ππ scattering length with J = 0, I = 2 and λ, µ are simple functions
of the masses mπ, mK , mη and the decay constants Fπ, FK . The most precise deter-
minations of the S-wave ππ scattering lengths are based on Roy equations solutions.
Using the values quoted in two recent analysis of these equations [14, 30] in the LET
relation (24), one obtains

a20,ππ = −0.0444± 0.0010 (ref. [14]) −→ a0 = (−0.22± 6.26) · 10−3

a20,ππ = −0.042± 0.0040 (ref. [30]) −→ a0 = (14.8± 25.0) · 10−3 .
(25)

This illustrates that the LET is practically useful only if a20,ππ is known to a very high
precision. The result of ref. [14] is associated with a rather small error of 2.5%. However,
the result derived from the Roy equations concerns the physical value of the scattering
length rather than the NLO value which enters into the LET. An additional error should
therefore be introduced in eq. (25) in order to account for the difference a20,ππ−a20,ππ

∣

∣

NLO
,

which could easily be as large than 5%. This observation then limits the effectiveness
of the LET for determining a0.

The K̄0K+ → K̄0K+ partial-wave amplitude vanishes at s = 0 at leading chiral
order (18). This zero, however, is accidental since it is not associated with a soft pion
theorem. Fig. 1 shows that, indeed, the NLO corrections are substantial. The corrections
corresponding to the Li set (B), with small 1/Nc violations, have a more reasonable size

8



0

0.1

0.2

0.3

0.4

0.1 0.3 0.5 0.7 0.9

T
η
π

+
→

η
π

+

0

s [GeV2]

O(p2)
BE14: small L4, L6

BE14: large L4, L6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

T
η
π

+
→

K̄
0
K

+

0
s [GeV2]

O(p2)
BE14: small L4, L6

BE14: large L4, L6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

T
K̄

0
K

+
→

K̄
0
K

+

0

s [GeV2]

O(p2)
BE14: small L4, L6

BE14: large L4, L6

Figure 1: Real parts of the three J = 0 partial-wave amplitudes ηπ+ → ηπ+, ηπ+ → K̄0K+

and K̄0K+ → K̄0K+ at leading and next-to-leading order in ChPT.

than those from set (A). The amplitude ηπ+ → K̄0K+ has a zero at s = 4m2
K/3 at O(p2)

which corresponds to a soft pion Adler zero. Fig. 1 shows that the NLO corrections are
rather small in this case and that there is little difference between the couplings of set
(A) and set (B).

3 Form factors from dispersive integral equations

We follow here a general approach to the construction of form factors which implements
unitarity relations and chiral constraints and, additionally, impose the absence of zeros
and consistency with the QCD asymptotic behaviour. We will briefly review this method

9



below, which was applied previously to the scalar ππ and πK form factors [10, 20], and
allows one to relate the form factors and the corresponding S-wave scattering amplitudes
via a set of integral equations. The I = 1 scalar form factors F ηπ

S , FKK̄
S which we will

discuss here were considered previously in ref. [31]. The approach followed in ref. [31]
differs from ours in that the constraints on the zeros and the asymptotic behaviour were
not imposed.

3.1 Phase dispersive representation

The crucial property of two-meson form factors is that they can be defined as analytic
functions in the complex energy plane, with a cut lying on the positive real axis in the
range s > (mP +mQ)

2 [32]. In the asymptotic region, |s| → ∞, the general arguments
concerning exclusive processes in QCD [33] predict that a two-meson scalar form factor
FS should obey a power law behaviour,

FS(s)|s→∞ ∼ 1/s (26)

up to logarithms. Making the assumption that the form factor FS has no zeros in the
complex plane, one can derive a minimal phase dispersive representation (e.g. [34]),

FS(s) = FS(0) exp

[

s

π

∫ ∞

s0

φS(s
′)

s′ (s′ − s)
ds′

]

, (27)

where the phase is defined from F (s + iǫ) = |Fs(s)| exp(iφS(s)). The QCD asymptotic
behaviour (26) is reproduced from eq. (27) provided that the phase has the asymptotic
limit:

lim
s′→+∞

φS(s
′) = π . (28)

The scalar radius, finally, is given by a simple integral as a function of φS,

〈r2〉S =
6

π

∫ ∞

s0

φS(s
′)

(s′)2
ds′ . (29)

If n complex zeros were present, then the right-hand side of eq. (27) would have to
be multiplied by a polynomial of degree n and the asymptotic phase would have to be
(n + 1)π. The minimality assumption is equivalent to stating that the increase of the
phase in the energy region

√
s > 2 GeV should be less than π. This is plausible since

no sharp resonances are present in this region.

3.2 Determination of the form factors from the T -matrix

As emphasised in ref. [15], these phase relations are of particular interest for those form
factors which involve at least one pion, F πP

S with P = π, K or η which interests us here.
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This is simply because the scattering amplitudes πP → πP are elastic in a finite low
energy region. In this region, the form factor phase φπP

S is constrained from Watson’s
theorem to be exactly equal to the elastic scattering phase shift. The energy region
in which inelasticity can be neglected to a good approximation extends up to the KK̄
threshold for ππ and we expect the same property to hold also3 for πη. The asymptotic
value of the form factor phase is also known and one may estimate that φπP

S should be
smoothly approaching its asymptotic value when

√
s >∼ 2 GeV. There only remains to

determine φπP
S in the intermediate energy region that is, in the case of ηπ, in the region

1 ≤ √
s <∼ 2 GeV. In this region, we further expect that the fastest energy variation

should take place close to 1 GeV, associated with the sharp onset of inelasticity triggered
by the presence of the a0(980) resonance which is known to couple strongly to the KK̄
channel [35]. This suggests to consider a framework which takes into account only the
dominant inelastic channel and ignores all the other ones. In this case, the two form
factors F ηπ

S , FKK̄
S obey a closed set of Muskhelishvili-Omnès coupled integral equations,

(

F ηπ
S (s)

FKK̄
S (s)

)

=
1

π

∫ ∞

(mη+mπ)2

ds′

s′ − s

(

T 11(s) T 12(s)
T 12(s) T 22(s)

)∗(
σ1(s

′)F ηπ
S (s′)

σ2(s
′)FKK̄

S (s′)θ(s′ − 4m2
K)

)

.

(30)
These equations encode the property of analyticity of the form factors, the asymptotic
behaviour (which allows for an unsubtracted dispersive representation) and two-channel
unitarity. One can express the two-channel S-matrix in terms of two phase shifts and
one inelasticity parameter in the usual way,

S =

(

η e2iδ11 i
√

1− η2 ei(δ11+δ22)

i
√

1− η2 ei(δ11+δ22) η e2iδ22

)

, 0 ≤ η ≤ 1 . (31)

We assume the following asymptotic conditions on the S-matrix parameters

lim
s→∞

η(s) = 1, lim
s→∞

δ11(s) + δ22(s) = 2π , (32)

which ensure that the so called Noether index [36] (see also [37]) associated with the set
of singular integral equations (30) is equal to two. This, in general, implies that a unique
solution is obtained once two arbitrary conditions are specified, for instance the values
at s = 0: F ηπ

S (0), FKK̄
S (0), and that the solution form factors behave asymptotically as

1/s [37].
In summary, solving the set of eqs. (30) for the form factors F ηπ

S , FKK̄
S , one obtains a

phase φηπ
S which correctly matches with both the low and high energy limits expectations

and provides an interpolating model in the intermediate energy region. The phase φKK̄
S

3The inelastic mode ηπ → 3π is allowed already at threshold but the S-wave projection vanishes
by parity conservation (since JP = 0− for the 3π state). The modes ηπ → 5π, ηπ → η3π are strongly
suppressed by phase space below one GeV.
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is also provided. In this case, however, there is no constraint from Watson’s theorem at
low energy. One expects that the form factor FKK̄

S will be more sensitive than F ηπ
S to

the influence of the neglected inelastic channels.
More generally, one can use the system of equations (30) to define the Omnès matrix

Ωij(s) which generalises the usual Omnès function [38]. Such a generalisation was first
discussed in the case of ππ − KK̄ scattering in refs. [39, 40]. The first column of
the Omnès matrix is obtained by solving the system with the boundary conditions
Ω11(0) = 1, Ω21(0) = 0 and the second column by solving with the conditions Ω12(0) = 0,
Ω22(0) = 1 (see in ref. [13] an appropriate numerical method for solving the linear
system). The Omnès matrix allows one to treat the final-state interaction problem
taking into account inelastic rescattering. For instance, one can express the I = 1 scalar
form factors in terms of the Ω matrix,

(

F ηπ
S (s)

FKK̄
S (s)

)

=

(

Ω11(s) Ω12(s)
Ω21(s) Ω22(s)

)(

F ηπ
S (0)

FKK̄
S (0)

)

. (33)

4 Two-channel unitary T -matrix parametrisation with

chiral matching

We seek a parametrisation of the J = 0 T -matrix which: a) should satisfy exact elastic
unitarity below the KK̄ threshold and exact two-channel unitarity above, b) should
correctly match with ChPT for small values of s , i.e.

T ij(s)− (T ij
(2)(s) + T ij

(4)(s)) = O(p6) . (34)

and c) should be reasonably simple and flexible and be able to describe scattering in
the low to medium energy region up to, say

√
s ≃ 2 GeV. We choose a representation

somewhat similar to that proposed in ref. [41] to describe J = 0 πK scattering, belonging
to the family of “unitary chiral” approaches. Such approaches were proposed, in the
context of ChPT, firstly in refs. [42, 43] and multichannel extensions were discussed in
refs. [44, 45] (we refer to the review [46] for a survey and a complete list of references).
There are, however, some drawbacks to these methods. Poles can occur on physical
sheets and, furthermore, the structure of the left-hand cuts is not quite correct. In
particular, the left-hand cut of the chiral KK̄ → KK̄ amplitude T 22

(4)(s), which extends

up to s = 4(m2
K−m2

π) is propagated to the amplitude T 11, via the unitarisation method,
which actually spoils the unitarity of T 11 in the elastic region. While the resulting
unitarity violation is numerically small [7, 47], we will prefer here to maintain exact
unitarity at the price of relaxing the matching condition for the component T 22.

We start from a K-matrix type representation for the two-channel T -matrix

T (s) = (1−K(s)Φ(s))−1K(s) . (35)

12



This form is compatible with the symmetry of the T -matrix (tT = T ) provided both K
and Φ are symmetric matrices. The matrix Φ(s) must also satisfy

Im [Φ(s)] =

(

θ(s− (mη +mπ)
2)σ1(s) 0

0 θ(s− 4m2
K)σ2(s)

)

(36)

which ensures that the T -matrix obeys the unitarity condition, provided that the matrix
K(s) remains real in the range (mη+mπ)

2 ≤ s < ∞. We take a representation of Φ(s),
satisfying eq. (36), which is diagonal and contains four phenomenological parameters

Φ(s) =

(

α1 + β1s+ 16πJ̄ηπ(s) 0
0 α2 + β2s+ 16πJ̄KK̄(s)

)

. (37)

The parameters αi, βi are assumed to be O(1) in the chiral counting. The K-matrix is
written in terms of components with a definite chiral order,

K(s) = K(2)(s) +K(4)(s) +K(6)(s) (38)

where, as before, the subscript denotes the chiral order. In order to satisfy the matching
condition (34) one must have,

K(2)(s) = T(2)(s), T(4)(s) = K(4)(s) + T(2)(s)Φ(0)(s)T(2)(s) . (39)

One can then express K(4) in terms of the polynomial and left-cut functions defined
from eqs. (19) (20) (21) (see also appendix B)

K(4)(s) =
1

16π

(

P0(s) + Û0(s)
)

− T(2)(s)

(

α1 0
0 α2

)

T(2)(s) . (40)

As explained above, we must use an approximation to the function Û22
0 which has no

cut on the real axis in the range s ≥ (mη +mπ)
2. This may be done by removing the

parts which are proportional J̄ππ(t) and J̄ηπ(t) (see eqs. (74)) from the two functions

V0(t) and V1(t), which appear in the angular integral which gives Û22
0 (see eq. (20)).

Figure 2 compares this approximation of Û22
0 to the exact function.

Finally, K(6)(s) is taken to be a pole term with the O(p4) part removed,

Kij
(6)(s) =

gigj
16π

(

1

m2
8 − s

− 1

m2
8

)

(41)

We model the couplings g1, g2 such that they behave as O(p2), based on a scalar reso-
nance chiral Lagrangian analogous to the one introduced in ref. [48]

g1 =

√
6

3F 2
π

(c′d (s−m2
η −m2

π) + 2c′mm2
π) ,

13
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Figure 2: Comparison of the real part of function Û22
0 with the approximation used in the

unitary representation (35). Also shown is the imaginary part of Û22
0 .

g2 =
1

F 2
π

(c′d (s− 2m2
K) + 2c′mm2

K) . (42)

We will discuss in sec. 5 how the phenomenological parameters may be determined from
experimental information on the properties of the a0(980), a0(1450) resonances as well
as chiral constraints on the amplitudes and on the I = 1 scalar form factor. Figure 3
illustrates how the unitary amplitudes parametrised as described above correctly match
with the NLO chiral amplitudes at low energy.

5 Phenomenological determination of the phase shifts

and inelasticity and the I = 1 scalar form factor

5.1 Experimental information on πη → πη and πη → KK̄

scattering

Let us first consider the πη → πη amplitude below the KK̄ threshold. In this region,
ηπ scattering should be approximately elastic. The πη scattering phase shift below 1
GeV should be controlled by the values of the threshold parameters a0, b0 on the one
hand and the properties of the a0(980) resonance on the other. We will consider that the
values of a0, b0 corresponding to the set of L′

is with small L4, L6 (set (B), see table 1)
are the most plausible. In this case, a0 and b0 are both positive and one expects that
the phase shift will be positive in the whole elastic region. A different possibility was
investigated in ref. [49].
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Figure 3: Comparison of the real parts of unitary partial-wave amplitudes T ij given from
eq. (35) and the corresponding chiral amplitudes at NLO.

The a0(980) is a well established resonance but its shape is not well described by
a simple Breit-Wigner form because of the vicinity of the KK̄ threshold. This partly
explains the dispersion in the values of the mass and width quoted by the PDG [50]:
ma0 = 980±20 MeV, Γa0 = [50−100] MeV. A comparison of a number of determinations
of the T11 amplitude near the KK̄ threshold based, in particular, on the popular Flatté
model [51] is performed in ref. [52]. The corresponding ηπ phase shifts are plotted on
Fig. 10 of that reference, from which one can deduce that the value of the phase shift
at the KK̄ threshold lies around 90◦,

δ11(2mK) = (90± 20)◦ . (43)

This is also satisfied in the models of refs. [8] and [9] which give, respectively, δ11(2mK) =
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95◦ and δ11(2mK) = 77◦.
The a0(980) resonance corresponds to poles of the amplitude in the complex plane on

the second and on the third Riemann sheets which can both be near the physical region
since the mass is very close to the KK̄ threshold. For definiteness, we will rely here on
the recent determination by the KLOE collaboration [53]. It is based on measurements
of the φ → ηπγ decay amplitude with both high precision and high statistics. Based on
the best fit performed in ref. [53] (using the theoretical model from ref. [54]) the location
of the poles can be deduced to be

√

sIIa0(980) = (994± 2− i (25.4± 5.0)) MeV
√

sIIIa0(980)
= (958± 13− i (60.8± 11.5)) MeV .

(44)

In the [1 − 2] GeV energy region, a second resonance, the a0(1450), first reported in
ref. [55] was later identified in p̄p decays at rest (e.g. [56–58], see also [59] who re-
analysed the data). This resonance should correspond to a pole on the third Riemann
sheet. Based on the value of the mass and width quoted in the PDG, we can estimate

√

sIIIa0(1450)
= (1474± 19− i (133± 7)) MeV . (45)

A further property of the a0(1450) is that it has approximately equal decay widths into
πη and into KK̄. We will implement this feature by requiring that the J = 0 cross
sections for ηπ → ηπ and ηπ → KK̄ should be approximately equal when

√
s = 1.474

GeV. In our two-channel framework, these cross sections have the following expressions
in terms of the phase shifts and the inelasticity parameter

σ(ηπ → ηπ) =
π

p2ηπ

∣

∣η e2iδ11 − 1
∣

∣

2
, σ(ηπ → KK̄) =

π

p2ηπ

(

1− η2
)

(46)

and we expect that η should reach a minimum at the mass of the a0(1450) resonance.
If the minimum is close to zero, the two cross sections will be approximately equal4. In
this situation, we expect a rapid variation of the phase shifts δ11, δ22 (possibly becoming
discontinuous if η = 0) at the energy

√
s = ma0(1450). In contrast, the sum of the two

phase shifts (which is also the phase of S12) should be a smoothly varying function. It
is convenient to characterise the global behaviour of the S-matrix in the [1 − 2] GeV
region in terms of the value of this phase sum δ11 + δ12 when

√
s = ma0(1450)

δ12 ≡ δ11(
√
s) + δ22(

√
s)
∣

∣√
s=ma0(1450)

. (47)

Let us now return to the parametrisation of the T -matrix described in sec. 4. The
T -matrix elements in this model have analyticity properties and can be defined away

4Equality of the two cross sections occurs either when η = 0 or η = cos 2δ11
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Figure 4: Phases δ11, δ22, their sum and the inelasticity η from the T -matrix model of sec. 4
corresponding to several imposed values of δ12 (defined in eq. (47)).

from the physical region, in the complex energy plane. Using eq. (35), the poles of the
T -matrix correspond to the zeros of the determinant

∆(s) = det[1−K(s)Φ(s)] . (48)

Recalling that the extension of the loop functions J̄PQ to the second Riemann sheet are
defined as

J̄II
PQ(s) = J̄PQ(s) +

i
√

λPQ(s)

8π s
(49)

then, the extension of the T -matrix elements to the second Riemann sheet is performed
by replacing J̄ηπ(s) by J̄II

ηπ(s) in the matrix Φ. Similarly, the extension to the third
Riemann sheet is performed by replacing both J̄ηπ and J̄KK̄ by J̄II

ηπ and J̄II
KK̄

in Φ.
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This T -matrix model involves the phenomenological parameters: α1, α2, β1, β2, m8,
c′d, c

′
m. For simplicity, we will keep the ratio c′m/c

′
d fixed and allow only six parameters

to vary. We determine them by imposing six conditions on the T -matrix:

a) As first four conditions, we impose that the real and imaginary parts of the poles
sIIa0(980) and sIIIa0(1450)

be reproduced.

b) As a fifth condition, we impose that the minimum of the inelasticity parameter at√
s = ma0(1450) be close to zero (in practice, we used ηmin ≈ 0.05, as in ref. [60]).

c) As a final condition, we choose a value for the phase δ12 as defined in eq. (47).

Within this model, having imposed the first five conditions, the value of δ12 is found
to be bounded from above: δ12 <∼ 205◦. In addition, consistently with our assumption
that most of the phase variations should take place below 2 GeV, it seems plausible
that the phase sum δ11 + δ22 should not be smaller than its value at the mass of the
a0(980), i.e. one should have δ12 >∼ 90◦. Fig. 4 shows results from this model for the
phases δ11, δ22 and the inelasticity η as a function of energy, corresponding to several
different imposed values of δ12. One observes that the two phases δ11, δ22 undergo a
sharp variation, in opposite directions, close to the mass of the a0(1450) resonance. The
figure illustrates a pattern where δ11 increases while δ22 decreases. However, a small
modification of the phenomenological parameters which enter into the T -matrix model
can lead to a pattern with a reversed behaviour (with δ11 decreasing and δ22 increasing)
which would then be similar to the one obtained in ref. [60]. In contrast, the phase sum,
δ11+δ22 is completely stable and always increases smoothly as an effect of the resonance.
This ambiguity, which can be viewed as a ±π ambiguity in the individual definition of
δ11 and δ22 does also not affect observables, in particular, the determination of the form
factors.

δ12 α1 α2 β1 (GeV−1) β2 (GeV−1) m8 (GeV) λ
200◦ 0.6265 0.0988 0.2495 0.1476 1.0571 0.5704
175◦ 0.7427 0.0781 0.3085 -0.0590 1.0913 0.8176
150◦ 0.8444 0.0467 0.2773 -0.2085 1.1258 1.1017
125◦ 0.8765 0.0016 0.2134 -0.3606 1.1834 1.6856
100◦ 1.0993 -0.5055 -0.0358 -0.2722 1.5130 5.7024

Table 2: Parameters of the T -matrix model corresponding to five fixed conditions (see text)
and several input values of the phase δ12. The parameters c′m, c′d are given in terms of λ by
c′d = λc0d, c

′
m = λc0d/2 with c0d = 28 MeV.

Numerical values for the set of six parameters αi, βi, m8, c
′
d corresponding to several

input values of δ12 in the range 90◦ ≤ δ12 ≤ 205◦ are given in table 2. The T -matrix is

18



0

5

10

15

20

25

30

35

40

45

50

0.85 0.9 0.95 1 1.05 1.1

σ
η
π
→

η
π
,σ

η
π
→

K
K̄

(m
b)

√
s (GeV)

δ12 = 200◦

δ12 = 150◦

δ12 = 100◦
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from the T -matrix model, depending on the input value of δ12. The arrows show the integration
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not very sensitive to the value of the parameter c′m. Very similar results are obtained
if one sets c′m = 0 or c′m = c′d. The numerical results shown in the table correspond to
taking c′m = c′d/2. In this model, the pole of the K-matrix corresponds to two physical
resonances. Table 2 shows that the mass parameter of the pole, m8, varies between 1
and 1.5 GeV, while the value of the parameter c′d varies in a rather large range from 16
to 160 MeV, depending on the input value of the phase δ12.

The properties of the a0(980) resonance (apart from the pole position on the second
Riemann sheet which is held fixed) depend on the value of δ12. Figure 5 shows the
two cross sections σηπ→ηπ , σηπ→KK̄ in the vicinity of the a0(980) resonance peak. We
estimate the branching fraction BKK̄/ηπ = Γa0→KK̄/Γa0→ηπ in a simple way in terms of
integrals over these cross sections

BKK̄/ηπ =

∫ E+

E−

σηπ→KK̄(E) dE

∫ E+

E−

σηπ→ηπ(E) dE

(50)

with E± = ma0 ± Γa0 . In this formula, we set ma0 = 988 MeV, which corresponds
to the resonance peak in the cross sections and Γa0 = 50.8 MeV corresponding to
twice the imaginary part of the pole position. We collect in table 3 the results for the
branching fraction corresponding to different input values of δ12. The agreement with
the experimental average quoted in the PDG, Bexp

KK̄/ηπ
= 0.183 ± 0.024 is qualitatively

reasonable, in particular for the smaller values of δ12. We also indicate in the table the
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positions of the a0(980) pole on the third Riemann sheet (recall that the pole position
on the second Riemann sheet is fixed), which is seen to move away from the real axis as
δ12 is decreased.

δ12 Bηπ/KK̄

√

sIIIa0 (MeV)

200◦ 0.095 1022− i 62
175◦ 0.127 1020− i 93
150◦ 0.148 1009− i 129
125◦ 0.170 972− i 192
100◦ 0.187 749− i 376

Table 3: Some properties of the a0(980): values of the ηπ/KK̄ branching fraction and position
of the pole on the third Riemann sheet depending on the input value of the phase δ12.

5.2 Scalar form factors and the ηπ scalar radius

In order to solve the integral equations (30) we must also define δ11(s), δ22(s), η(s)
for energies above the mass of the a0(1450) resonance such that the asymptotic condi-
tions (32) are satisfied. For this purpose, we define a mapping u(s) such that 0 ≤ u ≤ 1
when s1 ≤ s ≤ ∞ and then perform simple polynomial interpolations of the functions
δ11, δ22, η in terms of the variable u (see appendix C for more details, in practice we
used

√
s1 = 1.8 GeV). For a given value of the phase δ12, the T -matrix is completely

specified and one can derive the two scalar form factors by solving eqs. (30).
The form factors turn out to be rather sensitive to the value of δ12. Fig. 6 illustrates

the numerical results for the phase of the ηπ scalar form factor, φηπ
S , corresponding

to different input values of δ12. The phase of the form factor displays a dip located
in between the two a0 resonances. This behaviour is qualitatively similar to the one
observed for the scalar form factor phases in the cases of the ππ or Kπ. A detailed
discussion can be found in ref. [61]. The phase φηπ

S displays a bump, before the dip, which
disappears when the input value of δ12 is smaller than ≃ 130◦. Given the phase integral
representation (29), we expect the ηπ scalar radius to decrease when δ12 decreases.
Numerical values of the scalar radii for the ηπ and the KK̄ form factors are displayed
in table 4 for given values of δ12 in the range [100◦ − 200◦]. In all cases, the dispersive
result for 〈r2〉ηπS exceeds the O(p4) chiral value (8) (the same also holds for theKK̄ scalar
radius). However, one must also take into account the chiral corrections of order p6 (or
higher), the typical size of which can be as large as 20−30%. In the dispersive evaluation,
even if the T -matrix elements were known exactly below 2 GeV, an error would arise
from the asymptotic region. This is easily seen from the phase integral expression (29).
The contribution to the ηπ scalar radius from the integration region region

√
s′ > 2 GeV

is relatively large ≃ 30% and this could generate an overall uncertainty for 〈r2〉ηπS of the
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Figure 6: Phase of the form factor F ηπ
S obtained from solving the integral equations (30) with

several input values of the phase δ12 (see eq. (47)) in the T -matrix.

order of 15%. The conclusion, then, is that the chiral result and the dispersive evaluation
can be perfectly compatible provided the phase δ12 lies in the following restricted range:
90◦ <∼ δ12 <∼ 125◦.

δ12 200◦ 175◦ 150◦ 125◦ 100◦

〈r2〉ηπS (fm2) 0.185 0.176 0.166 0.150 0.122

〈r2〉KK̄
S (fm2) 0.253 0.248 0.245 0.233 0.209

Table 4: Results for the scalar radii obtained from solving eqs. (30) for the form factors
depending on the input value for the phase δ12.

Finally, fig. 7 shows the absolute values of the form factors F ηπ
S , FKK̄

S . The size of
the peak associated with a0(980) resonance is seen to be sensitive to value of the phase
δ12. We have verified that the associated spectral function agrees with the one given in
ref. [31] in the energy range s < 1.5 GeV2 when δ12 ≃ 100◦.

6 Conclusions

We have proposed a model for the ηπ scattering T -matrix in the S-wave which satisfies
elastic unitarity below the KK̄ threshold and two-channel unitarity above. The model
is constrained by experimental inputs on the properties of the two resonances a0(980),
a0(1450) and by chiral symmetry at low energy. In the simple K-matrix type framework
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which we have adopted it is possible to match correctly the two amplitudes ηπ → ηπ,
ηπ → KK̄ with the chiral expansion at NLO while in the case of KK̄ → KK̄, the
matching is only approximate (see sec. 4). Such a T -matrix could be realistic in an
energy range

√
s <∼ 1.3 GeV, where the inelasticity is effectively dominated by the KK̄

channel. Formally, however, it is convenient to extend the model up to infinite energies
such as to allow for a minimal solution of the associated Muskhelishvili-Omnès problem.

A specific prediction of three-flavour ChPT is that the J = 0 ηπ → ηπ scattering
length is very small while the scattering range vanishes at leading order. The detailed
predictions for these quantities at NLO are very sensitive to the values of the couplings
L4, L6 which are 1/Nc suppressed. We have used here the values of L4, L6 which are
favoured by lattice QCD simulations. It would be a particularly interesting test of the
chiral expansion, obviously, to have a verification of the ηπ scattering length also from
lattice QCD.

A supplementary chiral constraint which we have used is associated with the ηπ scalar
isovector form factor. We have computed this scalar form factor from our two-channel
T -matrix by solving the relevant Muskhelishvili-Omnès integral equations. While this
model ignores other relevant inelastic channels (like πη′) it is nevertheless plausible that
it should be able to describe how the phase of the form factor behaves in approximately
the same energy range where the T -matrix is realistic. Above this point, the model
simply serves to interpolate the form factor phase monotonically towards its known
asymptotic value. We find that the small value of the ηπ scalar radius in ChPT at NLO
can be understood in this approach and that this requirement constrains the increase of
the sum of S-matrix phases δ11 + δ22 in the 1− 2 GeV energy region. One should keep
in mind the uncertainties on the size of the NNLO effects on the ChPT side and those
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from the energy range above 2 GeV on the dispersive side. The dispersive calculation
suggest that the NNLO corrections to 〈r2〉ηπS should tend to increase its size. It would
again be extremely useful to have results from lattice QCD for this quantity.

The computation of the 2× 2 Omnès matrix Ω is a straightforward extension of the
form factor calculation. In principle, the Ω matrix allows one to treat the ηπ rescat-
tering effects in a unified way, in a number of processes for which recent measurements
have been performed like η′ → ηππ, φ → ηπγ or γγ → ηπ. The consideration of ηπ
rescattering is also necessary in the case of the η → 3π amplitude in order to account
for a0−f0 mixing within a dispersive approach. The ηπ scalar form factor itself appears
in the isospin suppressed τ → ηπν amplitude, along with an electromagnetic induced
scalar form factor (and the vector form factor). This decay mode has not yet been
observed but could possibly be studied at the super-B or future charm-tau factory.
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A The I = 1 scalar form factors at NLO

We consider the two form factors defined in eqs. (2). At leading order of the chiral
expansion, the form factors are simply constant,

F ηπ
S (0) =

√
6

3
, FKK̄

S (0) = 1 (LO) . (51)

Computing and adding the next-to-leading order corrections, the form factors can be
written as

F ηπ
S (s) = F ηπ

S (0)

{

1 +
s

F 2
π

[

4Lr
5 +

1

16π2
(−3

4
)(1 + LK)

]

− 1

4F 2
π

(4m2
K − 3 s) J̄KK(s) +

m2
π

3F 2
π

J̄πη(s)

}

(52)

FKK̄
S (s) = FKK̄

S (0)

{

1 +
s

F 2
π

[

4Lr
5 +

1

16π2

(

− 1

4

)(

1 + 2Rπη + 2Lη + LK

)

]

+
s

4F 2
π

J̄KK(s) − 1

6F 2
π

(4m2
K − 3 s)J̄πη(s)

}

, (53)

where we have introduced the notation

LP = log
m2

P

µ2
, RPQ =

m2
P log(m2

P/m
2
Q)

m2
P −m2

Q

, (54)

and J̄PQ(s) are the loop functions defined to vanish at s = 0 (we use the same notation
as ref. [23]),

J̄PQ(s) =
s

16π2

∫ ∞

(mP+mQ)2
ds′

√

λPQ(s′)

(s′)2(s′ − s)

=
1

16π2

[

1 +
(ΣPQ

∆PQ
− ∆PQ

s

)

log
mP

mQ
+

√

λPQ(s)

2s
log

ΣPQ − s+
√

λPQ(s)

ΣPQ − s−
√

λPQ(s)

]

(55)

with

ΣPQ = m2
P +m2

Q , ∆PQ = m2
P −m2

Q , λPQ(s) = s2 − 2ΣPQ s+∆2
PQ . (56)

The expression for F ηπ
S (0) is given by

F ηπ
S (0) =

√
6

3

{

1 +
m2

K

F 2
π

[

− 64Lr
7 + 32Lr

6 −
32

3
Lr
5 − 16Lr

4
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+
1

16π2
(1− 2

9
Lη + 2LK)

]

+
m2

π

F 2
π

[

32Lr
8 + 64Lr

7 + 16Lr
6 −

16

3
Lr
5 − 8Lr

4

+
1

16π2
(−1

3
Rπη −

5

18
Lη −

1

2
Lπ)

]

}

(57)

and the expression of FKK̄
S (0) reads

FKK̄
S (0) =1 +

m2
K

F 2
π

[

16 (2Lr
8 − Lr

5) + 16 (2Lr
6 − Lr

4) +
1

16π2

( 2

3
Rπη +

10

9
Lη

)

]

+
m2

π

F 2
π

[

8 (2Lr
6 − Lr

4) +
1

16π2

(

− 1

9
Lη

)

]

. (58)

A.1 Remarks on FKK̄
S (0), F ηπ

S (0)

The value of FKK̄
S (0) can be simply related to the K0 − K+ mass difference. Indeed,

using isospin symmetry, on can express the form factor FKK̄
S as

B0F
KK̄
S (s) = 〈K

0K̄0 −K+K−
√
2

| ūu− d̄d√
2

|0〉 . (59)

Then, writing the quark masses as

mu = m̂− 1

2
∆du, md = m̂+

1

2
∆du (60)

Feynman-Hellman’s theorem yields the following relation,

B0F
KK̄
S (0) =

d

d∆du

(

M2
K0 −M2

K+

)

. (61)

One can easily reproduce eq. (58) using this relation and the chiral formula for the
mass difference M2

K0 −M2
K+ from ref. [23]. Using this formula, one can also derive an

alternative expression for FKK̄
S (0),

FKK̄
S (0) =

(m2
K −m2

π)

(ms − m̂)B0
× r2 + 1

r + 1
(62)

where r is the quark mass ratio ms/m̂ and r2 = 2m2
K/m

2
π − 1 is the value of this ratio

at chiral order p2. The deviation of the value of FKK̄
S (0) from 1 can thus be interpreted

as a measure of the size of the O(p4) corrections in the chiral expansion of the mass
difference m2

K −m2
π. Table 5 below shows that, if one uses the set of L′

is with large L4,
L6, this correction is rather large (of the order of 40%).
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We can also perform a verification of the value of F ηπ
S (0). Using the Ward identity

in pure QCD,
i∂µūγ

µd = (md −mu) ūd (63)

we can relate F ηπ
S (0) to the value at zero of the ηπ vector form factor f ηπ

+ (normalized
as in ref. [62]) when e2 = 0

F ηπ
S (0) =

√
2(m2

η −m2
π)

(md −mu)B0

f ηπ
+ (0)|e2=0 (64)

Inserting the chiral expansion expressions for m2
η, m

2
π from ref. [23] and f ηπ

+ (0) from
ref. [62] one can recover eq. (57).

The numerical values of F ηπ
S (0), FKK̄

S (0) are needed as input in order to solve the in-
tegral equations (30) for the scalar form factors. The values at s = 0 are rather sensitive
to the 1/Nc suppressed couplings L4, L6 as can be seen from table 5 below. However,

the determination of the scalar radii 〈r2〉ηπS , 〈r2〉KK̄
S from the integral equations depends

only on the ratio F ηπ
S (0)/FKK̄

S (0). It is easy to verify that this ratio is independent from
L4, L6 at NLO.

O(p2) Small Lr
4, L

r
6 Large Lr

4, L
r
6

F ηπ
S (0) 0.816 0.826 1.421

FKK̄
S (0) 1 0.816 1.428

Table 5: Numerical values of F ηπ
S (0), FKK̄

S (0) in the chiral expansion at LO and at NLO using
two sets of low-energy couplings (see table 1).

A.2 Expression of δ2

We reproduce here the detailed expression (as given in eq. 6.2 of ref. [24]) for the term
δ2 which appears in the chiral expansion of the Kπ scalar radius at order p4 (see eq. (7))

δ2 =
−1

192π2F 2
π

[

15 h2

(m2
π

m2
K

)

+
19m2

K + 3m2
η

m2
K +m2

η

h2

(m2
η

m2
K

)

− 18
]

(65)

with

h2(x) =
3

2

(

1 + x

1− x

)2

+
3x (1 + x)

(1− x)3
log(x) . (66)

B NLO contributions to I = 1 scattering ampli-

tudes

We give below the expressions of the chiral NLO contributions to the one-variable func-
tions associated with the amplitudes ηπ+ → ηπ+, ηπ+ → K̄0K+ and K̄0K+ → K̄0K+.
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B.1 The ηπ+
→ ηπ+ amplitude

The O(p4) part of the amplitude was written in terms of the two functions U11
0 , W 11

0

(eq. (11)). They can be expressed as follows

U11
0 (s) =

1

F 4
π

{

(s− Σηπ)
2
[

4 (Lr
2 + Lr

3/3)−
3

8

1

16π2
(1 + LK)

]

+
1

9
J̄πη(s)m

4
π +

1

24
J̄KK(s) (4m

2
K − 3 s)2

}

, (67)

and

W 11
0 (t) =

1

F 4
π

{

(t− 2m2
π) (t− 2m2

η)
[

4 (2Lr
1 + Lr

3/3)−
3

8

1

16π2
(1 + LK)

]

+m2
π m

2
η

[

32(−Lr
7 + Lr

6 −
1

6
Lr
5 − Lr

4) +
1

16π2
(
23

18
+ 2LK − 2

9
Lη)

]

+m4
π

[

16Lr
8 + 32Lr

7 +
1

16π2
(−1

9
− 2

9
Rπη −

1

6
LK − 1

6
Lη −

1

2
Lπ)

]

+ tΣηπ

[

8Lr
4 −

1

2

1

16π2
(1 + LK)

]

+ tm2
π

[1

3

1

16π2
log(

m2
K

m2
π

)
]

− 1

6
J̄ππ(t) m

2
π (m

2
π − 2 t) +

1

54
J̄ηη(t) m

2
π (16m

2
K − 7m2

π)

− 1

24
J̄KK(t) t (8m

2
K − 9 t)

}

. (68)

B.2 The ηπ+
→ K̄0K+ amplitude

The three functions involved in the NLO contributions to the amplitude were denoted
as U12

0 , W 12
0 and W1. They can be expressed as

U12
0 (s) = −

√
6

F 4
π

{

+m4
K

[

+
16

3
Lr
8 +

32

3
Lr
7 −

8

9
Lr
5 −

2

9
Lr
3 +

1

16π2
(
1

72
+

1

2
Lη −

11

18
LK)

]

+m2
π m

2
K

[

− 16

3
Lr
8 −

32

3
Lr
7 +

32

9
Lr
5 +

4

9
Lr
3

+
1

16π2
(− 1

36
− 5

8
Lη +

17

72
Lπ +

1

2
RηK − 13

9
RπK)

]

+m4
π

[

− 2

9
Lr
3 +

1

16π2
(
1

72
+

1

8
Lη +

4

9
LK − 41

72
Lπ −

1

6
RηK +

11

18
RπK)

]

+ sm2
K

[

+
1

16π2
(− 1

12
− 1

8
Lη +

1

8
LK − 29

96
RηK +

67

96
RπK)

]

+ sm2
π

[

− 2Lr
5 +

1

16π2
(
1

32
Lη +

1

16
LK +

9

32
Lπ −

7

96
RηK +

13

96
RπK)

]
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+ s2
[

+
1

16π2
(
1

16
+

3

32
RηK − 5

32
RπK)

]

+ (4m2
K − 3 s)

[ 1

36
J̄πη(s) m

2
π +

1

48
J̄KK(s) s

]

}

, (69)

and

W 12
0 (t) = −

√
6

F 4
π

{

J̄Kπ(t)
[

+
1

12
m4

π −
1

6
tm2

π +
5

64
t2 +

1

12
∆Kπ m

2
π −

1

12
∆Kπ t

+
1

16

∆2
Kπ

t
m2

π −
3

64
∆2

Kπ +
1

32

∆3
Kπ

t
+

1

48

∆4
Kπ

t2

]

+ J̄Kη(t)
[

− 5

36
m4

π +
1

6
tm2

π −
3

64
t2 − 1

4
∆Kπ m

2
π +

1

6
∆Kπ t

− 7

144

∆2
Kπ

t
m2

π −
43

576
∆2

Kπ −
19

288

∆3
Kπ

t
+

1

432

∆4
Kπ

t2

]

− 1

48
J̄ ′
Kπ(0)

∆4
Kπ

t
− 1

432
J̄ ′
Kη(0)

∆4
Kπ

t

}

, (70)

and, finally,

W1(t) = −
√
6

F 4
π

{

t
[

+
1

3
Lr
3 +

1

16π2
(− 1

48
+

1

16
RηK − 1

16
RπK)

]

− 1

64
J̄Kπ(t)

λKπ(t)

t
− 1

64
J̄Kη(t)

λKη(t)

t

+
1

16
J̄ ′
Kπ(0)∆

2
Kπ +

1

144
J̄ ′
Kη(0)∆

2
Kπ

}

. (71)

B.3 The amplitude K̄0K+
→ K̄0K+

The O(p4) contributions to this amplitude involve five functions: U22
0 , U1, V0, V1 and

W 22
0 (see eq. (11)). U22

0 can be expressed as

U22
0 (s) =

1

F 4
π

{

m4
K

[

16Lr
8 + 32Lr

6 − 8Lr
5 +

1

16π2
(−53

36
+

41

72
Lη −

3

4
LK − 3

8
Lπ +

11

12
Rπη)

]

+ sm2
K

[

− 8Lr
4 +

1

16π2
(
3

4
− 1

16
Lη +

3

8
LK +

3

16
Lπ −

5

8
Rπη)

]

+ sm2
π

[

+ 2Lr
5 +

1

16π2
(− 1

16
Lη −

5

16
Lπ)

]

+ (s− 2m2
K)

2

[

2Lr
3 + 4Lr

2 +
1

16π2
(− 1

24
− 3

8
Lη +

1

48
LK − 1

48
Lπ −

3

8
Rπη)

]

+
1

24
J̄πη(s) (4m

2
K − 3 s)2 +

1

16
J̄KK(s) s

2

}

. (72)
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The function U1(s) reads

U1(s) =
1

F 4
π

{

m2
K

[

8Lr
4 +

1

16π2
(−1 +

1

16
Lη −

3

8
LK − 3

16
Lπ +

1

8
Rπη)

]

+m2
π

[

2Lr
5 +

1

16π2
(− 1

16
Lη −

5

16
Lπ)

]

− 1

24
J̄ππ(s) (4m

2
π − s)− 1

48
J̄KK(s) (4m

2
K − s)

}

. (73)

Next, the functions V0(t), V1(t) read,

V0(t) =
1

F 4
π

{

(t− 2m2
K)

2

[

2Lr
3 + 8Lr

1 +
1

16π2
(−29

48
− 3

32
Lη −

11

48
LK

− 5

96
Lπ +

3

16
Rπη)

]

+
3

32
J̄ππ(t) t

2 +
1

288
J̄ηη(t) (8m

2
K − 9 t)2

− 1

48
J̄πη(t) (4m

2
K − 3 t)2 +

1

4
J̄KK(t) t

2

}

, (74)

V1(t) =
1

F 4
π

{

1

48
J̄ππ(t) (4m

2
π − t)− 1

12
J̄KK(t) (4m

2
K − t)

}

. (75)

Finally, the function W 22
0 (u) reads,

W 22
0 (u) =

1

F 4
π

{

(2m2
K − u)2

[

4Lr
2 +

1

16π2
(− 7

24
− 17

48
LK − 1

48
Lπ)

]

+
1

4
J̄KK(u) (2m

2
K − u)2

}

. (76)

C Asymptotic interpolation

We describe here the simple ansatz which we used for interpolating the S-matrix phases
δ11, δ22 and the inelasticity η in the asymptotic region s1 ≤ s < ∞. Let F (s) be one
of the functions δ11(s), δ22(s) or arccos(η(s)). We introduce a point s2 = s1 + ǫ close
to s1 and we assume that F (s1), F (s2) are given. We denote s3 = ∞ and we use the
asymptotic conditions (see (32))

δ11(s3) = 2π, δ22(s3) = 0, η(s3) = 1 . (77)
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Thus F (s3) is also known. We introduce a function u(s)

u(s) =
1

1 + log
s

s1

(78)

which maps the range [s1,∞) onto the finite range (0, 1] and define F (s) through a
simple Lagrange polynomial interpolation i.e.

F (s) =

3
∑

i=1

F (si)
(u(s)− uj)(u(s)− uk)

(ui − uj)(ui − uk)
(79)

with ui ≡ u(si) and i, j, k is a cyclic permutation of 1, 2, 3.

References

[1] V. Bernard, N. Kaiser, U.G. Meißner, Phys.Rev. D44, 3698 (1991)

[2] J. Kambor, C. Wiesendanger, D. Wyler, Nucl.Phys. B465, 215 (1996),
hep-ph/9509374

[3] A. Anisovich, H. Leutwyler, Phys.Lett. B375, 335 (1996), hep-ph/9601237

[4] N. Achasov, S. Devyanin, G. Shestakov, Phys.Lett. B88, 367 (1979)

[5] A.M. Abdel-Rehim, D. Black, A.H. Fariborz, J. Schechter, Phys.Rev. D67, 054001
(2003), hep-ph/0210431
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