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Bistability in a self-assembling system confined by elastic walls: Exact
results in a one-dimensional lattice model
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The impact of confinement on self-assembly of particles interacting with short-range attraction and
long-range repulsion potential is studied for thermodynamic states corresponding to local ordering
of clusters or layers in the bulk. Exact and asymptotic expressions for the local density and for
the effective potential between the confining surfaces are obtained for a one-dimensional lattice
model introduced by J. Pȩkalski et al. [J. Chem. Phys. 138, 144903 (2013)]. The simple asymptotic
formulas are shown to be in good quantitative agreement with exact results for slits containing at
least 5 layers. We observe that the incommensurability of the system size and the average distance
between the clusters or layers in the bulk leads to structural deformations that are different for
different values of the chemical potential µ. The change of the type of defects is reflected in the
dependence of density on µ that has a shape characteristic for phase transitions. Our results may help
to avoid misinterpretation of the change of the type of defects as a phase transition in simulations of
inhomogeneous systems. Finally, we show that a system confined by soft elastic walls may exhibit
bistability such that two system sizes that differ approximately by the average distance between the
clusters or layers are almost equally probable. This may happen when the equilibrium separation
between the soft boundaries of an empty slit corresponds to the largest stress in the confined
self-assembling system. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905142]

I. INTRODUCTION

Competing tendencies in the pair interaction potential
often lead to heterogeneity on a mesoscopic length scale.
In the case of nanoparticles or globular proteins, there
is a competition between solvent-induced attraction and
repulsion that is typically (but not exclusively) of electrostatic
origin.1–3 The effective isotropic short-range attraction (SA)
between nanoparticles, ions, or organic molecules favours their
aggregation, while the presence of the long-range isotropic
repulsion (LR) effects in the separation of the aggregates.
The competition between these opposite tendencies results
in thermodynamic stabilization of spatially inhomogeneous
patterns made of globular or elongated clusters, or layers
(stripes in a case of a surface). In ordered phases, the
clusters or layers are periodically distributed and form regular
patterns.4–7 In the disordered phase, the particles also self-
assemble into clusters or layers for some range of temperature
and concentration.8–10 However, in the disordered phase, these
objects are ordered only locally, and this short-range order is
reflected in the exponentially damped oscillatory behavior of
the correlation function on the mesoscopic length scale.4,6,11,12

In intracell compartments, in pores of a porous material
or on geometrically patterned surfaces, the soft or rigid
boundaries of the system can have an ordering or disordering
effect on the confined clusters or layers. The key factor is the
commensurability of the typical distance between the objects
in the bulk and the size of the compartment. Despite the fact
that the confinement plays a very important role in biological
systems, in pores of porous materials, and on patterned

surfaces, the effects of confinement on the self-assembling
systems have been much less studied than the bulk properties.
In the case of the short-range attraction and long-range
repulsion (SALR) interaction potential, the impact of a slit-
type confinement on thermodynamically stable patterns on a
surface (2d system) was studied by Monte Carlo simulations13

and by density functional theory.4 In Ref. 13, the authors found
that unlike in the bulk system, in the presence of neutral walls
a switch from the cluster to the lamellar morphology with
increasing temperature is possible. Moreover, the orientation
of the lamella depends on the distance between the walls and
the particle-wall interaction parameters. In Ref. 4, the author
focused on determining the sequences of stable structures for
increasing distance between the walls at a given temperature
and for fixed density. He confirmed that the change of the
distance can lead to the change of the stable-phase morphology,
especially if the period of the structure stable in the bulk and
the width of the slit are incommensurate.

In this work, we focus on these effects of confinement
on the SALR systems that have not been investigated yet,
although in our opinion play a very important role. We
limit ourselves to the disordered phase with a short-range
order reflected in the oscillatory decay of the correlation
function on the mesoscopic length scale. We consider only
permeable confining walls, i.e., the system can interchange
particles with a reservoir (grand canonical ensemble). Our
first question is how the structural defects in the case of
incommensurability between the system size and the period
in the bulk phase depend on thermodynamic state and on the
interaction with the surfaces. The second question concerns
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the fluid-induced effective interactions between the confining
surfaces for different values of the chemical potential. The
oscillatory decay of the correlation function on the mesoscopic
length scale can induce an effective interaction between the
confining surfaces that exhibits damped oscillations on the
same length scale. This is analogous to the periodic solvation
force on the atomic length scale in simple fluids.14,15 In contrast
to the amphiphilic systems, where the effective interaction
was intensively investigated both experimentally16,17 and
theoretically,18–23 in the case of the SALR potential it has
not been studied yet.

We consider particles interacting with the SALR potential
confined between either rigid or soft walls. The separation
between the rigid walls is fixed, while the separation between
the soft confining walls can be varied, and this change is
associated with elastic energy. The equilibrium separation
between the soft walls is determined by the mechanical
equilibrium between the solvation force resulting from the
stress in the confined self-assembling system, and the elastic
force resulting from the deformation of the confining elastic
material. We are interested in the question of the equilibrium
separation between the elastic walls, especially when the equi-
librium thickness of the empty container and the characteristic
structural length in the bulk phase are incommensurate.

In order to address the aforementioned questions on a
general level, we consider a generic lattice model of a SALR
system that can be solved exactly in one dimension (1d).
Our results can give some insight for the properties of two
and three dimensional systems confined in slits. Moreover, a
pseudo-1d system confined by elastic boundaries is formed, for
example, by a long protrusion in a vesicle filled with charged
nanoparticles. In Ref. 24, it was shown that such a protrusion
responds elastically to an external stress in direction parallel
to its axis. The bulk properties of the model were thoroughly
studied in Ref. 11. In 1d, the ordered phases appear only at
T = 0. The short-range order and the pretransitional effects for
T > 0, however, can be studied based on exact solutions. We
found that in the disordered phase, the repulsion between the
clusters or layers leads to a dependence of the average density
ρ on the chemical potential µ or pressure p that is significantly
different from that of simple fluids.11 Characteristic plateaus
in ρ(µ) and ρ(p) appear when the density is equal to the
density of the periodic structure that is favoured energetically.
This plateau signals that a significant increase of pressure is
necessary to overcome the repulsion between the clusters and
to compress the system to a dense structure. In addition, for the
range of µ corresponding to the plateau in ρ(µ), the correlation
length is 3 or 4 orders of magnitude larger than the size of the
particles.11 When the range of correlations is so large, the
disordered and the ordered phases can behave in a very similar
way in slits of a width much smaller than the correlation length,
and larger than the size of the cluster. The shape of the ρ(p)
curve and the large correlation length suggest that the solvation
force can be quite strong even for large separations between the
confining surfaces. We shall verify this expectation by exact
results.

The bulk structure can be deformed not only by the
physical confinement but also in a simulation box when its
size is incommensurate with the period of the phase with

long- or short-range order. This incommensurability is a
serious issue when the period of the bulk phase is unknown.
To overcome this problem, successful but computationally
demanding method has been developed in Ref. 25. Later an
elegant and easier method was proposed in Ref. 26. Instead of
introducing another simulation method, in this work, we show
how to avoid misinterpretation of the results of the standard
Monte Carlo simulations for ρ(µ). Our exact results directly
show the effect of the incommensurability on the shape of
ρ(µ).

In Sec. II, we briefly describe the model introduced
in Ref. 11 and the transfer matrix method. The details of
the derivations are described in the Appendices. In Sec. III,
we present asymptotic expressions for the local density and
for the effective potential between the confining surfaces.
We determine the range of validity of these formulas by
comparison with exact results. In Sec. IV, we discuss the
dependence of the distribution of the particles inside the
pore on the chemical potential when the width of the slit
and the period of the bulk structure are incommensurate.
We also compare the shape of ρ(µ) for various slits with
the result obtained in Ref. 11 for the bulk. In addition, we
consider periodic boundary conditions (PBC) in the case of
incommensurability, in order to help to interpret simulation
results. The effective interaction between the walls for different
thermodynamic states and the equilibrium width of a system
with elastic boundaries are determined in Sec. V. The summary
and conclusions are presented in Sec. VI.

II. THE MODEL AND THE METHOD OF EXACT
SOLUTIONS

We consider a lattice model for systems with particles
interacting with a SALR potential. We assume that the particles
occupy lattice sites on a 1 dimensional lattice, and the lattice
constant a is comparable with the particle diameter σ. The
particles attract or repel each other when they are the nearest
or the third neighbors, respectively. Such interactions lead
to formation of small clusters and characterize, for example,
cone-shape membrane proteins or globular proteins in solvents
with weak ionic strength. In particular, similar ranges of
interactions were found for lysozyme molecules in water.3 We
discuss the model in more detail in Ref. 12. The model with the
same interaction potential and with PBC was solved exactly
in Ref. 11 for the system sizes L = 6N , where N is integer.
For such system sizes, the energetically favourable structure
of 3 occupied sites separated by 3 empty sites is possible,
and the properties of the bulk system can be reproduced. For
L , 6N , the incommensurability between the system size L and
the period of the ordered structure may influence the results.
Here, we focus on the impact of this incommensurability in the
case of the PBC and in the case of a slit type of confinement,
i.e., with rigid boundary conditions (RBC). In the case of
the PBC, we ask how the incommensurability influences the
dependence of the density ρ on the chemical potential µ for
different system sizes. Our exact results may help to interpret
the results of simulations that are performed for finite systems,
and the incommensurability is a serious problem. In the case of
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FIG. 1. Scheme of the model for a system of size L = 15. The lattice constant
a is equal to the particle diameter σ. The particles attract or repel each other
with the energy −J1 or J2 when they are the nearest or the third neighbors,
respectively. If a particle occupies the first or the last site of the lattice, then it
interacts with the confining wall with the energy h1 or hL, respectively.

the RBC, we assume that the confining walls are electrically
neutral, hence they interact only with the particles located
at the first and the last site of the system (see Fig. 1). The
confining walls represent real physical confinement, e.g., in a
porous material or in a thin film on a solid substrate.

We assume that the lattice consists of L sites labeled from
1 to L. In order to describe whether the lattice site x is occupied
or not, we introduce an occupation operator ρ̂(x) which is
equal to 1 or 0, respectively. Hence, the configuration of the
system (the microstate) is given by { ρ̂(x)} ≡ ( ρ̂(1), . . ., ρ̂(L)).
The probability of the microstate { ρ̂(x)} is

P[{ ρ̂(x)}]= e−βH [{ρ̂(x)}]

Ξ
, (1)

where Ξ is the Grand Partition function, β = (kBT)−1, kB is the
Boltzmann constant, and H is the thermodynamic Hamiltonian
which contains the energy and the chemical potential term

H[{ ρ̂}] = 1
2

L
x=1

L
x′=1

ρ̂(x)V (x− x ′) ρ̂(x ′)

+h1 ρ̂(1)+hL ρ̂(L)− µ
L

x=1

ρ̂(x), (2)

where the particle-particle interaction potential is

V (∆x)=



−J1 for |∆x | = 1,
+J2 for |∆x | = 3,
0 otherwise.

(3)

We choose J1 as the energy unit and introduce dimension-
less variables for any quantity X with dimension of energy as
X ∗= X/J1, in particular,

T∗ = kBT/J1, J∗= J2/J1, h∗1= h1/J1, (4)

h∗L = hL/J1, µ∗= µ/J1. (5)

We solve the model exactly by the transfer matrix method,
as in Ref. 11. Similar transfer matrix method was used
before in the case of the 1d axial next-nearest-neighbor Ising
(ANNNI) model, with ferromagnetic interaction between the
nearest neighbour spins, and antiferromagnetic interaction
between the spins that are next neighbours.27 There is a unique
mapping between our model and the model with competing
ferromagnetic and antiferromagnetic interactions between the
first and the third neighbours in a presence of magnetic field. In
our case, the range of interaction is larger than in the 1d ANNNI
model, and this leads to a larger dimension of the transfer
matrix. Because the range of the particle-particle interaction
is 3, the transfer matrix operates between the microstates in

boxes that are located next to each other, and each box consists
of 3 sites. There are 8 microstates in each box, therefore
the dimension of the transfer matrix is 8. The system can
be divided into such boxes when L = 3N . In general, the
expression for the grand partition function for L = 3N + j
depends on both, N and the reminder of division of L by 3,
j = L mod 3= 0, 1, 2. We describe the method in more detail,
and give the exact expression for Ξ in Appendix A.

When the correlation length between the particles is
comparable with the distance between the confining walls,
then the distribution of the particles is influenced by both walls.
This leads to the excess of the grand potential depending on
the distance between the walls,28

Ωex ≡Ω−Ωbulk = γ1+γL+Ψ(L), (6)

whereΩ=−kBT ln Ξ andΩbulk =−kBT ln Ξbulk are the grand
potential in the slit and in the bulk of the same size L,
respectively, γ1 and γL are the wall-fluid surface tensions,
and Ψ(L) corresponds to the effective interaction between the
confining walls.28 The effective force between the surfaces is
−∇Ψ(L). The exact expressions for γ1, γL, and Ψ(L) are given
in Appendix C.

The expression for the local average density at the site
x = 3n+ l in the system of size L = 3N + j with j = 0, 1, 2
depends on both, n and l = 1, 2, 3, and in addition on N and
j. The rather complex formulas are given in Appendix B. The
exact expressions take much simpler asymptotic forms for
N ≫ 1 and n ≃ N/2. We present the asymptotic formulas for
N ≫ 1 for the density and for Ψ(L), and compare them with
the exact results in Sec. III.

III. ASYMPTOTIC EXPRESSIONS FOR LARGE SLITS
AND THE RANGE OF THEIR VALIDITY

In the energetically favourable structure, clusters com-
posed of 3 particles are separated by 3 empty sites. For this
reason, the properties of the system confined in the slit of
large width L = 3N + j depend on both, the number of the
triples of sites, N ≈ L/3, and the number of the additional
sites, j = 0, 1, 2. Let us first consider the average local density
in the central part of the slit of large width, N≫ 1. We divide
the system into triples of sites. Each site x is characterized
by the number of the triple to which it belongs, n, and the
position inside the triple, l, so that x = 3n+ l with l = 1, 2, 3.
The expression for ⟨ ρ̂(3n+ l)⟩ depends on n and l, as well as
on N and j. From the exact formulas given in Appendix B,
we obtain the asymptotic expression for N → ∞ and n≃ N/2
(central part of the slit),

⟨ ρ̂(3n+ l)⟩ ≃ ρ̄+ A1(l) cos(nλ+θ1(l))e−3n/ξ

+AL(l) cos((N −n)λ+θL(l))e−3(N−n)/ξ. (7)

The explicit expressions for ρ̄, the amplitudes A1(l), AL(l), and
the phases θ1(l), θL(l) are given in Appendix B (these quantities
depend also on N and j). The decay length ξ is given by the
same expression as the correlation length in the bulk,11

ξ = 3/ln
(
λ1

|λ2|
)
, (8)
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where λ1 and λ2 = |λ2|exp(iλ) are the largest and the second
largest eigenvalues of the transfer matrix. The transfer matrix
is not Hermitian, and some of the eigenvalues can be complex.
The presence of the imaginary part of λ2 depends on J∗, and on
the thermodynamic state. The monotonic decay of the density
near a single surface occurs when λ2 is real and positive (λ= 0).
The exponentially damped periodic structure with the period
6 occurs when λ2 is real and negative (λ= π). In most cases,
however, including J∗= 3 for the range of µ∗ studied in this
work, λ2 is complex and the period of the damped oscillations
is noninteger.

The asymptotic formula for the effective interaction
potential for N → ∞ is

βΨ(3N + j)≃ A( j) cos(λN +φ( j))e−3N/ξ. (9)

The explicit expressions for the amplitude A( j) and the phase
φ( j) are given in Appendix C.

The asymptotic formulas are simply the exponentially
damped periodic functions. Similar expressions, but without
the amplitude modulations, were obtained in mean-field
theories of confined self-assembling systems.20,29–31 These
rather simple asymptotic forms are strictly valid for N≫ 1 and
n≃ N/2. We check the validity of the asymptotic expressions
by comparing them with the exact results. The exact and
asymptotic formulas are valid for any J∗. To fix attention,
we focus in this paper on the case of strong repulsion, J∗= 3.

As shown in Fig. 2, the agreement of the asymptotic
expression for the local density with the exact result is very
good already for L = 42, and the discrepancy between the
exact and asymptotic expressions appears only very close
to the surface. For L = 30, the accuracy of the asymptotic
expression is less good but it is still satisfactory, except from
the clusters adsorbed at the surfaces, where some discrepancy
can be observed. Thus, the asymptotic formula is sufficiently
accurate not only in the center, but inside the whole slit for
slits containing 5 or more clusters.

In the asymptotic expressions, the decay length and the
period of oscillations of the local density in the slit, and the
correlation function in the bulk are the same. In Fig. 3, we

FIG. 2. Comparison of the exact (B2) and approximate (7) formulas for the
average density for J∗ = 3, µ∗ = 0, T ∗ = 0.5, and h∗1 = h∗L = −1. Upper
panel L = 30, lower panel L = 42.

FIG. 3. Comparison of the density profile in a slit (dashed line) for J∗ = 3,
µ∗ = −0.66, T ∗ = 0.0125, h∗1 = h∗L = −1, and L = 96, and the bulk corre-
lation function obtained in Ref. 11 (solid line) for the same thermodynamic
state. The correlation function was linearly scaled and shifted by the average
density of the bulk system, ρ = 0.3841.

compare the exact results for the local density and for the
correlation function. In order to compare the two functions,
we add the average density of the bulk system to the linearly
scaled correlation function, and obtain good agreement for
the distance from the surface x > 10. We conclude that the
correlation function in the bulk describes very well the local
structure (up to an amplitude that depends on the kind of the
wall) except for the first cluster adsorbed at the surface.

In Fig. 4, the exact and approximate results for the
effective interaction between the walls are compared. As
expected, the accuracy of the asymptotic formula improves
with increasing system size. Close to the minima, i.e., near the
equilibrium separations between the surfaces, the approximate
formula works well also for small systems. On the other hand,
for small and incommensurate system sizes, the approximate
formula highly underestimates the interaction potential, there-
fore for small systems it underestimates the effective force
between the walls.

Notice that for some system sizes there is no clear
minimum and Ψ(L) takes almost equal values for two

FIG. 4. The effective wall-wall interaction Ψ(L) for J∗ = 3, µ∗ = 0,
T ∗ = 0.2, and h∗1 = h∗L = −1. Dashed line with squares—the exact formula,
Eq. (C6). Solid line with circles—the approximate formula, Eq. (9).
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consecutive system sizes. However, for the exact and the
approximate formulas, this phenomenon occurs for different
system sizes, e.g., in Fig. 4 for L = 39, 40 for the exact result,
and for L = 27, 28 for the approximate formula.

IV. EFFECTS OF INCOMMENSURABILITY OF THE
SYSTEM SIZE AND THE PERIOD OF THE BULK
STRUCTURE

In this section, we study the effect of the incommensura-
bility of the system size and the period of the bulk structure on
the distribution of the particles and on the dependence of the
average density on the chemical potential. Our aim is to verify
how ρ(µ∗) is influenced by the presence of structural defects
that must be present in the case of the incommensurability. We
first consider the PBC, and next the RBC.

A. The case of PBC

We focus on L = 6N + 3, i.e., on the largest mismatch
between L and 6 (the low-T period in the ordered phase).
Let us first investigate the GS, i.e., the case of T∗ = 0. For
L = 6N +3, we may expect that in the periodic phase either
a separation between some clusters is larger than 3, or some
clusters are larger than 3 (see Fig. 5). When the separation
between the clusters is larger than 3 and we add one particle
to a cluster consisting of at least 3 particles, then the increase
of the Hamiltonian is ∆H∗ = −1+ J∗− µ∗. For µ∗ < J∗−1 or
µ∗ > J∗−1, we have ∆H∗ > 0 or ∆H∗ < 0, respectively. Thus,
in the GS corresponding to the minimum of the Hamiltonian
H∗, the voids in the first case and the clusters in the second
case occupy 3 more sites. At T∗= 0, the average density jumps
by 3/L for µ∗ = J∗− 1. The GS in the bulk (L = 6N) and
for L = 9 is shown in Fig. 5 for J∗ = 3. Note that we have
∆H∗ = −1+ J∗− µ∗ = 0 for µ∗ = 2 in this case, therefore for
µ∗ = 2 the GS is degenerate, and the cluster can consist of
either 3, 4, 5, or 6 particles.

In Fig. 6, we show ρ(µ∗) for T∗ = 0.15. Note that the
transition between the two types of defects, i.e., larger voids or
larger clusters could be misinterpreted as a transition between
different phases, because when a system undergoes a first-
order phase transition, steps in ρ(µ∗) appear. The results of

FIG. 5. Schematic representation of the ground state (GS) (T ∗ = 0) for
J∗ = 3 for the bulk system (L = 6N ) (a) and for the system of size L = 9
(b). For µ∗ < −2/3 or µ∗ > 14/3, the stable phase is the vacuum or the fully
occupied lattice. For −2/3 < µ∗ < 14/3, the periodic phase is stable in the
bulk. For L = 9, the stability region of the periodic phase is split into µ∗ < 2
and µ∗ > 2 corresponding to enlarged void or cluster, respectively.

FIG. 6. The average density ρ∗ as a function of the chemical potential µ∗ for
J∗ = 3 and T ∗ = 0.15, for a system with PBC and L = 9 (red dashed line),
L = 12 (blue dotted line), and L = 15 (black solid line).

simulations in the case of systems with spatial inhomogeneities
on a mesoscopic length scale should be interpreted with special
care, especially when several periodic phases with different
periods can appear. Our results show that in the case of
structural defects, the height of the step decreases as ∼ 1/L for
increasing L, and for certain system sizes the step disappears
(Fig. 6).

B. The case of RBC

We first focus on attractive surfaces. Let us consider the
Hamiltonian for a single cluster composed of n ≤ 3 particles
adsorbed at the surface, H∗= h∗1−(n−1)−nµ∗. The adsorption
of the cluster is energetically favourable compared to vacuum
for µ∗ > (h∗1+1− n)/n. In order to fix attention, we assume
that the interaction with the surfaces is the same as the
particle-particle attraction, h∗1= h∗L =−1. In this case, a cluster
adsorbed at each attractive surface is energetically favourable
for µ∗ > −1. Thus, for µ∗ > −1, the largest mismatch between
the system size and the structure of the bulk periodic phase
occurs for L = 6N when both surfaces are attractive. For
L , 6N +3, the GS of the system is degenerate in the whole
stability region of the periodic phase, because the defects in the
periodic structure that are caused by the incommensurability
of the period and the system size are not localized. Moreover,
the stability region of the periodic phase splits into 4 regions,
corresponding to different numbers and sizes of the clusters
present in the slit. We choose L = 19 and present typical
microscopic states of the GS in Fig. 7. For µ∗ < 0, there are 3
clusters in the slit. Each of them consists of 3 particles, and the
neighboring clusters are separated by at least 3 empty sites.
Apart from this limitation the position of the central cluster can
be arbitrary. For 0 < µ∗< J∗−1, there are 2 clusters consisting
of 3 particles and 2 clusters consisting of 2 particles in the slit.
The clusters do not repel each other, i.e., there are 3 empty sites
between the neighboring clusters. For J∗−1 < µ∗ < 2(J∗−1),
there are 4 clusters consisting of 3 particles. Finally, for
µ∗ > 2(J∗− 1), there are 3 clusters separated by two voids
composed of 3 empty sites, and each cluster consists of at
least 3 particles.

In Fig. 8, we present ρ(µ∗) for the slit with L = 19 at
T∗= 0.15. The average densities corresponding to the plateaus
are shown in the insets. Note the similarity between the average
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FIG. 7. Typical microstates in the degenerate GS for a slit of size L = 19
with attractive walls. The range of the chemical potential corresponding to
the shown microstates is (a) −2/3 < µ∗ < 0, (b) 0 < µ∗ < J∗ − 1, (c)
J∗ − 1 < µ∗ < 2(J∗ − 1), and (d) 2(J∗ − 1) < µ∗ < 2J∗ − 4/3.

densities in the GS (a)–(d) (Fig. 7) and the insets (a)–(d) in
Fig. 8.

In the case of confinement in a slit, the steps in ρ(µ∗)
represent a physical effect, namely, structural changes such as
a jump of a number of the clusters or a change of their size
as a function of the chemical potential. Such abrupt changes
in a slit induced by small changes in the surroundings occur
when the size of the system and the period of the bulk phase
are incommensurate.

Let us focus on the role of the interaction with the
confining surfaces. The attractive and repulsive surfaces are
compared in Fig. 9 for a large slit. When the walls are attractive,
we observe steps in ρ(µ∗) associated with adsorption of a
particle or a cluster. The first step is present only if h∗1, h∗L <−1
and it originates from the adsorption of a single particle at each
wall, while the second step corresponds to the adsorption of
clusters. Note that for µ∗>−1 the ρ(µ∗) curves are essentially
the same for h∗1= h∗L =−1 and h∗1= h∗L =−1.5. This shows that
for strong wall-fluid attraction, the results are independent of
h∗1 and h∗L.

In the case of short-range interactions with the walls,
the density profiles in the slits with attractive and repulsive
surfaces are very similar for −0.75 < µ∗ < −0.5 (Fig. 9(b)).
This rather surprising property follows from the fact that even
though the clusters do not touch the repulsive surfaces, they are
located very close to them. A significant difference between the

FIG. 8. Density ρ as a function of the dimensionless chemical potential µ∗

for J∗ = 3 and T ∗ = 0.15 in a slit of size L = 19 with attractive walls. For
increasing µ∗, we observe 4 plateaus. The plateaus from (a) to (d) correspond
to the average densities shown in the insets. The steps between them occur
for µ∗ ≈ 0, 2, 4, i.e., near the GS coexistence between different structures in
confinement (see Fig. 7).

FIG. 9. Panel (a) ρ(µ∗) for J∗ = 3, T ∗ = 0.03, and L = 50 for systems
with PBC, RBC with attractive walls for h∗1 = h∗L = −1 (dashed line) and
for h∗1 = h∗L = −1.5 (dashed-dotted line), and RBC with repulsive walls for
h∗1 = h∗L = 1 (solid line). The rapid changes of the density at µ∗ ≈ −1.5 and at
µ∗ ≈ −1 correspond to the adsorption of a particle and a cluster, respectively,
at the attractive walls. Panels (b) and (c) show density profiles for µ∗ = −0.55
and µ∗ = −0.4, respectively, for attractive (dotted lines) and repulsive (solid
lines) surfaces. Note the change of the number of clusters for µ∗ ≈ −0.45
when the walls are attractive.

attractive and repulsive surfaces appears only for µ∗>−0.45—
there is one more cluster, and one more step in ρ(µ∗) in the slit
with the attractive surfaces for L = 20, 26, 32, . . ..

V. EFFECTIVE INTERACTION BETWEEN THE WALLS
AND DEFORMATIONS OF ELASTIC CONTAINERS

In this section, we discuss the effective potential between
the confining surfaces separated by the distance L. We first
consider walls separated by a fixed distance. Next we assume
that the walls are elastic, and the change of the wall separation
is possible at the cost of elastic energy. When the equilibrium
width of the empty slit, L0, and the period of the ordered phase
do not match, the elastic energy and the fluid-induced stress
are in competition. We ask how the equilibrium width of the
slit filled with the inhomogeneous fluid differs from L0.

A. The case of fixed distance between the confining
walls

The exact results for the effective potential between the
confining walls separated by a fixed distance, Ψ(L), are
presented in Fig. 10 for the chemical potential corresponding
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FIG. 10. Ψ(L) for J∗ = 3 and T ∗ = 0.2 for different values of the chemical
potential µ∗ and both walls attractive. (a) µ∗ = −1, (b) µ∗ = 0, (c) µ∗ = 4,
and (d) µ∗ = 5. L is in units of the particle diameter σ.

to the GS stability of the vacuum, the periodic phase, and
the dense phase (compare Fig. 5). Note that the confined
fluid leads to repulsion or attraction between the walls when
the dilute or the dense pseudo-phase is stable in the bulk,
respectively. The repulsion may follow from the adsorption
of the clusters at the surfaces, since the clusters repel each
other. The oscillations of Ψ(L) are present if the periodic
distribution of clusters is thermodynamically preferred. These
oscillations should be interpreted as follows: the minima of
Ψ(L) correspond to the system sizes commensurate with the
periodic structure, therefore if we would allow the system to
shrink or expand, then in order to suppress the internal stress
the system would change its size to the value corresponding to
the nearest minimum of Ψ(L). The bigger is the slope of the
oscillations, the stronger is the effective force leading to the
nearest minimum of Ψ(L).

For large L, the decay rate of Ψ(L), ξ, is equal to the
bulk correlation length (see Eq. (9)). In Ref. 11, it was shown
that the correlation length in the considered model can be a
few orders of magnitude larger than the molecular size for µ∗

corresponding to the stability region of the periodic phase on
the GS (−2/3 < µ∗< 14/3 for J∗= 3). In Fig. 11, we show that
for µ∗= 2, where ξ takes the maximum, Ψ(L)∼ 0.1kBT even
for system sizes 4 orders of magnitude larger than the particle
diameter.

FIG. 11. Ψ(L) for J∗ = 3, T ∗ = 0.2, and µ∗ = 2 for non-interacting walls. L
is in units of the particle diameter σ.

FIG. 12. Illustration of the system with elastic walls with the spring con-
stant k .

B. The case of elastic confining walls

We assume that the width L of the slit can oscillate around
L = L0, where L0 is the equilibrium width in the absence of
particles inside the slit. This oscillation can be controlled
by a harmonic potential energy Uw(L) = k · (L − L0)2 (see
Fig. 12). Next we assume that when the slit is in contact with
the reservoir of particles, and the chemical potential µ∗ and
temperature T∗ are fixed, then in mechanical equilibrium the
sum of Uw(L) and the particle-induced effective potentialΨ(L)
takes the minimum. We should note that similar assumptions
lead to correct prediction of swelling of microporous carbons
induced by adsorption of argon.32 Here we make a similar
assumption for larger particles and system sizes, and softer
confining surfaces. In Fig. 13, we present the sum of Ψ and
Uw as a function of the system size. Note that when L0
corresponds to the maximum of Ψ(L), i.e., to a large stress
induced by the confined fluid, then Uw(L)+Ψ(L) may have
two minima of very similar depth for wall separations that
differ approximately by the period of the bulk structure. The
number of clusters in these two states differs by one. As can be
seen in Fig. 13, the barrier between the two minima is of the
order of kBT for the assumed elastic constant k = 0.1kBT/σ2.

In Fig. 14, we show how the bistability appears when
the chemical potential changes from µ∗= 0 or µ∗= 4 towards
µ∗ = 2. The barrier between the two minima decreases for
increasing |µ∗− 2|. Thus, by changing the concentration of
particles in the surroundings, we can change the height of
the barrier and induce or suppress the jumps between the two
widths of the confined system.

FIG. 13. The sum of the elastic energy of the confining boundaries, and
the effective interaction induced by the confined self-assembling system for
different equilibrium widths of the empty slit L0. J∗ = 3, T ∗ = 0.5, µ∗ = 2,
h∗1 = h∗L = −1, and the spring constant k = 0.1kBT /σ2, where σ is the
particle diameter.
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014903-8 Pȩkalski, Ciach, and Almarza J. Chem. Phys. 142, 014903 (2015)

FIG. 14. The sum of the elastic energy of the confining boundaries and
the effective interaction induced by the confined self-assembling system for
various values of µ∗. J∗ = 3, T ∗ = 0.5, h∗1 = h∗L = −1, L0 = 24, and the
spring constant k = 0.1kBT /σ2.

VI. SUMMARY

We have solved exactly the 1d model of a system
interacting with the SALR potential in slits of various
widths with electrically neutral surfaces. We assumed that
the strengths and the ranges of the two competing parts of
the potential are such that small clusters are formed. The
distribution of the particles in confinement and the effective
potential between the confining surfaces have been calculated
for different values of the chemical potential, from dilute to
dense systems in the bulk. We paid particular attention to µ∗

corresponding to inhomogeneous distribution of the particles
in the bulk. We also obtained ρ(µ∗) for various system sizes
and different short-range interactions with the surfaces. We
paid particular attention to the system sizes incommensurate
with the typical distance between the clusters or layers in the
bulk.

Our most interesting result is the bistability of the system
confined by elastic walls (Fig. 13). The bistability occurs when
the wall separation in the absence of particles corresponds
to the largest stress in the confined self-assembling system.
The system chooses n or n+1 confined clusters with almost
equal probability. Similar phenomenon occurs in very narrow
slits when the width is such that n and n+1 atomic layers
of the adsorbed gas are equally probable. The size difference
between n and n+1 clusters is similar to the period of the bulk
structure. The period is determined by the range of attractive
and repulsive parts of the effective pair interaction potential
and in the case of colloids can be as large as hundreds of
nanometers or even micrometers. We expect that the larger is
the period, the greater is the distance between the two almost
equally probable system sizes. Apart from that, the bistability
phenomenon should not depend on the specific shape of the
effective interparticle potential as long as it leads to formation
of relatively small clusters. On the other hand, we cannot
exclude the possibility that for large clusters the fluctuations
of the cluster size can suppress the bistability effect.

The confined self-assembling system behaves as a soft
elastic material itself (Fig. 10), and the bistability takes place
when its elastic constant is similar to the elastic constant of
the boundaries. Such soft boundaries are formed, in particular,
by biological membranes. On the other hand, if the elastic
constant of the boundaries is very small, then the system
can accommodate to the bulk structure and hence, the effects

related with the incommensurability or particles interactions
with the confinement are softened or even they vanish.

An interesting property is the possibility of inducing or
suppressing the bistability by changing the chemical potential,
i.e., the concentration of particles in the surroundings. The
conditions in the surroundings influence also the deformations
in the confined system. We found that by changing µ∗, we
induce changes in the number and size of the layers in the
confined system. These structural changes are reflected in
“steps” in ρ(µ). In order to help to interpret simulation results,
we obtained exact expressions for ρ(µ∗) in the case of PBC and
various system sizes. We obtained steps in ρ(µ∗) corresponding
to the change of the type of defects resulting from the
incommensurability. In order to avoid misinterpretation of
these steps as phase transitions, one should verify if the steps
disappear for some (commensurate) system sizes, and if their
heights decays as ∼1/L for increasing system size L.

We expect that different shapes of the SALR potential will
lead to similar results, provided that the clusters contain only a
few particles. In the case of the SALR potential leading to large
clusters, as those studied in Ref. 33, the effects of confinement
may be different because of the cluster-size fluctuations. This
expectation is based on the observation that quite different
effects of confinement were observed in the case of small-
and large-periods of the bulk structure in systems containing
amphiphilic molecules.21 Recently, close similarity between
the bulk properties of the SALR and the amphiphilic systems
has been demonstrated in Refs. 34 and 35. Based on this
similarity, we may expect that the effects of confinement in
the SALR and in the amphiphilic systems are similar too, but
this expectation should be verified.

We should also note that our exact results concern open
systems in contact with a particle reservoir. Recently, hard
discs confined by a ring of particles trapped in holographic
optical tweezers, which form a flexible elastic wall, were
investigated.36,37 For a fixed number of confined particles,
a bistable state of a hexagonal structure and concentrically
layered fluid mimicking the shape of the confinement was
found. This phenomenon has some similarity to our bistability,
since in both cases the adaptive confinement plays a crucial
role. However, the fixed number of confined particles may
alter the properties of the system confined between adaptive
boundaries. Some of the lipid bilayers in living cells are
permeable for proteins, while some others are not. In a
forthcoming paper, we shall compare the open and closed
confined systems with the same average number of particles.

Finally, we would like to mention that our study of effects
of boundary conditions on incommensurate structures in soft-
matter systems applies also to magnetic systems with nearest-
neighbor ferromagnetic and third neighbor antiferromagnetic
interaction in a presence of magnetic field. The model is similar
to the ANNNI model which is canonical in statistical physics,
but previously mainly the bulk properties and the role of the
coupling-constant ratio were investigated.38–41
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APPENDIX A: PARTITION FUNCTION

Since the range of particle-particle interactions is 3, we
introduce boxes consisting of three neighboring lattice sites.
For the system of size L = 3N + j, where j = 0, 1, 2, the boxes
can be labeled by integer k = 1, 2, . . .N . The microstates in the
kth box are

Ŝ(k)= ( ρ̂(3k−2), ρ̂(3k−1), ρ̂(3k)). (A1)

For N > 1 (L ≥ 6), the Hamiltonian can be written in the form

H∗[{ ρ̂}] = ρ̂(1)h∗1+ ρ̂(L)h∗L+H∗j [Ŝ(N)]

+

N−1
k=1

H∗t [Ŝ(k), Ŝ(k+1)], (A2)

where

H∗t [Ŝ(k), Ŝ(k+1)] =
3k

x=3k−2

�
− ρ̂(x) ρ̂(x+1)

+J∗ ρ̂(x) ρ̂(x+3)− µ∗ ρ̂(x)� (A3)

contains the interaction between two neighboring boxes and
the chemical potential term in the first box,

H∗j [Ŝ(N)]

=




−
(1

i=0
ρ̂(3N − i) ρ̂(3N − i−1)

)
−µ∗

(2

i=0
ρ̂(3N − i)

)
if j = 0,

−
(2

i=0
ρ̂(3N +1− i) ρ̂(3N − i)

)
+J∗ ρ̂(3N −2) ρ̂(3N +1) if j = 1,

−µ∗
(3

i=0
ρ̂(3N +1− i)

)
−

(3

i=0
ρ̂(3N +2− i) ρ̂(3N +1− i)

)
if j = 2,

+J∗
(1

i=0
ρ̂(3N −2+ i) ρ̂(3N +1+ i)

)
−µ∗

(4

i=0
ρ̂(3N +1− i)

)
contains the particle-particle interactions between the particles
which occupy the sites within the N th box, and in addition the
interactions between the particles at the sites labeled 3N +1
and 3N+2 (if such sites exist for given L). Finally, ρ(1)h∗1 and
ρ(L)h∗L are the energies of interaction between the particles
and the two walls. For N = 1, the Hamiltonian does not contain
the last term in (A2). We consider only N > 1 in this work. In
order to find the partition function of the system, we introduce
a 8×8 transfer matrix T with the matrix elements

T(Ŝ(k), Ŝ(k+1))≡ e−β
∗H∗t [Ŝ(k), Ŝ(k+1)]. (A4)

The partition function in terms of the transfer matrix has the
following form:

Ξ=

Ŝ(1)

′
Ŝ(N )

eβ
∗ρ̂(1)h∗1TN−1[Ŝ(1), Ŝ(N)]eβ∗ρ̂(L)h∗Leβ

∗H∗
j
[Ŝ(N )]

,

(A5)

where
′

Ŝ(N ) denotes

′
Ŝ(N )
=





Ŝ(N ) if j = 0
Ŝ(N )


ρ̂(3N+1) if j = 1

Ŝ(N )


ρ̂(3N+1)


ρ̂(3N+2) if j = 2

.

We transfer T to the base in which it is diagonal and the matrix
elements of TN−1 can be easily expressed by the sum over the
eigenvalues λk and the matrix elements Pk(Ŝ(n)) of the matrix
transforming T to its eigenbasis

TN−1(Ŝ(n), Ŝ(m)) =
8

k=1

Pk(Ŝ(n))λN−1
k P−1

k (Ŝ(m)). (A6)

Hence, the partition function is

Ξ =

Ŝ(1)

′
Ŝ(N )

8
k=1

eβ
∗ρ̂(1)h∗1Pk(Ŝ(1))λN−1

k P−1
k (Ŝ(N))

× eβ
∗ρ̂(L)h∗

Leβ
∗H∗

j
[Ŝ(N )]

. (A7)

APPENDIX B: AVERAGE DENSITY AT A GIVEN SITE

The framework of the transfer matrix allows us to find
a formula for average density at the site x = 3n+ l, where n
is the number of the triple to which the xth site belongs and
l = 1, 2, 3 is the label of the site within the triple. For 1 < n < N ,
the average density at the xth site is

⟨ ρ̂(x)⟩ = 1
Ξ


Ŝ(n)


Ŝ(1)

′
Ŝ(N )

eβ
∗ρ̂(1)h∗1Tn(Ŝ(1), Ŝ(n)) ρ̂(x)

×TN−(n+1)(Ŝ(n), Ŝ(N))eβ∗ρ̂(L)h∗Leβ
∗H∗

j
[Ŝ(N )]

.(B1)

In terms of the eigenvalues it takes the form

⟨ ρ̂(x)⟩= 1
Ξ


Ŝ(n)

ρ̂(x)*.
,


Ŝ(1)

eβ
∗ρ̂(1)h∗1

8
k=1

Pk(Ŝ(1))λnkP−1
k (Ŝ(n))+/

-
·

*.
,

′
Ŝ(N )

eβ
∗ρ̂(L)h∗

Leβ
∗H∗

j
(Ŝ(N ))

8
k=1

Pk(Ŝ(n))λN−(n+1)
k

P−1
k (Ŝ(N))+/

-
.

(B2)

We introduce the notation

ak+ ibk ≡

Ŝ(1)

eβ
∗ρ̂(1)h∗1Pk(Ŝ(1))P−1

k (Ŝ(n)), (B3)

ck+ idk ≡
′

Ŝ(N )
eβ
∗ρ̂(L)h∗

LeβH
∗
j
(Ŝ(N ))Pk(Ŝ(n))P−1

k (Ŝ(N)),

(B4)
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where λ1 ∈R is the eigenvalue with the largest absolute value
and i =

√
−1. The dependence of ak, bk, ck, and dk on Ŝ(n) is

not indicated for clarity of notation. The parameters ck and dk

depend also on j = L mod 3. Then, Eq. (B2) takes the form

⟨ ρ̂(3n+ l)⟩ = λ
N−1
1

Ξ


Ŝ(n)

ρ̂(3n+ l)*
,

8
k=1

(
λk

λ1

)n
(ak+ ibk)+

-

× *
,

8
k=1

(
λk

λ1

)N−n−1

(ck+ idk)+
-
. (B5)

Our aim is to obtain an asymptotic expression for ⟨ ρ̂(x)⟩
for N → ∞ and n ∼ N/2. We sort the eigenvalues in the
descending order of their absolute values and neglect in
Eq. (B2) all the eigenvalues except from the first 3 of them.
We limit ourselves to the two cases: (1) λ2= λ̄3= |λ2|eiλ and
(2) λ2, λ3 ∈R with |λ3/λ2|n≪ 1 for n≫ 1.

If λ2= λ̄3, then after some algebra we obtain

⟨ ρ̂(3n+ l)⟩ ≃ λ
N−1
1

Ξ


Ŝ(n)

ρ̂(3n+ l)
(
a1c1+2c1

( |λ2|
λ1

)n
× (a2 cos(nλ)−b2 sin(nλ))
+2a1

( |λ2|
λ1

)N−n−1

(c2 cos((N−n−1)λ)

−d2 sin((N−n−1)λ))
)
. (B6)

In deriving (B6) we took into account that
( |λ2|
λ1

)n
·
( |λ2|
λ1

) (N−n−1)

≪
( |λ2|
λ1

)N−n−1
for N ≫ 1 and n ∼ N/2. Equation (B6) can be

written in the form (7) with ξ defined in Eq. (8), λ defined below
Eq. (8), and with the following expressions for the remaining
parameters:

ρ̄≡
λN−1

1

Ξ


Ŝ(n)

ρ̂(3n+ l)a1c1, (B7)

A1(l)=



w2 if λ2, λ3 ∈R and |λ3/λ2|n≪ 1
w2

cosθ1(l) if λ2= λ̄3
,

AL(l)=



w4 if λ2, λ3 ∈R and |λ3/λ2|n≪ 1
w4 exp(3/ξ)

cos θL(l) if λ2= λ̄3
,

θ1(l)≡ arctan
w3

w2
, θL(l)≡ arctan

w5

w4
−λ,

where

w2≡
2λN−1

1

Ξ


Ŝ(n)

ρ̂(3n+ l)a2c1,

w3≡
λN−1

1

Ξ


Ŝ(n)

ρ̂(3n+ l)b2c1,

(B8)

w4≡
2λN−1

1

Ξ


Ŝ(n)

ρ̂(3n+ l)a1c2,

w5≡
2λN−1

1

Ξ


Ŝ(n)

ρ̂(3n+ l)a1d2.

(B9)

The above asymptotic expressions are not valid when
λ2 and λ3 are both real, and |λ3/λ2|n =O(1). For the range

of parameters studied in this article, however, λ2 and λ3 are
complex conjugate numbers.

APPENDIX C: SURFACE TENSION AND EFFECTIVE
INTERACTION BETWEEN THE CONFINING WALLS

The grand thermodynamic potential for the bulk system
of the size L = 3N + j, where j = 0, 1, 2, and N → ∞ is

βΩbulk≃N→∞−
L

3N
ln λN1 =−ln λN1 −

j
3

ln λ1. (C1)

The impact of the system geometry and the particle-wall
interactions can be expressed by an excess grand potential
Ωex ≡ Ω−Ωbulk. We obtain the grand potential Ω of the
confined system using Eq. (A7),

βΩ=−ln Ξ=−ln*
,

8
k=1

λ
N−1
k Ck( j)+

-
, (C2)

where

Ck( j) =

S(1)

′
Ŝ(N )

eβ
∗ρ̂(1)h∗1Pk(Ŝ(1))P−1

k (Ŝ(N))

× eβ
∗ρ̂(L)h∗

Leβ
∗H∗

j
(Ŝ(N ))

. (C3)

From (C1)–(C3) we obtain

βΩex ≃
3+ j

3
ln λ1− ln C1( j)− ln

(
1+

8
k=2

Ck( j)
C1( j)

(
λk

λ1

)N−1)
.

(C4)

The sum of the surface tensions and the effective potential
between the confining surfaces in Eq. (6) are given by

β(γ1+γ2) = ln λ1− ln C1(0) (C5)

and

βΨ(L)=−ln
(
1+

8
k=2

Ck( j)
C1( j)

(
λk

λ1

)N−1)
, (C6)

respectively, since we have verified that the sum of the first
two terms in Eq. (C4) does not depend on j. In the asymptotic
region of N → ∞, the above expression for Ψ(L) takes the
asymptotic form given in Eq. (9) with φ( j)= φ2( j)−λ and with

A( j)=



Ca
2 ( j)e3/ξ if λ2, λ3 ∈R and |λ3/λ2|N≪ 1

2Ca
2 ( j)e3/ξ if λ2= λ̄3

,

where Ca
k
( j)eiφk( j)=−Ck( j)

C1( j) .
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7A. Ciach and W. T. Góźdź, Condens. Matter Phys. 13, 23603 (2010).
8J. Toledano, F. Sciortino, and E. Zaccarelli, Soft Matter 5, 2390 (2009).
9P. Kowalczyk, A. Ciach, P. A. Gauden, and A. P. Terzyk, J. Colloid Interface
Sci. 363, 579 (2011).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  161.111.20.160 On: Wed, 30

Mar 2016 10:13:01

http://dx.doi.org/10.1038/nature03109
http://dx.doi.org/10.1103/PhysRevLett.94.208301
http://dx.doi.org/10.1103/PhysRevLett.94.208301
http://dx.doi.org/10.1073/pnas.0711928105
http://dx.doi.org/10.1103/PhysRevE.78.031402
http://dx.doi.org/10.1063/1.2185618
http://dx.doi.org/10.1103/PhysRevE.78.061505
http://dx.doi.org/10.5488/CMP.13.23603
http://dx.doi.org/10.1039/b818169a
http://dx.doi.org/10.1016/j.jcis.2011.07.043
http://dx.doi.org/10.1016/j.jcis.2011.07.043


014903-11 Pȩkalski, Ciach, and Almarza J. Chem. Phys. 142, 014903 (2015)
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