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A three dimensional integral equation approach for fluids

under confinement: Argon in zeolites
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In this work, we explore the ability of an inhomogeneous integral equation approach to provide
a full three dimensional description of simple fluids under conditions of confinement in porous
media. Explicitly, we will consider the case of argon adsorbed into silicalite-1, silicalite-2, and
an all-silica analogue of faujasite, with a porous structure composed of linear (and zig-zag in the
case of silicalite-1) channels of 5-8 A diameter. The equation is based on the three dimensional
Ornstein-Zernike approximation proposed by Beglov and Roux [J. Chem. Phys. 103, 360 (1995)]
in combination with the use of an approximate fluid-fluid direct correlation function furnished by
the replica Ornstein-Zernike equation with a hypernetted chain closure. Comparison with the results
of grand canonical Monte Carlo/molecular dynamics simulations evidences that the theory provides
an accurate description for the three dimensional density distribution of the adsorbed fluid, both
at the level of density profiles and bidimensional density maps across representative sections of
the porous material. In the case of very tight confinement (silicalite-1 and silicalite-2), solutions
at low temperatures could not be found due to convergence difficulties, but for faujasite, which
presents substantially larger channels, temperatures as low as 77 K are accessible to the integral
equation. The overall results indicate that the theoretical approximation can be an excellent tool
to characterize the microscopic adsorption behavior of porous materials. © 2015 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4934230]

. INTRODUCTION

For the last two decades we have witnessed a growing
interest on the explicit three-dimensional spatial description
of the structure of fluids in the vicinity of large molecules,
mainly due to its relevance for the solvation mechanisms of
biomolecular systems.! The knowledge of the solvent struc-
ture inside specific sites within a biomolecule is a key for
the understanding of many biological processes, such as the
catalytic activity of enzymes. It is in this context where the
interest on the solution of the full three dimensional Ornstein-
Zernike (3DOZ) equation was revived already 20 years ago
when Beglov and Roux? first solved the 3DOZ in the Hyper-
netted Chain (HNC) approximation for a system of a single
molecule (solute) of arbitrary shape immersed in an atomic
solvent. This approach is in fact a “singlet” approach,’ in
the sense that it provides a density profile of the solvent in
the external field of the solute, with the approximation that
solvent-solvent correlations are averaged over the inhomoge-
neity. These correlations were approximated by those of the
bulk solvent. This was known as the Henderson-Abraham-
Barker equation when dealing with atomic liquids.* Addition-
ally, the approach of Beglov and Roux can also be interpreted in
terms of an inhomogeneous HNC equation as derived from the
Density Functional theory (DFT) approach®” of Ramakrishnan
and Yussouff,® which, in turn, opens an avenue for further
improvements of the original formulation.
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The work of Ref. 2 has been later extended to molec-
ular liquids, both polar and non-polar®~'” and it turned out
to be particularly successful when applying the Reference
Interact Site Model (RISM) approach®!1? to describe solute-
solvent and solvent-solvent correlations. The exact treatment
of Coulomb interactions within this class of three dimensional
approximations has also been recently formulated by Perkyns
etal'

In close connection with this, detailed information on the
spatial distribution of confined fluids is also of paramount
importance in many processes of industrial interest, such as
gas storage or catalysis. Very specially when dealing with
functionalized adsorbents,!? the knowledge of the adsorbate
distribution within the adsorbent is essential. In fact, zeolite
design for catalytic applications has also been inspired by
the processes of molecular recognition characteristic of en-
zymes,'* where solvation is an essential element. Experi-
mental techniques such as FTIR and NMR spectroscopy,'>'®
or neutron scattering'”+'® provide very valuable information in
this context, but if one desires a detailed three dimensional map
of the confined fluid structure, the use of computer simulation
is unavoidable. The calculation of density maps, particularly
in regions where the sampling is poor due to problems of
accessibility might turn into a computationally lengthy pro-
cess.!? Therefore, the development of theoretical tools capable
of describing explicitly and accurately the three dimensional
structure of a fluid confined in porous material is of primary in-
terest. Already in the work of Beglov and Roux,? these authors
computed the density profile of a simple fluid adsorbed into a
crude model of zeolite solving the 3DOZ-HNC equation and

©2015 AIP Publishing LLC
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using as an approximation for the fluid-fluid direct correlation
function (dcf) that of the bulk fluid. More recently, two of the
authors in collaboration with Kahl' revisited the approach of
Beglov and Roux to describe the structure of a fluid inclusion
into a model of controlled pore glass in two-dimensions. Since
the model in question could be thought as a partly quenched
mixture, the authors resorted to the use of the Replica Ornstein
Zernike (ROZ) approach?->? in order to approximate the fluid-
fluid dcf. The use of a direct correlation function corresponding
to a confined fluid averaged over the porous matrix disorder
improved upon the simple bulk fluid approximation, which
although suitable for solvation problems, is of limited validity
under conditions of tight confinement.' The results presented
in Ref. 19 for fluids interacting via short range attractive-long
range repulsive (SALR) and Lennard-Jones (LJ) potentials
indicate that the combination of the 3DOZ-HNC and ROZ-
HNC equations is a promising alternative to describe explicitly
the spatial distribution of fluids under conditions of confine-
ment in the nanometer regime.

As a natural extension of the work of Ref. 19, we will here
present the solution of the 3DOZ-HNC equation for a simple
fluid, argon modeled as a one-site LJ fluid, adsorbed into three
zeolite models, namely, silicalite-1 (all silica analogue of the
ZSM-5 zeolite, framework type MFI), silicalite-2 (all silica
analogue of the ZSM-11 zeolite, framework type MEL) and an
all silica model of faujasite (framework type FAU). Both MFI
and MEL zeolites are composed of 4-, 5-, and 6-membered
rings linked to form a system of channels with 10-membered
ring openings.>* In MFI, the channels are a combination of
linear and zig-zag, while in MEL-type zeolites, all the channels
are linear. Their channels are typically in the range of 5.4-
5.6 A wide. The channels in faujasite are formed by 12-
membered rings and are also linear, being considerably wider
(7.4 A) and intersecting to form a cavity of 12 A of diameter. In
contrast to our previous work,'? the adsorbent material is now
formed by a regular network of interconnected channels. Even
if the system composed by the fluid and the adsorbent could
still be thought as a partly quenched mixture,>* there is no
room for averaging over disorder now. We are in the presence
of a regular and highly inhomogeneous confining medium,
so the applicability of the ROZ equations to this system is in
principle questionable. Nonetheless, here we will still consider
the zeolite as the quenched component in the ROZ equations,
and hence, its exact structure factor will be used to describe
the corresponding adsorbent-adsorbent correlations. We will
see then that the average fluid-fluid and fluid-adsorbent
correlation functions provided by the ROZ-HNC equations are
qualitatively correct when compared with simulation results.
Consequently, in the context of the 3DOZ-HNC equation,
the use of ROZ-HNC fluid-fluid direct correlation functions
will be a better approximation than employing bulk fluid
correlations. With this, we have in our hands the required
elements to solve the 3DOZ-HNC approximation for our
model of Ar adsorbed into zeolites. We will compare density
maps across relevant sections of the zeolites and density
profiles along the most significant directions calculated by
means of our theoretical approach and computer simulation.
We will see that the theory is able to provide a detailed picture
of the adsorbed fluid, illustrating those locations within the
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porous structure where adsorbed particles are most likely to be
found.

The rest of the paper is organized as follows. In Sec. II, we
briefly introduce our model for the zeolite and the adsorbed
fluid. The 3DOZ-HNC approach is sketched in Section III
together with a short summary of the main equations of the
ROZ-HNC theory. Our most significant results are commented
upon in Section IV. Concluding remarks and future prospects
are collected in Section V.

Il. THE MODEL

Our system is composed of Ar atoms which interact via a
LJ potential of the form

Uprar(r) = A€y [(‘T’*r”")12 - (‘””*")6] W

r

with e4,4,/kp = 124.07 K and 04,4, = 3.38 A, and kp being
Boltzmann’s constant as usual.” The structure of the three ze-
olites in question is illustrated in Figure 1. For our calculations,
we have used a super-cell of 2 X 2 X 3 unit cells for the MFI
and MEL frameworks and one of 2 X 2 X 2 unit cells for the
FAU framework. Structural data for these zeolites are taken
from Refs. 26-28. For the zeolite-Ar interaction, we will use
the model of Garcia-Pérez et al.,® that is, a Lennard-Jones
interaction with gpa,/kp = 107.69 K and o gy, = 3.15 A. Asit
is customary when modeling adsorption in zeolites, if charges
are not taken into account, the interaction between Ar and
Si atoms is neglected, being the latter completely embedded
within the oxygen tetrahedra. In the case of the faujasite frame-
work, one must take into account that in each unit cell there are
eight inaccessible cavities, large enough to host an Ar atom.
Obviously, these cavities will not participate in the adsorption
process, and this must be borne in mind both when running
grand canonical Monte Carlo (GCMC) simulations or when
building the matrix-adsorbate potential for the solution of the
3DOZ equation.

For computational efficiency, we have truncated and
shifted the interactions at R. = 30 4,4, In what follows, we
will designate the oxygen atoms by the subscript (or super-
script) O (the matrix or adsorbent) and Ar atom by subscript
(superscript) 1 (fluid or adsorbate).

lll. THEORY

Following our previous work in two dimensions,'® an

explicit description of the structure of a fluid confined in a
porous medium, such as a zeolite, can be achieved by means of
an approximation to the full three dimensional solution of the
Ornstein-Zernike (OZ) equation according to the prescription
of Beglov and Roux.” Despite the fact that our porous medium
is topologically ordered, we will also here resort to the replica
Ornstein-Zernike formalism?%-22 in order to provide a reason-
able approximation for the confined fluid direct correlation
function averaged over the inhomogeneities of the medium. In
Sec. III A, the ROZ equations are summarized, and the details
of the solution procedure of the 3DOZ equation are commented
upon in Sec. III B.
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(a) (b)

A. ROZ equations for a two-component matrix

When building the ROZ equations for Ar adsorbed into a
zeolite, one can either neglect the Si atoms (as it is done in the
simulation calculations) or include them by means of a purely
repulsive interaction. Both cases will be studied, but for the
sake of generality, we will introduce the equations for the two
component matrix case only. Its reduction to one-component
is trivial.

Our model incorporates the zeolite structure solely through
the orientationally averaged partial structure factors, which for
convenience we define here in their symmetrized form as
sin(

) 24, )
qr

Srlﬁ(‘]) = Oap + \Pappin / (gnﬂ(”) - 1)

where gq(r) is the partial pair distribution function, @ and g
stand for Si or O atoms, x, is the molar fraction, p, g are the
partial number densities of the Si and O, and g is the wave
vector modulus. These functions contain only pair information,
so effects resulting from the fact that Si atoms are completely
screened by O atoms are partly lost. Moreover, the ordered
nature of the porous structure is only contained in the structure
factors to a limited extent. We will comment on the effect of
these limitations later on.

The explicit procedure for the solution of the ROZ equa-
tions can be found in Ref. 29, and we briefly sketch here its
main points for completeness.

J. Chem. Phys. 143, 164703 (2015)

FIG. 1. Relevant projections of the
structure of MEL, MFI, and FAU zeo-
lites. Note that the xy and xz projec-
tions of the MEL zeolites are identical,
and the x z projection of the MFI zeolite
is identical to that of the MEL zeolite.
The projection of the FAU zeolite cor-
responds to the plane 110: (a) MEL, (b)
MFI, (c) FAU.

The ROZ equations can be written in matrix form in
Fourier space in terms of density scaled Fourier transformed
functions as?

HOI — COI + CO()HOI + COlHll _ COIHIZ,
Hll — Cll + ClOHOI + CllHll _ C12H12, (3)
H12 — C12 + ClOHOI + C11H12 + C12H11 _ 2C12H12,

together with the decoupled equation for matrix-matrix corre-
lations

H” =" + c"H™, “)

where the superscript 2 denotes the replicas of fluid particles.
Now, each of the functions F¥/ (where F stands for either H or
C) can be explicitly expressed in terms of the density scaled
Fourier transforms of the total correlation function, /g, or
direct correlation function, ¢, as

FOI — .f()(,l
fogi

where the subscripts @ and 8 correspond either to Si or O.
Correspondingly, for the matrix one has

FOO :< fOQOa ]FOQOH )

Jogoa  Jogog
In the equations above, the superscript  denotes correlations
between the replicas of the annealed fluid. Additionally, we

>’ Fll :JFIh FIZ:f"lrl’ (5)

(6
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have F'0 = F' OIT, where the superscript 7 denotes the matrix
transpose.

These equations are complemented by the correspond-
ing closures in r-space, which in the HNC approximation
read

hi(r) = exp (—uy (r)/ kT + hy(r) — c11(r)) — 1,
hoo1(r) = exp (—uo,1(r)/ kT + hop1(r) = copi(r)) = 1,
hog,1(r) = exp (—uog,1(r)/kgT + hog(r) — cog1(r)) — 1,

hy,(r) = exp (hy,(r) = ¢y (r) = 1,

where fo,1 = fi0;. For the matrix, we would also have

)

ho,(r) = exp (—Moioj(r)/kBTo + ho0,(r) — Coio‘,-(r)) -L ®

Here, Ty would be the temperature at which the matrix atoms
have been quenched. In our case, we will instead use the
“exact” averaged structure factor, given by Eq. (2), which
combined with (4) gives

c®=[s-15". 9)

Here, I is the identity matrix, and the elements of the S matrix
are given by Eq. (2). Eq. (9) is then to be inserted into Eq. (3).
The latter can be cast into a more compact form

COI I- COO _COI COl
Cll — _Cl() I- Cll C12
Cl2 _CIO _C12 I- Cll + zch
HO]
x | H" . (10)
H12

Eq. (10) can be efficiently solved for the components of the
total correlation function in terms of the direct correlation
function using a lower-upper (LU)-decomposition based equa-
tion solver.>° Egs. (7) and (10) can now be solved iteratively.
Finally, the adsorption isotherm from the ROZ-HNC can
be evaluated computing the chemical potential in terms of the
adsorbed fluid density, the former being given by?!~33

p/ksT= =" po,Go,1(0) = pa(@11(0) - &,(0))
i=a,

1
+3 Z p0i4n/drr2ho,.1(r)yoi1(r)

i=a,p
1
+§p147r/drr2(h11(r)y”(r)

= Iy ()Y, (r) + log(p1AY), (11)

where A; is the de Broglie wavelength for the fluid parti-
cles, and y(r) = h(r) — c(r). For practical purposes and to ease
comparison of theory and simulation, we have dropped the

J

J. Chem. Phys. 143, 164703 (2015)

temperature dependence of the ideal contribution in (11) and
simply set it to log(pi03 ).

B. The three dimensional Ornstein-Zernike approach

The inhomogeneous density of a fluid under the influence
of the external field created by a set of porous matrix particles
can be expressed in terms of a HNC-like expression of the
form?!°

p1(r) = p
X exp [_UOI(r)/kBT + / ci(r =r)(pi(r') = pydr| .
(12)

In the context of solvation, p; is actually the bulk fluid
density, and since when r — oo (i.e., well away from the
solvated molecule), the homogeneous density must be recov-
ered. As found in Ref. 19, this is no longer the case when
the fluid is confined in a porous system, and hence, here
p1 will be a parameter to be determined self-consistently.
Eq. (12) has the form of Percus source particle approach.’*
Here, the matrix as a whole is the source of an external
potential, Uy (r), and therefore, pi(r) = p1go1(r). Addition-
ally, the convolution within the exponential accounts for
the matrix fluid indirect correlation function, i.e., matrix-
fluid correlations mediated by fluid particles. The external
potential for a given configuration {ry} of Ny matrix particles
reads
No
Uoa1(x,y,2) = Zuoal(x = X0, Y — Y02 — 20;)-  (13)
i=1

When « = O, ug,,(r) is given by a Lennard-Jones interaction
as defined in Section II. Si-Ar interactions are neglected, but
in the case of faujasite, auxiliary sites must be included at
the center of the isolated cavities. For these sites, u,, 1 has
been defined as a LJ interaction with the same parameters
as that of Ar-O but truncated and shifted at 2°cp4,,
i.e., very short ranged and purely repulsive. This will
prevent these cavities from being filled with fluid density
when solving the 3DOZ equation. Now, along the lines of
Ref. 19, the fluid-fluid correlations are approximated by
the ROZ-HNC, by which cqi(r —r’) in Eq. (12) is given
by

ciilx—xy-y.z-2)
=N =P+ -y + =2, 14

and cRO%7HNC(r) is computed by solution of Egs. (3) and (7).

Once (14) is known, Eq. (12) can be solved iteratively. To that
purpose it is conveniently rewritten as

h(x,y,z) = exp | -Uoi(x,y,2)/kgT + p / dx'dy’'dz'cy\(x = x',y — y',2 = 2)h(x',y",2))| - 1, (15)

and

Pl(x,y»Z)zﬁl(h(x»y»Z)"‘1)- (16)
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FIG. 2. Oxygen-oxygen structure factors calculated for MFI and FAU zeo-
lites as defined in Eq. (2).

The convolution in (15) is evaluated in Fourier space using
numerical Fourier transforms from the FFTW?3 library.*> Our
problem is intrinsically periodic (as long as fluid correlations
are of shorter range than the zeolite super-cell being used). For
that reason, the Fourier transforms can be carried out without
zero padding.

As mentioned before, in Eq. (15), the value of the average
density p; must be defined self-consistently. To that aim, we

]
L 1 .
6 — i\ —
5 — —
g4 MEL type zeolite —
< L i
= 30 Ar/u.c.
o0 31—
2 —
1 —
0 T ‘ T ‘ T ‘ T
B o--o GC-MC ]
y ROZ (O matrix)
1.5+ — 3DOZ-HNC N
——- ROZ-HNC (SiO matrix)
C)
e 1+
Z
0
0.5+ —
0 : \ \ \
0 5 10 15 20

r/A

FIG. 3. Fluid-fluid and zeolite-fluid average pair distribution functions for
Ar adsorbed into a MEL-zeolite at 77 K. Simulation results are denoted by
circles, red curves represent results from the ROZ-HNC equations with a one-
component matrix, dashed-dotted blue curves those of the two component
matrix, and solid black curve corresponds to results from the 3DOZ-HNC at
94 K.
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simply resort to the sum rule of the density distribution!®

(o) = —P1 / dedydz(h(x.y.2) + D, (17)

L.L,L,
where L,,L,, L, are the dimensions of the periodic cell, and
the average fluid density is defined as

N

—_— 18
L.L,L, (18)

(p1) =
Here, N; is the number of adsorbate atoms (Ar in our case)
confined in the zeolite super-cell. In this way, given an average
fluid density, {01), the parameter p| can be evaluated iteratively
solving Equations (15) and (17) self-consistently, i.e., modify-
ing p; until the desired average fluid density {p;) is achieved.
Recall that the ROZ-HNC equations must be solved in advance
for the averaged fluid density, (o), and the corresponding
density of the confining medium, pg. These data specify the
problem and are known in advance from experimental tech-
niques.
Finally, once the fluid spatial density distribution, p{(x, y,
), is found, the matrix-fluid correlations averaged over the
inhomogeneities can also be evaluated. One simply calculates
the average over matrix positions

1 00 ‘ ‘ T ‘ T ‘
1~ / —
/
. //
3 MEL zeolite, 77 K
T2 E 4 E
= E E
L N / .
.. ‘
001 / _]
R /
©) K
/
L | | | | |
0.0001 —————F——F+——+——+—3
100 -
g 1= N
E
3 (
= o) FAU zeolite, 77 K E
r @ ]
0.01 ~ —
OO GCMC
i --- ROZ-HNC (SiO matrix) |
E — ROZ-HNC (O matrix) 3
0.0001 = ‘ ‘ ‘ -
25 20 -15 -10 -5 0

wk,T

FIG. 4. Adsorption isotherms of Ar in MEL (upper graph) and FAU zeolites
(lower graph) obtained from GCMC simulations and from the ROZ-HNC
approximation with one and two component matrices as indicated in the
legend.
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) = 5o Z/pl(r r)S-rrgdr,  (19)

where the integration over the Dirac’s 6(r — r’ + rg) can be
discretized as

No

1 ’ ’ ’ ’
goi(r)=——— 51N Z Z pi(x}, yj,zk)H(r +Ar—r})
m=11,j,k
AxAyAz
xH(r,, —r+ Ar)————— (20)
AVipen

In this equation, r/, = \/(x; — X+ (4] = ym)? + (2, — 2m)™s
H(x) is a step function, and the space is discretized accord-
ing to x; = iAx, yjf = jAy and z; = kAz. AV, defines the
volume of the spherical shell (circular in two dimensional
problems) determined by the discretized Dirac 4, i.e., here
AV = 4nr?Ar. For practical purposes, we have chosen our
grid in r such that Ar = Ax. The summation in (19) and (20)
runs over the number of matrix particles, or alternatively a
representative number of them, e.g., over the unit cell in a
periodic system. We note in passing that expression (12) in
Ref. 19, although numerically correct in 2D, is not general and
it is inappropriate in three dimensions.

4 - —
L A ]
~ 3 . —
& MEFI type zeolite
< L ,
Z 22 Ar/u.c. 176 K
on
2 -
1 -
0 o —
i o--o GCMC 7
— ROZ-HNC
15 — 3DOZ-HNC —
)
2 1+
Z
=1)]
0.5 —
| A
0 5 10 15 20

r/A

FIG. 5. Fluid-fluid and zeolite-fluid average pair distribution functions for
Ar adsorbed into a MFI-zeolite at 176 K. Simulation results are denoted
by circles, red curves represent results from the ROZ-HNC equations (one-
component matrix), and solid black curve corresponds to results from the
3DOZ-HNC.
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IV. RESULTS

Of the three zeolite frameworks considered in this work,
MFI and MEL have a very similar structure, and Ar atoms
adsorbed into them are under conditions of very tight confine-
ment. In both instances, the channel width can only accommo-
date one atom, and the channel portion between intersections
two atoms. Channel intersections have room for up to 4-6
atoms. As a whole, these rigid zeolite models can accommo-
date 30-40 atoms per unit cell. In contrast, FAU frameworks
accept a loading of up to 150 Ar atoms per unit cell. These
different levels of confinement will have a significant reflection
in the performance of the theoretical approach. In order to
assess the quality of our approximations, we have performed
GCMC simulations for the adsorption isotherms of Ar in the
three zeolite frameworks at 77 K for MEL and FAU and at
176 K for MFI. These simulations were 2 x 10° steps long,
of which the first 500000 were used for equilibration. Each
step implies a displacement attempt of all the sample particles,
one deletion attempt and one insertion attempt. The procedure
uses a cavity bias algorithm to speed up the simulation.*® Three
dimensional density maps of the adsorbed fluid were then
generated for MEL at 77 K and a load of 30 Ar atoms/u.c.,
for MFI at 176 K and a load of 22 Ar/u.c., and for FAU for
104 Ar/u.c. at 77 K. For that purpose from the final GCMC
configurations for a given load, canonical Molecular Dynamics
(MD) simulations were run for 5 x 10° steps and averages
were calculated over 5000 configurations separated by 1000

AL |
|
Lo ]
= L b FAU type zeolite 77 K -
<
= 2 o D 104 Ar/u.c. |
0 »)
0 J : } :
o--0 GCMC
15+ ROZ-HNC .
o — 3DOZ-HNC
s IF
2
z
L
0.5 m
I \
0 10 20

r/A

FIG. 6. Fluid-fluid and zeolite-fluid average pair distribution functions for Ar
adsorbed into a FAU-zeolite at 77 K. Simulation results are denoted by circles,
red curves represent results from the ROZ-HNC equations (one-component
matrix), and solid black curve corresponds to results from the 3DOZ-HNC.
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steps. The loads were chosen such that in the case of MEL is
close to the saturation and above the adsorption step present
in the experimental isotherm,?’” and for MFI is just below the
load corresponding to the adsorption step found at 77 K.
In the case of FAU, the loading corresponds to two thirds of
saturation, and the adsorption isotherm does not present now
any singular feature.

As a first step to solve the 3DOZ-HNC equation, we
first have to solve the ROZ-HNC equations. This we have
done on a 2048 point grid with a grid size of 0.02074,4, using
standard procedures.”” As mentioned, as input data our calcu-
lations require the knowledge of the structure factor. Since
the zeolite structures are well-known, the structure factors can
be accurately determined. However, the periodic nature of the
structure prevents the use of Eq. (2), and one has to resort to a

J. Chem. Phys. 143, 164703 (2015)

direct g-sampling alternative. This can be done using standard
procedures, e.g., Eq. (1) in Ref. 38, and as an illustration,
results for FAU and MFI are plotted in Figure 2. With these
structure factors, once symmetrized as in Eq. (2), one can solve
the ROZ equation, both using either a single component (O)
matrix or a two component (Si/O) matrix. What we have found
is that the structural results of the two component matrix are
practically indistinguishable from those of the single compo-
nent matrix (see Figure 3 where the theoretical Ar-Ar and Ar-
O pair distribution functions are compared with simulation
results). In contrast, the adsorption isotherms of the ROZ-HNC
using the two component matrix are considerably worse (see
Figure 4 for MEL). The problem clearly stems from the fact
that including the Si atoms in the ROZ calculation increases the
matrix density (i.e., lowers the porosity), and the atom-atom

FIG. 7. Scaled fluid density distribution p(x, y,z)/p™* of adsorbed Ar atoms into a MEL zeolite corresponding to a 1.5 A thick slab centered at
yo=20.36 A for the xz-plane and for the x y-plane at zo=23.4 A as computed from the 3DOZ-HNC equation for 7' =94 K and 32 Ar/u.c. and simulation
results for the same load and 77 K. Density profile projections on the y- and z-axis for a 1.5 A thick slab are illustrated by green and yellow curves arbitrarily

normalized to ease the visibility of the graphs. The plane positions are chosen to illustrate the channel structure. p

Max ig chosen as the maximum value of

pi1(x, y,z) — both in the 3DOZ and MD results — so as to normalize the color scale of the plot. (a) MD p(x, yo, z)/ 0™, (b) 3DOZ p(x, yo,z2)/p™*, (c)

MD pi(x, y,z0)/ ", (d) 3DOZ p1(x, y,z0)/ p"™*".
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structure factors contain only partial information on the zeolite
structure. The fact that the Si atoms are embedded in the O
tetrahedra and do not decrease porosity cannot be reliably
captured by pairwise structural functions. The net result is
an adsorption isotherm that corresponds to a material with a
substantially lower porosity.

Consequently, when the two component matrix is used in
ROZ equations, the adsorption isotherm is very poorly pre-
dicted, as can be seen in Figure 4. If we now focus on the
adsorption results for the one component matrix, we observe
that both in the case of MEL and FAU zeolites the satura-
tion behavior is correctly reproduced. This is somehow telling
us that the knowledge of the matrix density (that of the O
atoms that form the channel structure) and the correspond-
ing structure factors is sufficient to account for the volume
available to the adsorbate. This is the quantity that determines
the maximum load. Interestingly, the quality of the ROZ re-
sults deteriorates at low loads, where adsorption is mostly
determined by energetic factors. Here, we observe that the
adsorption in MEL zeolites is underestimated and in FAU
is overestimated. This low adsorption load regime basically
follows Henry’s law, i.e., nugs = Ky exp (u/kgT). The theory

I I
0.03— MEL 30 Ar/u.c. 77K —

p(zx,) (A7)

30

FIG. 8. Cumulative average density profiles of Ar atoms projected on the x
axis, p(x), and the z axis, p(z), and sections p(x, z9) and p(z, x0) for slabs
of 1.5 A thickness around xo=20.36 A and zo=23.4 A for a load of 30 Ar
atoms adsorbed into a MEL zeolite at 77 K, obtained from the 3DOZ-HNC
approximation (solid curve) and computer simulation (circles). Note that the
3DOZ-HNC results correspond to the lowest converging temperature, 94 K.
The axis label x; denotes x or z depending on the graph under consideration.
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predicts basically the same adsorption in MEL and in FAU
at low chemical potentials (Kgz(MEL) = 0.0125 atoms/u.c.
vs Ky (FAU) = 0.0114 atoms/u.c.). This is not what happens
in the simulation. When the number of adsorbate atoms is
low, MEL adsorbs substantially more than FAU at the same
chemical potential as a result of the stronger interactions be-
tween Ar atoms and the narrower channels of the MEL. In
this case, an adsorbate molecule interacts directly with all the
surrounding O atoms forming the channel, whereas in the case
of FAU, the Ar-O interaction takes place mostly with part of
channel surface, given the much larger size of the channels.
Obviously in the case of low load, Ar-Ar contributions to the
net interaction are negligible. It is clear that this difference is
strongly dependent on the topology of the channel network,
and this is only partially incorporated into the ROZ equations
via the structure factors. Since these are orientationally aver-
aged pair functions that enter into a set of equations where all
the functions are assumed to be homogeneous, one can hardly
expect that such effects could be reproduced by the theory. In
fact the latter behaves as if the pore network of its averaged
“quenched” matrix would be somewhere in between that of
MEL (narrow pores) and FAU (wide pores) zeolites.

Now, in Figures 5 and 6, we present the corresponding pair
distribution functions for MFI and FAU zeolites at a somewhat
lower relative loading. In these instances, only the single
component matrix ROZ results are plotted. We note in passing
that at the pair level structure, the ROZ results for the MEL
and MFI are practically indistinguishable (and the simulation

FIG. 9. Three-dimensional density distribution of Ar atoms for a load of 30
Ar atoms adsorbed into a MEL zeolite at 94 K obtained from the 3DOZ-
HNC approximation, plotted by means of isosurfaces defined by p(x, y, z)

=0.005 A" (glassy surface) and 0.058 A (yellow).
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results for the pair distribution functions averaged over the
inhomogeneity are also extremely close). In any case, when
analyzing the results of Figures 3, 5, and 6, it is rather obvious
that the crude ROZ approximation we are using provides a
qualitatively correct picture of the pair distribution functions
averaged over the lattice inhomogeneities. Note however that
the results for FAU (in particular for g4,4,) are considerably
worse than those for MFI or MEL. One might speculate that
this can be related to the fact that Ar in the much larger
cavities and channels of FAU is probably better represented
by a fluid confined in a cylindrical cavity than in a disordered
array of matrix particles. In the case of MEL/MFI, the higher
degree of confinement can be somewhat better described
from the structural point of view by our disordered matrix
model.

We are now in a position to solve the 3D-HNC for our sys-
tems of interest. This we have doneonan N X N X N grid (N

J. Chem. Phys. 143, 164703 (2015)

= 256), with a grid step defined in terms of the zeolite super-
cell under consideration, i.e., Ax = Ly/N, Ay = L,/N, Az
= L, /N, and the cell dimensions L, X L, X L, set to 41.14 A
x 39.84 A x 40.26 A for MFI, 40.12 A x 40.12 A x 40.209 A
for MEL, and 48.69 A x 48.69 A x 48.69 A for FAU. Solving
the 3DOZ-HNC with these conditions takes approximately
800 Mb of RAM and two minutes on an Intel I7 processor
at 3.40 GHz using an Nvidia GPU GeForce® GTX™
590 to evaluate the interaction potential grid and Eq. (20).
Using a 5123 grid increases the computing time up to
13 min and implies an eighth-fold increase in memory
usage. In our case, no significant change in the results was
appreciated.

When solving the 3DOZ-HNC for MEL and MFI zeolites,
we could not find convergence below 94 K. This convergence
difficulties are most likely associated with the extremely
negative values of the zeolite-Ar interaction in the exponential

15 25

20
(d)

FIG. 10. Scaled fluid density distribution p;(x, y, z)/0™* of adsorbed Ar atoms into a MFI zeolite corresponding to a 1.5 A thick slab placed at xo=20.04 A
for the yz-plane and for the xz-plane at yy=20.36 A as computed from the 3DOZ-HNC equation and MD simulations for 7 = 176 K and 22 Ar/u.c. Density
profile projections on the y- and z-axis for a 1.5 A thick slab are illustrated by green and yellow curves arbitrarily normalized to ease the visibility of the graphs.

The plane positions are chosen to illustrate the channel structure. o™ i

is chosen as the maximum value of p(x, y, z) — both in the 3DOZ and MD results —

s0 as to normalize the color scale of the plot. (a) MD pi(xo, y,z)/p™*, (b) 3DOZ p1(x0, y.z)/p™*, (¢) MD p1(x, yo. z)/ p"*, (d) 3DOZ p1(x, yo,2)/p"*".
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of Eq. (15). These difficulties have also been encountered
in solvation problems,12 and as a possible solution, we
intend to investigate the performance of alternative integral
equation closures. In any case, in Figures 7 and 8 we present
our results for the most unfavorable situation, in which
the desired temperature could no be reached. We insist on
comparing theory and simulation in these conditions even
when temperatures are rather different, since 77 K is one the
reference temperatures for adsorption experiments of noble
gases. In these figures, one can see the projection of the
fluid density on some relevant planes of the zeolite structure
that reflect the channel filling. Note that the MD results are
averaged over a slab of 1.5 A of thickness in order to collect
sufficient statistics during the simulation run. Obviously, the
theory can provide results with a resolution of approximately
0.2 A (depending on the grid size) but we have performed
a corresponding average over 1.5 A to be able to compare
with the simulation. One immediately appreciates that the
theory reproduces qualitatively all the details of the spatial
distribution within the channels. This can be seen from a
more quantitative perspective in Figure 8, where the density
profiles are plotted. One observes that both p(x) and p(y) are
more structured in the theoretical results. This discrepancy is

0.015— —

0.01

p(x) (A7)

0.005

0.015

0.01

p(y) (A%

0.005

0.015

0.01

p(z) (A7)

0.005 |

FIG. 11. Cumulative average density profile of Ar atoms projected on the x
axis, p(x), y-axis, p(y), and z axis, p(z) for a load of 22 Ar atoms adsorbed
into a MFI zeolite at 176 K obtained from the 3DOZ-HNC approximation
(solid curve) and computer simulation (circles). The axis label x; denotes x,
y, or z depending on the graph under consideration.
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most likely due to the characteristic enhanced correlations
of the HNC closure at contact, that in our case might as
well be responsible for the breakdown of the equation when
lowering the temperature. Additionally, in the lower graph
of Figure 3 we have plotted the estimate of g4,0 obtained
using Eq. (20). Here, one appreciates that the first peak is
underestimated, which is a consequence of the inability to
reach the correct temperature. Aside from that, the equation
reproduces the detailed structure of the distribution function
which is somewhat smeared out by the ROZ-HNC (e.g., the
third maximum). In Figures 5 and 6, one can more clearly
appreciate that the use of Eq. (20) leads to even more accurate
results in the case of the MFI at somewhat lower loads and
higher temperature, and for FAU at high load/low temperature.
Again in the case of MFI, there is a slight overestimation of
the peak heights, but for FAU the agreement is almost perfect.
This feature is a likely consequence of the lower degree
of confinement in this latter instance and subsequent less
intense Ar-zeolite net interaction. The considerable improve-
ment over the ROZ-HNC results stems from the fact that
the 3DOZ-HNC incorporates the explicit three dimensional
description of the confining medium through the potential

0.03 MFI 22 Ar/u.c. 176K

FIG. 12. Sections of the density profiles of Ar atoms projected on the x
axis, p(x, yo) for yo=24.90 A, y-axis, p(y, xo) for xg=20.04 A, and z-axis
planes, p(z, xo) for xo=20.04 A for a slab of 1.5 A thickness around the
planes for a load of 22 Ar atoms adsorbed into a MFI zeolite at 176 K obtained
from the 3DOZ-HNC approximation (solid curve) and computer simulation
(circles). The axis label x; denotes x, y, or z depending on the graph under
consideration.
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Uoi(x, y,z). These many body effects are obviously missing
in a pairwise approach such as the ROZ-HNC equation,
and this explains its somewhat poorer performance in this
context.

In summary, despite the limitations due to the convergence
difficulties, the 3DOZ-HNC approach seems to provide an
accurate description of the spatial distribution of the adsorbed
fluid under conditions of strong confinement. As an additional
piece of information, in Figure 9 we have plotted a three
dimensional representation of the fluid density, represented by
means of isosurfaces. A first isosurface represented in trans-
parent glass corresponds to pi(x,y,z) = 0.005 A%, which
is close to the average fluid density within the zeolite. In
yellow, we indicate areas of high fluid concentration (close
to liquid density) p1(x, y,z) = 0.058 A”. One can appreciate

J. Chem. Phys. 143, 164703 (2015)

the presence of a high density region within the channels and
two wide regions on the bottom and the top of the intersections
together with 4 small regions in the middle of the intersection.
These correspond to the locations where the 6 Ar atoms will be
found at full loading.?” This figure is a clear illustration of the
information on the spatial disposition of the adsorbates that this
type of approach can furnish.

In Figure 10, we present density maps for the MFI zeolite
under less harsh conditions (a load of 22 Ar atoms/u.c. and
176 K). Results of the integral equation are now fully converged
at the desired average adsorbate density and temperature. One
observes that the agreement is now almost perfect. This is even
more clearly seen in Figure 11 where the cumulative density
profiles on the x and y axes are represented, and in Figure 12
where we plot sections of the profiles for slabs around specific

FIG. 13. Scaled fluid density distribution p(x, y,z)/ ™ of adsorbed Ar atoms into a FAU zeolite corresponding to a slab of 1.5 A around the planes 110
(upper graphs) and 110 (lower graphs), as computed from the 3DOZ-HNC equation and MD simulations for 7 =77 K and 104 Ar/u.c. Density profile projections
on the diagonal axis of the x y plane defined by y = x or y = L —x for a slab of 1.5 A thickness are illustrated by yellow curves and arbitrarily normalized to

max i

ease the visibility of the graphs. p

is chosen as the maximum value of p(x, y,z) — both in the 3DOZ and MD results — so as to normalize the color scale

of the plot. (a) MD p(x, x,z)/p"*, (b) 3DOZ p1(x, x,z)/p"™, (¢) MD p(x, Lx—x,z)/p™*, (d) 3DOZ pi(x, Lx—x,2)/p"*.
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FIG. 14. Density profile of Ar atoms for a 1.5 A thick slab around the 110
plane, pp110(r;d), and integrated over the xy plane in the 110-direction,
pni1o(r), for a load of 104 Ar atoms adsorbed into a FAU zeolite at 77 K
obtained from the 3DOZ-HNC approximation (solid curve) and computer
simulation (circles). The r represents the distance to the origin across the
diagonal of the x y-plane.

planes. In all cases, we observe here an excellent agreement
between the theory and the simulation for all the details of the
profiles.

Finally, we take now a look at the results for Ar adsorbed
into faujasite for a load of 104 Ar atoms/u.c. and 77 K. In
Figure 13, we plot the density maps corresponding to slabs
centered on the relevant planes for this framework, which are
now the 110 and 110, orthogonal and parallel to the channels.
The agreement is again fairly good, and one might even specu-
late that some discrepancies are due to the limited sampling of
the MD run, e.g., some areas of the MD profile present a much
starker contrast, which we have seen tends to become blurred
as the sampling is increased. The corresponding cumulative
density profile and the profile withina 1.5 A thick slab centered
around the 110 plane are plotted in Figure 14. The overall
performance of the theory is once more good with minor
discrepancies in the heights of the peaks.

Finally, as an illustration of the three dimensional picture
of the adsorbed fluid, we present in Figure 15 the three dimen-
sional density isosurfaces using reference values like those of
Figure 9. One can see now that for the FAU framework, high
adsorbate concentrations can be found equally scattered along
the channels and intersections.

J. Chem. Phys. 143, 164703 (2015)

FIG. 15. Three-dimensional density distribution of Ar atoms for a load of
104 Ar atoms adsorbed into a FAU zeolite at 77 K obtained from the 3DOZ-
HNC approximation plotted by means of isosurfaces defined by p(x, y, z)

=0.005 A~ (glassy surface) and 0.058 A (red).

V. CONCLUSIONS

In summary, we have presented the solution of the 3DOZ-
HNC equation for model systems of Ar adsorbed into MEL,
MFI, and FAU zeolites. Fluid-fluid direct correlation functions
were approximated using the ROZ-HNC equations using as
matrix-matrix correlations those calculated from the zeolite
structure factors. The average fluid-fluid and fluid-zeolite
structure provided by the ROZ-HNC using a one-component
(oxygen atoms) matrix turned out to be qualitatively correct,
particularly in the case of MFI and MEL (tight confinement).
The lower quality of the results for FAU suggests that given
the large diameter of this zeolite’s channels, a better approx-
imation might be achieved using either DFT or an inhomo-
geneous OZ integral equation for fluids in cylindrical pores.
Interestingly, the adsorption isotherms obtained from the one
component ROZ-HNC reproduce well the saturation limits
of the zeolites and much better than those obtained using
a two component matrix. Using the ROZ-HNC fluid-fluid
correlations, the 3DOZ-HNC was solved for the three systems
of interest, but convergence difficulties were found for the
lowest temperature, 77 K under conditions of tight confinement
(MEL framework). At higher temperatures/lower loads or for
low temperature adsorption in faujasite, the theoretical results
agree remarkably well with the simulation and provide an
accurate three dimensional picture of the fluid distribution with
a much higher resolution. Additionally, we have shown that
the averaged fluid-adsorbate distribution function can also be
accurately computed from the 3DOZ equation, outperforming
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the ROZ-HNC results for this structural quantity. The fact
that the 3DOZ-HNC incorporates explicitly many body effects
from the adsorbate-matrix interaction explains the better accu-
racy of this approach.

Work is planned on the investigation of alternative clo-
sures that can bypass the low temperature convergence diffi-
culties found under conditions of tight confinement. We also
plan to explore the use of DFT to obtain better approximations
for fluid-fluid correlations. The study of confined mixtures and
molecular fluids is currently under way.
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