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PURPOSE. We estimated the contribution of the gradient refractive index (GRIN) and lens
surfaces to lens astigmatism and lens astigmatic angle as a function of age in human donor
lenses.

METHODS. Human lenses were imaged, ex vivo, with 3D-spectral optical coherence
tomography (OCT) and their back focal length was measured using laser ray tracing. The
contribution of lens surfaces and GRIN to lens astigmatism were evaluated by computational
ray tracing on the GRIN lens and a homogenous equivalent index lens. Astigmatism
magnitude and relative astigmatic angle of and between lens surfaces, GRIN lens, and lens
with homogeneous refractive index were evaluated, and all results were correlated with age.

RESULTS. The magnitude of astigmatism in the anterior lens surface decreased with age (slope ¼
�0.005 diopters [D]/y; r ¼ 0.397, P ¼ 0.018). Posterior surface astigmatism and lens
astigmatism were not age-dependent. Presence of GRIN did not alter significantly the magnitude
or axis of the lens astigmatism. The astigmatism of GRIN lens and lens with homogeneous
refractive index correlated with anterior lens surface astigmatism (GRIN, P ¼ 3.9E � 6, r ¼
0.693; equivalent refractive index lens, P ¼ 4.1E � 4, r ¼ 0.565). The astigmatic angle of
posterior surface, GRIN lens, and homogeneous refractive index lens did not change significantly
with age.

CONCLUSIONS. The axis of lens astigmatism is close to the astigmatic axis of the anterior lens
surface. Age-related changes in lens astigmatism appear to be related to changes in the
anterior lens astigmatism. The influence of the GRIN on lens astigmatism and the astigmatic
axis is minor.
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The human crystalline lens is an optical element that,
together with the cornea, refracts and transmits the light to

form an image on the retina. Its optical properties are
dependent on its shape and its index of refraction, which is
not homogeneous, and is known to peak in the center of the
lens and decrease toward the cortex in all directions. The
gradient refractive index (GRIN)1–6 and lens shape7–11 change
with age, resulting in an age-dependency of the optical
properties of the lens and, therefore, the whole eye. It has
been shown that the lens spherical aberration shifts toward
more positive values with age.9,10,12–14 Measurements of total
and corneal spherical aberrations have shown that the
crystalline lens is primarily responsible for age-related loss of
corneal/internal balance of spherical aberration.14–16

Several studies have reported changes in the geometrical
shape of the lens with age, such as lens thickening and lens
surface steepening.1,8,11,12,17–19 Since the eye does not tend to
become myopic with age, it was postulated that the lens GRIN
changed in such a way that it compensated for lens surface
steepening to maintain lens power constant with age (so-called
lens paradox).1,11,20

Direct measurements of the GRIN distribution in the lens
and its change with age are scarce. Earlier studies used a
reflectometric fiberoptic sensor,21 or magnetic resonance
imaging.22,23 More recently, a technique based on optical
coherence tomography (OCT) has been proposed,5 which has

allowed estimates of the GRIN distribution ex vivo in two-
dimension (2D) in human donor lenses as a function of age,24

and cynomolgus monkey lenses as a function of accommoda-
tion,25 and in three-dimensional (3D) ex vivo in porcine lenses
and human lenses of different ages.6,26 In humans, it has been
found that, with age, the GRIN profile changes from a parabolic
shape to a central plateau with constant index and a rapid
decrease toward the periphery,1,22,24 more prominent in the
meridional than in the axial direction.26 Ray tracing estimates of
the spherical aberration in ex vivo human lenses using the
measured geometrical shape and the estimated GRIN revealed a
significant contribution of the GRIN in the negative spherical
aberration of young lenses,27 as well as a shift of the spherical
aberration toward less negative values with aging.26 There was
an excellent agreement between the estimated spherical
aberration and that measured by laser ray tracing (LRT) in the
same lenses.28 Previous studies29,30 also evaluated the impact of
the GRIN, as opposed to the assumed constant index, in the
quantification of the posterior lens shape from OCT imaging.

While the contributions of the cornea and lens, as well as
the lens shape and GRIN to spherical aberration have been
relatively well studied, to our knowledge a similar analysis has
not been performed on the relative contributions to astigma-
tism, likely because most lens studies to date only had access to
2D data.
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Compensatory effects of anterior and posterior corneal
astigmatism have been reported.31–37 Also, longitudinal studies
report changes in the cornea from with-the-rule (direct) to
against-the-rule (indirect) astigmatism with age.38 Measure-
ments of total and corneal astigmatism from ocular refrac-
tion39,40 or ocular aberration measurements15,41 suggest at
least partial compensation of total and internal astigmatism. In
those studies, the contributions of the posterior cornea and
lens to the internal optics cannot be isolated. In an interesting
study using an ophthalmophakometric technique, Elawad et
al.42 estimated the ocular component contributions to residual
astigmatism in human eyes, and found that, while the
astigmatic contributions of the posterior corneal and lens
surfaces were predominantly inverse, direct astigmatism came
from the anterior lens surface. Similar conclusions were
reached by Dunne et al.43 in a later work, although they
recognized that the method was indirect and prone to
accumulated experimental errors.

Lens surface astigmatism was studied in human cadaver
lenses using a corneal topography system.44 In this study,
radius of curvature and shape factor were fitted over 18
meridians. In most cases the variations were random, but in
some cases the variations indicated the presence of regular
lens astigmatism.

To our knowledge, the only direct measurement of
crystalline lens surface astigmatism on ex vivo human lenses
comes from surface topographic analysis (using OCT).45 In that
study it was found that astigmatism was the predominant lens
surface aberration. A significant change in the amount of surface
astigmatism aberration with age was not found, although the
relative angle of astigmatism between the anterior and posterior
lens surfaces tended to decrease with age, indicating a potential
decrease in the compensatory effects of anterior and posterior
lens astigmatism with age. The study did not consider potential
effects of the GRIN distribution with age.

Access to lens shape and GRIN in 3D opens the possibility
of evaluating the relative role of lens surfaces and GRIN
astigmatism to lens astigmatism, and the potential changes
with age, as in similar analysis of contributors of spherical
aberration.

For this study, we used 3D spectral OCT data on 35 isolated
human lenses (47.6 6 13.4 years), of which shape and GRIN
had been characterized in 3D.26 We present here lens surface
astigmatism, and lens astigmatism, and their changes in
magnitude and axis with age. In particular, the contribution
of surface and GRIN astigmatism to the lens astigmatism was
studied assuming an equivalent refractive index, and the
estimated GRIN.

It is particularly interesting to understand the contribution
of the different lens surfaces to the optical quality of the eye in
the context of potential replacements of the presbyopic or
cataractous crystalline lens. This contribution seems especially
relevant for the management of astigmatism with toric
intraocular lenses, since it explains the contribution of the
eventually replaced crystalline lens to the astigmatism of the
eye.

METHODS

Human Lens Samples and Preparation

All human donor eyes were received from the Transplant
Service Foundation (TSF) Eye Bank in Barcelona, Spain. During
the transportation, eyes were packed individually in sealed
vials at 48C, wrapped in gauze soaked in a preservation
medium (Dulbecco’s modified Eagle’s medium [DMEM]/F-12,
HEPES, no phenol red; GIBCO, Carlsbad, CA, USA). Presence of

any form of cataract was considered an exclusion criterion for
the study. Before shipment the corneas had been removed (for
corneal transplant purposes) and in some cases sections of the
sclera. However, the vitreous and the choroid were preserved
and provided a safe transportation environment for the lens.
All lenses arrived 1 to 2 days post mortem, and were measured
within 24 hours.

A total of 35 eyes from 30 human donors were used in the
study. Ages ranged between 19 and 71 years. Before the
experiment, the lens zonules were carefully cut and the lens
was extracted from the eye with soft tweezers and handled
mainly using the remaining zonules rather than touching the
lens capsule. After extraction the lens was immediately
immersed in DMEM at room temperature. During the
measurements, the lens was placed on a ring in a DMEM-filled
cuvette. The whole measurement took up to 2 hours. Swollen
or damaged lenses were identified with the OCT images and
excluded from the study.

Handling and experimental protocols had been approved
previously by the Institutional Review Boards of TSF and CSIC.
Methods for securing human tissue were in compliance with
the Declaration of Helsinki.

OCT Imaging

The cuvette containing the lens was placed on a horizontal
platform, and imaged using a custom developed high
resolution spectral OCT system described in detail else-
where.46 A mirror system above the platform assured that
the OCT beam was directed toward the upper lens surface.
The system uses an 840-nm superluminescent (SLD) diode as
illumination source and obtained 3D images composed of 1668
A-Scans, and 70 B-Scans on a 12 3 12-mm lateral area. The
acquisition time was 4.5 seconds, and the axial resolution was
calculated to 6.9 lm in tissue. The accuracy of the external
surfaces of the lens could be limited by the axial resolution.
However, conservative calculations showed little impact on the
reported astigmatism.

The lens axis could be easily centered with the OCT set to
visualization mode, which displays two orthogonal B-scans in
an interval of 0.5 seconds. The manually adjustable platform on
which the cuvette was set up was aligned until a specular
reflection was seen from the surfaces of the lens.

All lenses were imaged in two different focal planes, to
allow visualization of lens surfaces and the cuvette holding the
lens. The images were merged into one complete 3D image
(anterior surface, posterior surface, and cuvette surface) using
a custom-developed merging algorithm.26 The lens was first
completely imaged with the anterior surface facing the OCT
beam, and then was flipped around a predetermined axis and
imaged again with the posterior surface up. The aberration
present on the image of the cuvette, which should be the same
for both orientations of the lens, was used to correct possible
alignment errors.

Laser Ray Tracing

After the OCT measurements, the focal length of each lens was
measured with a custom developed LRT. The system combines
a 2-mirror galvanometric scanning system with a 400-mm
collimating lens. The illumination source is a superluminescent
diode (849 nm). The system and its calibration have been
described in previous publications.6,26 In brief, the crystalline
lenses were placed horizontally in a cuvette (anterior up
position), positioned on a stable platform. A motorized CMOS
camera was placed right under the cuvette (whose base was
optical quality glass) to capture a series of through-focus
images from the beam directed through the lens. The lenses
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were aligned with the LRT, such that the lens and the principal
ray were collinear to the center of the CMOS camera, in the
entire focus range (35 mm, which was the axial range of the
motor). The focal lengths of each lens were measured
projecting rings of light of different diameters (2 and 4 mm)
onto the crystalline lens’ upper surface. The refraction through
the glass was compensated using a calibration method that
involved measurements with a set of artificial lenses48

(Edmund Optics, Inc., Barrington, NJ, USA). The estimated
precision of the focal length measurements was 0.8 mm. The
focal length data were used as input data for the GRIN
reconstruction algorithm as described by Birkenfeld et al.26

Image Processing and GRIN Reconstruction

All OCT images were corrected for optical distortion and fan
distortion, and all surfaces (lens and cuvette) were fitted with
Zernike polynomials (up to seventh order) within a 6-mm
pupil. As described in detail in previous references,5,26 the
method involves acquiring images of the crystalline lens in two
different orientations, with the anterior surface up and with
the posterior surface up. The aberration of the cuvette was
used to compensate for potential alignment errors while
flipping.5 Following correction of refraction by the preserva-
tion medium, the method allowed reconstruction of the
undistorted lens shape.5 Furthermore, the posterior surface
of the lens is distorted by the anterior surface and GRIN.

The GRIN was reconstructed by means of a search
algorithm using the optical path measured from the OCT
images and the measured back focal length.6 The gradient
refractive index is described as a 4-variable model expressed in
polar coordinates with the origin in the center of the GRIN as

nðq; hÞ ¼ nN � Dn � q
qS

� �pðhÞ
; ð1Þ

where nN is the refractive index of the nucleus, Dn the
difference between the refractive index of surface and nucleus,
qS is the distance between nucleus and surface, and p(h) is the
exponential decay for axial (p1) and meridional (p2) direction.
The axial decay p1 is constant across meridians, while p2 can
vary to account for differences between meridians. This model
was fully described in previous publications.5,6,26

The change of the power exponent p2, that is, the decay of
the GRIN in the meridional direction, is an indicator of the
GRIN contribution to astigmatism. A constant p2 across the
lens is indicative of no GRIN astigmatism. A sinusoidal variation
of p2 across lens meridians is indicative of the presence of
GRIN astigmatism. In all computations the center of the GRIN
is assumed to be placed at a distance from the anterior vertex
equal to 0.41 times the central thickness of the lens.47

Calculation of Lens Astigmatism (Magnitude and
Axis)

Lens GRIN Astigmatism. The lens astigmatism was
calculated using the measured lens shape and the reconstruct-
ed GRIN by means of a computational ray tracing analysis.5,6

The calculated wave aberrations were fit by Zernike polyno-
mials. The magnitude of astigmatism C and angle a were
calculated48 as

C ¼ �2*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
45 þ J2

180

q
ð2Þ

a ¼ tan�1 J45

J180

� �
=2; ð3Þ

where J180 is the power at axis a¼ 1808 and J45 is the power at
axis a ¼ 458; J180 and J45 are related with the Zernike
coefficients by the following expressions49:

J180 ¼ ð�2
ffiffiffiffiffi
6=

p
r2ÞðZ2

2 Þ ð4Þ

J45 ¼ ð�2
ffiffiffiffiffi
6=

p
r2ÞðZ�2

2 Þ ð5Þ

where Z2
�2 and Z2

2 are the corresponding astigmatism Zernike
terms, and r is the pupil radius (3 mm in this study).

Equivalent Refractive Index Lens Astigmatism. Lens
astigmatism was calculated for all lenses considering a GRIN
and a homogeneous equivalent refractive index. The equiva-
lent refractive index is defined as the homogeneous refractive
index with the same measured geometry and focal length as
the GRIN lens.

By comparing the lens astigmatism with GRIN and with a
homogeneous refractive index we can assess the contribution
of GRIN to the lens astigmatism.

Virtual ray tracing was performed, to obtain Z�2
2 and Z2

2 .
From the Zernike fittings, C, J180, J45, and the astigmatic axis
were calculated using Equations 2 through 5.

Surface Lens Astigmatism. The lens surface astigmatism
CS was calculated as

CS ¼ ðn2 � n1Þ
1

Rx

� 1

Ry

� �
; ð6Þ

where Rx and Ry are the radii of curvature on the principal
axis, and n1 and n2 are the refractive indices of the lens
immersion medium and the lens cortex, respectively. The
index of refraction of the lens cortex (n2) was taken directly
from our GRIN reconstruction, individually for every lens. The
refractive index of aqueous (n1) was assumed to be 1.336.50

Relative Astigmatic Angle. Since the orientation of the
isolated lens during the measurements is not corresponding to
its actual orientation in vivo (up, down, nasal, temporal), the
calculated axis of astigmatism of the lens surfaces is arbitrary.
However, the relative angle between the different axes of
astigmatism (anterior, posterior, GRIN lens, lens with homoge-
neous refractive index) can be computed, and defined, in a
range between 08 and 908.

Power Vector Analysis. To illustrate the magnitude of
astigmatism and angle, the results are presented using a power
vector graph.48 As indicated above, we assumed that the axis of
astigmatism of the anterior lens surface is vertically aligned in
all lenses. We investigated potential rotations between the
astigmatic axis of posterior lens surface, GRIN lens, and lens
with equivalent refractive index with respect to the vertical
aligned anterior surface astigmatic axis, and potential age-
related changes.

RESULTS

Change of Magnitude of Astigmatism With Age

Figure 1 shows the change of the anterior and posterior lens
surface astigmatism with age, fitted by linear regression. The
anterior lens surface astigmatism decreases significantly with
age (r ¼ 0.397, P ¼ 0.018). The posterior lens surface
astigmatism does not change significantly with age (r ¼
0.189, P ¼ 0.276).

Figure 2 shows the change of the lens magnitude of
astigmatism with age for the crystalline lenses with the
reconstructed GRIN (r ¼ 0.359, P ¼ 0.034) in comparison
with the lens magnitude of astigmatism in the same lenses
assuming a homogeneous equivalent refractive index (r ¼
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0.380, P ¼ 0.024). The mean value of the magnitude of
astigmatism was 1.46 diopters (D) for the GRIN lens and 1.02
D for the homogeneous refractive index lens.

Figure 3 shows a high correlation between the anterior lens
surface astigmatism, and the GRIN lens astigmatism and the
homogeneous refractive index lens astigmatism (GRIN lens, r¼
0.693, P¼ 3.9E� 6; equivalent refractive index lens, r¼ 0.565,
P ¼ 4.1E � 4). The posterior lens surface astigmatism did not
correlate with the lens astigmatism (not shown). The mean
astigmatism of anterior lens surface and posterior lens surface
were 0.43 6 0.22 and 0.41 6 0.19 D, respectively.

The GRIN lens astigmatism and the astigmatism of the lens
with a homogeneous refractive index are similar and correlate
well with each other (r ¼ 0.555, P < 0.01, not shown). The
average astigmatism of the GRIN and equivalent refractive
index lens were 1.22 6 0.82 and 1.04 6 0.65 D, respectively.

Relative Astigmatic Angles

As the absolute orientation of the lens is not known, the
analysis of the astigmatic axis can only be made in relative
terms. In particular, we studied potential changes with age of
the astigmatic angles between anterior and posterior surface
and the difference in astigmatic axis between the GRIN lens
and the lens with homogeneous refractive index.

Figure 4 shows polar plots (using the power vector analysis
notation) of astigmatic magnitude and axis of the lens surfaces,
the GRIN lens, and the lens with homogeneous refractive
index. The angle shown for the posterior lens surface, GRIN
lens, and homogeneous refractive index lens are expressed
relative to the anterior lens surface. Each dot in the plot
represents one lens.

The average relative angle between anterior and posterior
lens surface was 28.58. In 68.57% of the lenses the relative
angle was <458.

The axis of the GRIN lens was almost aligned with the axis
of the anterior lens surface. The average relative angle between
anterior surface axis and GRIN axis was 8.98. In 88.57% of the
lenses the relative angle was <458 (with 65.71% of all lenses
having a relative angle < 158).

The presence of GRIN did not seem to have a large
influence on the astigmatic axis. The relative angle between
the astigmatic axis of the GRIN lens and the lens with
homogeneous refractive index lens was on average 15.58, with
an angle difference between the GRIN lens and the homoge-
neous index lens < 458 in 82.8% of the lenses and < 158 in
45.6% of the lenses.

Figure 5 shows the age-dependency of the relative
astigmatic angle between the lens surfaces. The angle between
the anterior and posterior surface astigmatic axes tended to
increase with age, but the correlation did not reach statistical
significance (slope ¼�0.293, r¼ 0.173, P ¼ 0.321).

The meridional change of p2 did not show any age
dependency (r ¼ 0.007, P ¼ 0.96, not shown).

DISCUSSION

In this study, we investigated the contributions of lens surface
astigmatism to astigmatism in the lens (in magnitude and axis,
for GRIN lenses and lenses with an equivalent refractive
index), and potential age dependencies.

We found a significant decrease of the astigmatic magnitude
of the anterior surface with age, from positive values toward
zero, while the posterior surface astigmatism did not change
significantly with age. The lens astigmatism magnitude also had
a tendency to decrease. The anterior surface astigmatism
correlated well with the lens astigmatism. This observation is
based on the fact that the axis of the lens astigmatism is close
to the astigmatism axis of the anterior lens surface magnitude.

FIGURE 1. Change in the lens surfaces astigmatism with age (anterior
surface, slope ¼�0.005 D/y, r ¼ 0.397, P ¼ 0.018; posterior surface,
slope¼�0.002 D/y, r ¼ 0.189, P¼ 0.276).

FIGURE 2. Change in the lens astigmatism with age (lens with GRIN,
slope ¼ �0.022 D/y, r ¼ 0.359, P ¼ 0.034; lens with equivalent
refractive index, slope¼�0.018 D/y, r ¼ 0.380, P¼ 0.024).

FIGURE 3. Correlation between the GRIN lens astigmatism and the
anterior lens surface astigmatism (r ¼ 0.693, P ¼ 3.9E � 6) and the
equivalent refractive index lens astigmatism and the anterior lens
surface astigmatism (r ¼ 0.565, P ¼ 4.1E� 4)
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In this study, the results ex vivo lack the absolute reference
of astigmatic angle with respect to true anatomic features.
Despite this, we provided a direct account of the relative axis
of astigmatism in the anterior and posterior lens surfaces for
the GRIN lens and the lens with homogeneous refractive
index. We found that in most cases, the average astigmatic
angle between anterior and posterior lens surfaces was <458,
and that the axis of the GRIN lens was, on average, aligned
with the axis of the anterior lens surface.

The magnitude and axis of the internal crystalline lens
astigmatism has been a matter of controversy. Traditionally,
Javal’s rule is assumed, implying a linear relationship between
corneal and refractive astigmatism, with a constant offset of 0.5
D of against-the-rule astigmatism (arising from internal
astigmatism). Reports of the magnitude of corneal and
refractive astigmatism differ across studies, with some works
reporting no change of either, while others report significant
changes of one or both.15,39–41 In those studies, internal
astigmatism is computed indirectly from comparisons of
corneal and ocular astigmatism, sometimes from different
datasets, which may pose uncertainties.

The lack of knowledge of the real orientation to the cornea
sets obvious limitations on our study, and on ex vivo lens
studies in general. However, direct access on the crystalline
lens shape and the reconstruction of GRIN in 3D has allowed
us to understand the role of every component in the crystalline
lens on its optical properties, astigmatism in particular.

Our results have significant implications for studies quanti-
fying the crystalline lens shape in vivo. In an earlier publication,
we showed the possibility of obtaining crystalline lens
topography in vivo on three young eyes (ages 28–33), assuming
a constant refractive index. The axes of anterior and posterior
lens astigmatism were orthogonal in all eyes.51 In a similar age
group (ages 19–36), we have found on average a smaller angle
between anterior and posterior astigmatism (448 6 18.38).

The relative small impact of GRIN on astigmatism we found
in this study probably arises from the fact that astigmatism is
driven by the relative difference in power across meridians,
and the meridional component of GRIN is relative small. The
results of the study imply that, at least for astigmatism,
assuming a constant refractive index would not pose large
errors in the reconstruction of the astigmatism of the posterior
lens surface measured in vivo.
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51. Ortiz S. Pérez-Merino P, Gambra E, de Castro A, Marcos S. In
vivo human crystalline lens topography. Biomed Opt Express.
2012;3:2471–2488.

Astigmatism of the Ex Vivo Human Lens IOVS j August 2015 j Vol. 56 j No. 9 j 5073

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/Journals/IOVS/934287/ on 03/29/2016


	f01
	f02
	f03
	b01
	b02
	f04
	f05
	b03
	b04
	b05
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24
	b25
	b26
	b27
	b28
	b29
	b30
	b31
	b32
	b33
	b34
	b35
	b36
	b37
	b38
	b39
	b40
	b41
	b42
	b43
	b44
	b45
	b46
	b47
	b48
	b49
	b50
	b51

