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ABSTRACT: Elastic and inelastic close-coupling (CC)
calculations have been used to extract information about the
corrugation amplitude and the surface vibrational atomic
displacement by fitting to several experimental diffraction
patterns. To model the three-dimensional interaction between
the He atom and the Bi(111) surface under investigation, a
corrugated Morse potential has been assumed. Two different
types of calculations are used to obtain theoretical diffraction
intensities at three surface temperatures along the two
symmetry directions. Type one consists of solving the elastic
CC (eCC) and attenuating the corresponding diffraction
intensities by a global Debye−Waller (DW) factor. The
second one, within a unitary theory, is derived from merely solving the inelastic CC (iCC) equations, where no DW factor is
necessary to include. While both methods arrive at similar predictions for the peak-to-peak corrugation value, the variance of the
value obtained by the iCC method is much better. Furthermore, the more extensive calculation is better suited to model the
temperature induced signal asymmetries and renders the inclusion for a second Debye temperature for the diffraction peaks
futile.

■ INTRODUCTION

The electronic density structure of a surface determines its
chemical behavior. While on surfaces like platinum, which is
widely used as a catalyst, the effects of crystal face, surface steps,
and kinks are well-known, more complicated electronic surface
structures still lack a detailed treatment. Recently, the (111)
surfaces of the semimetals bismuth (Bi) and antimony (Sb)
have raised a lot of interest. Not only do they represent the two
main ingredients of topological insulators,1,2 but they also both
present a fairly strong electronic surface density corrugation
despite exhibiting conducting surface states.3,4 The temperature
dependence of these peculiar electronic structures may change
the binding character of adsorbed species remarkably;5 thus, it
is essential to determine a complete picture of an electronic
surface structure before conducting adsorbate experiments on
them. Helium atom scattering (HAS) experiments provide a
low-energetic, completely nondestructive means of investiga-
tion to measure the pure surface properties of materials. The
inert neutral helium atoms are already repelled from the
electronic density corrugation above the surface, probing only
surface effects. Close-coupling (CC) calculations6 provide a
significant improvement compared to oversimple approximate
methods. While the essential accurate knowledge of the
interaction potential requires numerous measurements and a
careful analysis, the effort may be worthwhile because the
quantum mechanical treatment of the scattering procedure
provides by far better insight into the scattering processes.

Earlier CC investigations included the Debye−Waller (DW)
factor to account for the thermal attenuation of scattering
intensities. Heavy materials like bismuth, however, exhibit very
low surface Debye temperatures, indicating an extremely fast
decay of scattering intensities with the surface temperature. The
inclusion of inelastic channels into the standard CC equations7

provides a natural extension within this theoretical framework,
and as a result, the attenuation of the diffraction intensities
arises automatically. When the number of diffraction channels
(elastic and inelastic) is increased, the number of exiting
channels increases and the initial flux of He atoms has to be
redistributed among them, the elastic peaks being reduced in
intensity. This fact implies that we do not have to add any ad
hoc global factor, as the DW factor, to account for such an
attenuation. Even more, within the inelastic CC (iCC)
formalism, the theory is unitary. The unitarity in the elastic
CC (eCC) calculations is lost when the DW factor is used to
attenuate the diffraction intensities. In this work, we are going
to use the iCC equations to extract information about the
interaction potential. In general, the number of fitting
parameters for this type of scattering is quite high and settles
around five in this specific case. For surface temperatures
around 300 K, the number of total channels playing a role in
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this scattering is also quite high, typically more than 200. On
the other hand, when working on a fixed geometry
experimental setup, the whole experimental diffraction pattern
is not fitted at once by solving a complete set of iCC equations
(up to numerical convergence). Each experimental diffraction
peak of the corresponding pattern has to be fitted by solving a
complete set of those equations. As a result, the fitting
procedure becomes rather cumbersome. To circumvent the
expensive high-dimensional fitting procedure, previously fitted
eCC potential parameters have been assumed as given and
fixed.

■ BISMUTH SURFACE STRUCTURE AND
EXPERIMENTAL SETUP

Bulk bismuth, like all of the heavier pnictogens, crystallizes in
the rhombohedral A7 structure with two atoms per unit cell
(space group R3m). A typical structural property of this crystal
structure is the existence of puckered bilayers of atoms
perpendicular to the [111] direction, as illustrated in Figure 1a.

The bonding of the atoms within these bilayers is of a strong
covalent type, while the interbilayer bonding is closer to a van
der Waals type. This is reflected in the relative distances
between the layers, as labeled in Figure 1a. Because of this
strong contrast in binding energies, bismuth crystals preferably
cleave perpendicular to the [111] direction. The topmost layer
of this prepared crystal reveals a 6-fold symmetry, as illustrated
in Figure 1b. Despite the crystal’s 3-fold symmetry, the Bi(111)
surface can be treated as being 6-fold symmetric in low energy
HAS experiments.9,10 The lattice constant of this hexagonal-like
surface structure has been determined to be a = 4.538 Å by
LEED and HAS measurements.3,8 This hexagonal surface
structure leads to two distinguishable high symmetry directions
in reciprocal space that are commonly denoted as ΓM and ΓK,
as illustrated in Figure 1c. The reciprocal directions in Figure 1c
correspond with the real-space directions in Figure 1b.
All measurements mentioned above and used in this work

have been carried out on a helium atom scattering apparatus
with a fixed source-target-detector angle of 91.5° that has been
described in a previous publication.11 The helium-atom beam is
produced via supersonic expansion of He-gas through a cooled
nozzle at 50 bar which is followed by a skimmer creating a
spatially and energetically narrow beam (ΔE/E ≈ 2%). The
bismuth sample is positioned on a 7-axis manipulator in the

main chamber at a base pressure of 10−11 mbar. The sample can
be cooled using LN2 or heated using a button heater while the
temperature is measured by a type K thermocouple. The
scattered He atoms are then detected by a quadrupole mass
spectrometer followed by a multichannel analyzer. Angular
elastic scans can be carried out by rotating the manipulator
leading to diffraction spectra (0.1° resolution). Time-of-flight
measurements allow us to record inelastic scattering spectra
and are realized using a pseudo-random chopper disk with
subsequent deconvolution of the measured signal. The disk-
shaped Bi(111) single crystal sample with a diameter of 15 mm
and a thickness of 2 mm has been cleaned using several cycles
of Ar+ sputtering followed by annealing at 150 °C. Surface
cleanliness and contamination were checked via Auger electron
spectroscopy (AES) and the intensity of the diffuse elastic peak,
its orientation has been aligned using a low energy electron
diffraction (LEED) system. Experiments can be carried out
within a beam energy range of 15−25 meV with the sample
cooled (113 K) or at room temperature in the two main
symmetry directions of the crystal surface.

■ THEORETICAL BACKGROUND
Inelastic Close-Coupling Equations. The CC formalism

provides a method for calculating the diffraction intensities of
scattering experiments exactly (up to numerical convergence)
in the elastic as well as in the inelastic regime.6 The helium
atom is considered to be a structureless and nonpenetrating
particle, the one-phonon approximation is assumed, and the
surface corrugation is described by a static as well as a dynamic
time-dependent contribution. The time-dependent Schrödinger
equation for a structureless particle is written as

ℏ
∂Ψ

∂
= −∇ + Ψi

t
t

V t t
r

r r
( , )

[ ( , )] ( , )2
(1)

where squared wave vector quantities are given in energy units
with ℏ2/2m = 1, with m being the mass of the incident particle.
The standard notation is also used here where capital letters are
for vectors parallel to the surface (2D) and small letters are for
vectors in 3D. The gas−surface interaction potential, V, turns
out to be dependent on time through the instantaneous
position of the surface atoms, R + u (R,t), with u(R,t) being the
deviation or displacement from the equilibrium position. If this
displacement is considered to behave as a Gaussian function
within the unit cell, it can be written along each surface degree
of freedom as7

σ ω= −t x tu x u( , ) exp( / ) cosz,0
2

c
2

(2)

σ ω= −t y tu y u( , ) exp( / ) cosz,0
2

c
2

with uz,0 the initial amplitude, ω the frequency of the active
phonon mode, and σc the parameter describing the width of the
Gaussian function. As long as the relative displacements u are
small compared to the lattice constant, the interaction potential
can be Taylor expanded up to first order (within the so-called
single-phonon approximation) as12

≃ + ·∇V t V t Vr r u R r( , ) ( ) ( , ) ( ) (3)

From the layer description of lattice dynamics, it is well-known
that the u displacement can be, in general, written as

∑ ν ω=
ν

ν
·t T tu R A Q Q( , ) ( , , ) e cos[ ( ) ]i

Q

Q R

, (4)

Figure 1. (a) Side view of the (111) surface along the dashed magenta
line in (b). (b) Top view of the Bi(111) surface as determined by
Mönig et al.8 (c) First Brillouin zone of the topmost layer with the two
high symmetry directions.
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where the amplitude A includes the phonon polarization vector
and the dependence on the surface temperature and ων (Q) is
the frequency of the surface mode with quantum numbers
(Q,ν). For most practical purposes, only displacements of
atoms on the first layer significantly contribute to the
interaction potential.
In the Taylor expansion given by eq 3, the zero order or

static part of the interaction, V(r), is evaluated at zero
displacements. Considering the periodicity of the lattice surface,
this function can then be expanded into a Fourier series as

∑= ·V V zr( ) ( ) ei

G
G

G R

(5)

with G being the 2D reciprocal lattice vector.
On the other hand, the wave function Ψ(r,t) has to take into

account the double periodicity given by the Hamiltonian, in
space and time. Thus, according to the Bloch theorem, Ψ(r,t)
can be expanded as
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where nQ,ν stands for the number of phonons of the mode
(Q,ν). In this work, we exclusively consider the inelastic effects
on the elastic intensities. As commonly known, the Bragg law
(for Q = 0) is written as

Δ = − =K K K Gf i (7)

Moreover, we also assume that only one mode is active in the
scattering process and the coupling among phonons is
neglected within the harmonic approximation. Thus, we can
drop the subindex (Q,ν) in nQ,ν for the number of phonons,
writing only n. Similarly, for the frequency of the active mode,
we can simply write ω. After substituting eqs 3, 5, and 6 into eq
1, multiplying the resulting expression by exp[−i(Ki + G)·R]
and exp[−inωt], and then integrating over both time and the
area of a single unit cell, one obtains7 the following set of
coupled differential equations for the diffracted waves
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where

ω= − + − ℏnk k K G( )n z i iG, ,
2 2 2

(10)

is the z component of the kinetic energy for the (n,G)-
diffracted wave and

≡ − ′ ′− ′ − ′ − ′z i V z V zF G G( ) [ ( ) ( ), ( )]G G G G G G (11)

is the contribution of the gradient of the interaction potential or
vector force field (V′ represents the first derivative with respect
to z); the first term represents the (x,y) components of the
force, and the second one is its z component.
The iCC equations are solved numerically by imposing the

standard boundary conditions given elsewhere.6 The theory is
unitary; that is, the sum of diffraction probabilities (forming the
diffraction pattern), for a given incident energy and angle, is
equal to 1.

Inelastic and Elastic Channels: Floquet Blocks. Within
this theoretical scheme, each diffraction channel is then
represented by an effective potential formed by V0(z) plus
the asymptotic energy, given by

ω+ + ℏnK G( )i
2

(12)

and is called an inelastic diffraction channel. Thus, any inelastic
event, annihilation or creation, is represented by the transition
from the entrance (or specular) channel to one of the channels
with (n − 1) or (n + 1). Similarly, the wave functions associated
with the discrete spectrum (bound states, labeled by v) of each
channel are denoted by |Ki + G, n, v⟩ and those associated with
the continuum one (diffracted beams) by |Ki + G, n, kG,n,z

2 ⟩. In
the literature, it is also said that the inelastic channels are dressed
by the phonon field. The number of channels dressed by a
given number of phonons form a block, called a Floquet block.
Thus, if only single-phonon scattering is considered, at least
three Floquet blocks must be included in the calculation: the
blocks dressed by minus and plus one phonon of the active
mode and the block dressed by zero phonons or pure elastic
channels (those used for an eCC calculation). The number of
diffraction channels within a given Floquet block is formed at
least by those used to obtain numerical convergence in an
elastic CC calculation. Multiphonon contributions of the same
active mode are taken into account by including more Floquet
blocksthose dressed by two, three, or more phonons by
following the staircase structure of eqs 8 and 9 through n ± 1.

Intrablock and Interblock Couplings. Furthermore, two
coupling terms of very different nature are now present:
VG−G′(z) is responsible for the intrablock coupling, and the
scalar function

· − ′T zA F( ) ( )G G (13)

for the interblock one. The latter is responsible for the thermal
attenuation of the diffraction intensities (see the second term
on the right-hand part of eqs 8 and 9) described many times
from a phenomenological viewpoint by a DW factor. In
previous publications on the phonon dispersion of the Bi(111)
surface,9,10 the lowest lying, isolated Rayleigh mode was
identified as the shear-vertical mode corresponding to the
sole phonon dispersion line in the Debye model. According to
the shear-vertical polarization of the suggested mode, the
horizontal displacement of the lattice atoms can be neglected,
simplifying the force term eq 11 to the vertical term

≃ ′− ′ − ′z V zF ( ) ( )G G G G (14)

and consequently the inelastic coupling term to

· ≃ · ′− ′ − ′T z A T V zA F( ) ( ) ( ) ( )zG G G G (15)

The average thermal displacement Az(T) is related to the
effective mean square displacement and has been estimated7 to
be
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with T the actual surface temperature, ΘD the surface Debye
temperature, M the mass of a surface particle, a the lattice
constant, kB the Boltzmann constant, and Qc is a fitting
parameter for the Gaussian cutoff factor given by Qc = 2/σc
with σc being the width parameter introduced in eq 2.
Averaging over Phonon Frequencies. On the other

hand, when solving the iCC equations, frequency-dependent
diffraction intensities are obtained, and these have to be
averaged by assuming a density of phonons in order to compare
with the experimental ones. The corresponding integration over
phonon frequencies can be weighted by the Debye spectral
density given by

ρ ω ω
ω

=( )
3 2

D
3

(17)

with ωD the Debye frequency. Thus, the final diffraction
intensities are due to virtual phonon events only; no real
phonon events are taken into account since the corresponding
momenta are not involved in Bragg’s law. The term “virtual
events” denotes that when the phonon is created in the
dynamics it has to be annihilated in order to have a net energy
balance equal to zero. The origin of the attenuation in the iCC
formalism is precisely due to these virtual phonon events since
they are responsible for the appearance of the new inelastic
channels. Note that the quadratic dependence on phonon
frequency is strictly speaking only valid for the bulk; the surface
would be better represented by a linear dependence. However,
the quadratic term was chosen since the Debye model that the
simulation is compared to is built upon the bulk description of
the material. A simulation comparing the intensities using a
linear and a quadratic term for the Debye spectral density
yielded no mentionable difference for the relative elastic
diffraction intensities.
Debye−Waller Attenuation Factor. As previously

mentioned, an alternative way to obtain diffraction intensities
from the eCC equations that can be compared with the
temperature-dependent experimental results and iCC calcu-
lations is by including a global attenuating factor, the DW
factor.13 By doing this, the unitarity of the attenuated eCC
intensities is lost. This is an important theoretical inconsistency
of this procedure. As observed in earlier measurements,3

diffraction peak intensities are surface-temperature dependent.
As known, the DW factor relates the intensity I(TS) of
diffraction peaks at temperature TS to the eCC intensity I0 at
zero surface temperature by means of

= −I T I( ) e W T
S 0

2 ( )S (18)

where exp(−2W(TS)) represents the DW factor. Although the
theoretical basis for the DW factor has been developed for
neutron and X-ray diffraction,14 a reasonable approximation for
surfaces can be given by

≃ ⟨ ⟩ ΔW T u k2 ( ) ( )z zS
2 2

(19)

assuming zero parallel momentum transfer to the surface and
final angles near the specular angle. In this expression, ⟨uz

2⟩
describes the average squared displacement of the atom
perpendicular to the surface and Δkz is the momentum transfer
perpendicular to the surface during the scattering event.

Assuming a harmonic oscillator within the Debye model,
W(TS) becomes

14,15
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2 2
S

B D
2

(20)

The applicability of the conventional DW factor which was
introduced for X-ray diffraction in atom-surface scattering
model,16,17 has been discussed extensively in theory as well as
in experiments. Different models have been discussed by Levi,18

who, for example, predicts an increase of diffraction intensities
for soft potentials. Deviations from the predicted temperature
dependencies of DW factors especially at high surface
temperatures have been experimentally observed on the He−
Cu(001) system. These deviations have been analyzed with
special focus on the role of the interaction potentials and
scattering from surface defects.19 Multiphonon and resonance
effects concerning the dependency of the initial particle energy
on the DW-factor for a coupled channel approach which cannot
be described by the Born approximation are described in a
comparative work by Brenig.20 Multiphonon effects in the
evolution of the DW factor have already been observed on
standard scattering targets like LiF21 and still lack a proper
treatment in the standard DW model. The surface Debye
temperature of Bi(111) has been determined to be ΘD =
71(+7/−5) K using LEED and ΘD = (84 ± 8) K using the
specular beam in HAS experiments.3,8 The surface Debye
temperature determined from the attenuation of the first-order
diffraction peaks was ΘD′ = (75 ± 8) K. In the literature, the
appearance of two different values for the surface Debye
temperature for specular and scattered contributions has been
justified because the DW factor relies on scattering processes
without momentum transfer parallel to the surface. In
particular, the specular HAS value reproduces the theoretical
approximation of van Delft22 that estimates the surface Debye
temperature to be lower than the bulk value, which is 120
K,23,24 by a multiplicative factor of 1/√2.

Static Surface Corrugation. For antimony, the elastic
coupling parameters for a lattice with the same surface
periodicity have been calculated in a previous publication25

for a corrugation represented as a sum of cosine functions from
a Fourier expansion up to the second term, such as
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with ξ0 as the corrugation amplitude. The same corrugation
function is, with a different lattice constant, assumed for the
Bi(111) surface.
By assuming a corrugated Morse potential written as

= −κ ξ κ− − −V D e er( ) ( )z zR2 ( ( )) (22)

the intrablock coupling is given by

ν
ν

= κ
− ′

−V z D e( ) n m z
G G

,

0,0

2

(23)

where D is the well depth of the Morse potential, κ the stiffness
parameter, and the G(n,m)-specific coupling constants νn,m are
expressed in terms of the modified Bessel function of the first
kind, Ik, as

26
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where α = 2κξ0. Equation 24 is only exact for a corrugated
Morse interaction potential. While modified versions of the
interaction potential describe the long-range interaction more
accurately, the sole change of V0 in eqs 8 and 9 to a hybrid
potential poses a certain inconsistency. As the inclusion of
inelastic effects seems to eliminate the limitations of the Morse
potential to model second-order diffraction intensities,4,25 the
usage of the plain Morse potential avoids these inconsistencies
while producing excellent results. A more in-depth analysis of a
more complicated potential structure calculated numerically
from ab initio simulations might further improve the results.

■ RESULTS AND DISCUSSION
Inelastic TOF and Interaction Potential. Previous

investigations of the He−Bi(111) interaction potential27

revealed three well-defined bound state energies when a 9−3
interaction potential model was used. However, preceding
close-coupling studies using various potential shapes on
Sb(111)25 suggest that Morse- or Morse-like potential
functions are much more suitable for representing the bound
state energies of semimetal surfaces.
To propose a more accurate Morse-like interaction potential,

features resulting from inelastic resonance effects in time-of-
flight (TOF) spectra were analyzed to identify an additional
bound state level at smaller bound state energies. Figure 2
illustrates one of the spectra with an isolated feature originating
from the fourth identified bound state as listed in Table 1.

The last line of Table 1 lists the obtained bound state energy
levels of the fitted first Fourier coefficient of the corrugated
Morse potential

= −κ κ− −V z D e e( ) [ 2 ]z z
00
M 2

(25)

with a potential depth D of (7.898 ± 0.126) meV and a
potential stiffness κ of (0.884 ± 0.024) Å−1. With the highest
identified bound state level much closer to the threshold, the
attractive part of the fitted potential may be considered to
describe the real interaction more accurately.

eCC and iCC Analysis of Bi(111). Previous investigations3

treated the electron density corrugation of the Bi(111) surface
from the helium atom scattering (HAS) data using the GR
method and the Eikonal approximation, including the Beeby
correction. Thermal attenuation effects were included using the
DW factor, with two different surface Debye temperatures to
account for the two different attenuation features obtained from
the measurements. Because the surface Debye temperature is
an intrinsic surface property, given by the maximum energy of
the phonons in the Debye model, it seems unsatisfactory to
include a second temperature in order to account for the
different attenuation of the scattering channels. Thus, all of the
diffraction intensities issued from the eCC calculations plus the
DW factor (eCC+DW) were achieved using only one surface
Debye temperature ΘD = 85 K.
As mentioned previously, in order to reduce the number of

fitting parameters in the CC calculations, only the surface
corrugation amplitude was considered in the eCC calculations,
while in the iCC calculations the parameter space was extended
to include also the Gaussian cutoff value Qc. All six angular
diffraction spectra (three temperatures at the two distinguish-
able high-symmetry directions ΓM and ΓK) were fitted
separately using both methods. In all cases, the overall
deviation of the measured diffraction intensities from the
calculated intensities

∑σ = −
=N

I I
1

( )
n

N

n n
1

calc exp 2

(26)

with N being the total number of scattering intensities
considered per fit was minimized. The optimization algorithm
is terminated after a relative accuracy of 0.1% in all of the
considered parameters and conditions.
Figure 3 displays the experimental diffraction intensities as

well as the best-fitting eCC + DW (red stars) and iCC results
(blue downward triangles). To obtain comparable values, the
experimental diffraction peak areas were normalized to their
respective specular peak area for each spectrum separately. As
can be seen in both directions, but especially at the high-
temperature measurement in the ΓK direction, the iCC method
can almost perfectly account for the emerging asymmetry at
varying temperatures, a feature that is vastly impossible for
DW-attenuated features. In Table 2, for comparison, the
corrugation amplitudes averaged over the three measured
surface temperatures for each high symmetry direction given in
percentage of the lattice length are listed for both applied
calculation methods.
The corrugation amplitude values calculated by both

methods are significantly lower than the ones obtained by
approximate methods,3 with the GR method assuming around

Figure 2. Time-of-flight spectrum of Bi(111) in ΓM direction at an
incident angle of 54.9° and an incident energy of 17.5 meV. The
suggested bound state energy level coincides with an observed increase
in intensity around an energy transfer of +3 meV. L1 and RW indicate
the suggested positions of the longitudinal resonance as well as the
Rayleigh branch, while the features marked with (n,m)_l label possible
inelastic bound state resonance positions of the reciprocal vector (n,m)
with the bound state level l.

Table 1. Measured and Fitted Bound State Energy Levels for
the He−Bi(111) Interaction Potentiala

level no. 0 1 2 3

measured (meV) 6.18 3.49 1.42 0.327
morse-fit (meV) 6.20 3.43 1.47 0.327

aThe first three measured values were taken from Kraus et al.27.
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10% and the Eikonal approximation settling around 11% of the
lattice constant a. While both methods when averaged over
both directions assume a peak-to-peak corrugation height of
around 4.5−5.0%, the variance of the simple elastic model is
somewhat higher. In addition, the direction-specific corrugation
heights differ significantly from each other in the case of the
eCC + DW calculations, while both calculations performed
with the iCC method settle around the same corrugation value.
The cutoff value implies a width of 3.1 Å, around two-thirds the
value of the lattice constant, which justifies the use of the
expansion in eq 4 within the single phonon approximation.
The inelastic calculations were carried out using 150

scattering channels in three Floquet blocks in a grid going
from −7 to +16 Å. The shortest wavelength of the open
channels is always described by 100 points. The phonon
frequency average is carried out by integration via a simple
weighted Legendre quadrature from zero frequency to the
Debye frequency with 10 evaluated roots. All parameters were
tested for convergence for each of the scattering spectra
involved. In particular for the highest temperature involved, the
extension to five Floquet blocks was evaluated and found to
present no advantage. While the small Debye temperature of
Bi(111) influences both the DW factor and the inelastic
coupling constant, the iCC approach is the only one that can
account for deviation from the strict exponential characteristic
of the elastic diffraction peaks with the surface temperature
assumed up to now.
Figure 4 shows the temperature-dependent attenuation as

calculated by the iCC method in comparison with a simple DW
factor for both specular and first-order diffraction intensities.
The parallel but shifted behavior confirms a DW-like
attenuation of the diffraction peaks with the same Debye
temperature as for the specular. This also poses as an internal
test of our iCC calculation. The left panel of Figure 4 confirms
that the attenuation of the specular contribution in both
directions follow a DW behavior with a Debye temperature of
85.9 K even though the set Debye temperature of the system
introduced in the inelastic coupling constants in eq 16 was 85
K.
The experimental condition of a constant source-detector

angle causes the angular spectrum to be recorded while
changing the angle of incidence. This so-called “moving
threshold” situation causes the beam on one side of the
specular contribution to encounter a different scattering scheme

Figure 3. Measured and calculated diffraction peak intensities in both
distinguishable lattice directions at three surface temperatures and a
beam energy of 17 meV. Black dots signify measured peak areas, red
stars signify calculated peak intensities using elastic close-coupling with
a DW attenuation, and blue downward triangles signify calculated peak
intensities using the inelastic close-coupling approach. The “order” of
the scattering peak refers to the number of reciprocal lattice vectors
needed when fulfilling the Bragg condition (eq 7). Upper panel:
Angular scans in ΓM direction at three different surface temperatures.
Lower panel: Angular scans in ΓK direction at three different surface
temperatures.

Table 2. Comparison of Fitted Peak-to-Peak Corrugation
Values as Well as Gaussian Cutoff Parameters in the Case of
the Two Applied Calculation Methodsa

eCC + DW iCC

ξpp (%
a)

Δξpp (%
a)

ξpp (%
a)

Δξpp (%
a)

Qc
(Å−1)

ΔQc
(Å−1)

ΓM 3.96 0.62 4.97 0.21 0.6286 0.0511
ΓK 5.31 0.90 4.85 0.33 0.6638 0.1471
avg ΓM and
ΓK

4.63 1.01 4.97 0.68 0.6462 0.1115

aFitted values are averaged over all available temperature points. Peak-
to-peak corruation heights are given in percentage of the lattice
constant a.

Figure 4. Natural logarithm of the calculated intensities divided by the elastic (unattenuated) specular intensity. Left panel: Attenuation of the
specular contribution in both high-symmetry directions. The green line corresponds to a fit of a simple DW-like attenuation with a Debye
temperature of ΘD = 85.9 K. Right panel: Attenuation of the calculated first-order diffraction peaks in both high-symmetry directions. The parallel
but shifted behavior confirms a DW-like attenuation of the diffraction peaks with the same Debye temperature as for the specular.
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as on the other side, enabling the iCC calculation with its
higher adaptability due to the inclusion of inelastic contribu-
tions to also model some of the experimentally encountered
peak asymmetries as for example in the 400 K surface
temperature measurement in ΓK direction depicted in Figure
3. Obviously, there are other experimental sources of
asymmetry, as, for example, sample alignment or the changing
visible surface area from the detector while rotating the sample.
An extension of the coupling calculations, including a

complete treatment of the overall force eq 11 and the correct
geometry on the scattered helium atom in surface parallel
directions, could account for the different polarization
directions and improve the quality of the calculated scattering
intensities even further. The overall ability of the iCC
calculations to model the measured scattering features could
be vastly improved if previously determined interaction
potential parameters would also enter the fitting procedure
directly, instead of being predetermined solely from bound
state feature fittings. However, expanding the included
parameter space to four dimensions (corrugation height,
Gaussian cutoff, potential depth, potential stiffness) becomes
prohibitive. Furthermore, including a more realistic interaction
potential shape as well as mode-dependent lattice displace-
ments, probably determined by ab initio approaches, would
promote the iCC method into a remarkable tool for simulating
the effects of inelastic scattering contributions in temperature
dependent measurements. A further, essential advancement will
be the inclusion of finite phonon momentum in the iCC
calculations, extending the Bragg condition to Ki − Kf = G + Q.
A so-enhanced inelastic scattering code could predictably be
used to model the experimental time-of-flight spectra and
extract information about the mode-specific electron−phonon
interaction on conducting surfaces. Using the inelastic close-
coupling approach to simulate the scattering from surfaces with
finite temperatures clearly renders the inclusion of an additional
surface Debye temperature futile. By not being bound to an
exponential attenuation characteristic, the method is more
adaptive and thus better suited to describe the temperature-
dependent scattering behavior.
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