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Abstract  12 

Site-specific recombinases (SSR) have been crucial in the development of mammalian 13 
transgenesis. For gene therapy purposes, this approach remains challenging, as e.g. SSR 14 
delivery is largely unsolved and SSR DNA substrates must pre-exist in target cells. In this 15 
review, we discuss the potential of HUH recombinases to overcome some of the limitations of 16 
conventional SSR. Members of the HUH protein family cleave single-stranded DNA, but can 17 
mediate site-specific integration with the aid of the host replication machinery. AAV Rep 18 
remains the only known example to support site-specific integration in human cells, and AAV is 19 
an excellent gene delivery vector which can be targeted to specific cells and organelles. 20 
Bacterial protein TrwC catalyzes integration into human sequences and can be delivered to 21 
human cells covalently linked to DNA, offering attractive new features for targeted genome 22 
modification. 23 
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Highlights: 28 

o    HUH SSR offer attractive features for targeted genome modification 29 
o    HUH SSR can integrate ssDNA with the aid of host replication machinery  30 
o    AAV-Rep and R388-TrwC can be delivered in vivo  31 
o    Rep-mediated integration into AAVS1 does not have adverse effects 32 
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Glossary 34 

Site-specific recombination (SSrec): also known as conservative site-specific recombination.  35 
Recombination process in which DNA exchange takes place between defined DNA sequences 36 
possessing only a limited degree of sequence homology, by a mechanism that conserves the 37 
phosphodiester bond energy. Depending on the initial arrangement of the two DNA partners, 38 
it can result in integration, excision, inversion, resolution, or translocation. 39 

Site-specific recombinases (SSR): enzymes that catalyze cut-and-strand transfer reactions on 40 
specific DNA sequences, producing rearrangments of DNA segments. A distinctive feature of 41 
these recombinases is the formation of a covalent protein-DNA intermediate during the 42 
recombination process. 43 

Tyr-SSR and Ser-SSR: two different families of SSR named after the nucleophilic amino acid 44 
residue that they use to attack the DNA and which becomes covalently linked to it during 45 
strand exchange. Although leading to the same practical outcomes, the two families are 46 
unrelated to each other, having different protein structures and reaction mechanisms (shown 47 
in Fig. 1).  48 

HUH protein: defined by the presence of two conserved motifs: a His-hydrophobic-His (HUH) 49 
motif required for metal ion binding, and a motif containing one or two catalytic tyrosines for 50 
nucleophilic attack of the DNA. HUH family members are strand-transferases acting at target 51 
sites on a single DNA strand, and are involved preferentially in biological processes involving 52 
ssDNA intermediates, such as rolling-circle replication and transposition, or bacterial 53 
conjugation. 54 

Rolling-circle replication (RCR): mechanism used for the replication of some circular 55 
molecules, such as plasmids and certain viruses. A Rep protein, belonging to the HUH family, 56 
cleaves the target oriV and remains covalently bound to the 5´end, providing a free 3′-OH end 57 
onto which nucleotides are added. This mechanism allows fast production of single-stranded 58 
replication products. RCR-transposition and processing of DNA during bacterial conjugation are 59 
related processes, also based on HUH proteins which catalyze the initial cleavage and final 60 
religation steps. 61 

Adeno-associated virus (AAV): AAV is a small non-pathogenic human parvovirus whose life 62 
cycle consists of both a productive replicative phase and latent infection. It is known to need a 63 
helper virus for the productive life cycle. AAV-Rep proteins, belonging to the HUH family, are 64 
essential for initiation of replication of the viral genome and for site-specific integration of the 65 
virus into a single target site present in the human genome. 66 

Bacterial conjugation: mechanism of horizontal DNA transfer from a donor to a recipient 67 
bacterium. The process involves the generation of a single-stranded DNA which is leaded into 68 
the recipient cell as a nucleoprotein complex by the conjugative relaxase. This HUH protein 69 
catalyzes cleavage and strand-transfer reactions at its target site to initiate and end ssDNA 70 
transfer. In addition, several relaxases can act as recombinases and integrases on double-71 
stranded DNA substrates. 72 

 73 
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Genome modification of human cells through site-specific integration of foreign DNA 74 

Gene therapy aims to treat disease through the alteration of genome content in target tissues 75 
and, in most cases, requires stable expression of exogenous DNA. Long-term expression is 76 
either achieved through extra-chromosomal persistence or by integration of the therapeutic 77 
DNA into the human genome, in particular, in proliferating cells. However, random integration 78 
in such scenarios, has been demonstrated to carry the risk of insertional mutagenesis, 79 
potentially leading to tumor growth [1]. An alternative approach, gene targeting via 80 
homologous recombination, has recently witnessed promising advances thanks to the design 81 
of synthetic nucleases with a high degree of target specificity [2]. However, their design is 82 
complex and questions regarding off-target activities have yet to be addressed [3]. 83 
Furthermore, methods to reliably predict these events are still missing ([4]; [5]). 84 

The use of site-specific recombinases (SSR), which directly integrate foreign DNA into a 85 
specific site in the genome, could help overcome some of these hurdles. There are, however, 86 
some potentially limiting prerequisites (unidirectionality of the reaction, existence of a natural 87 
target site) as well as additional inherent problems (SSR toxicity, DNA rearrangements). These 88 
are discussed here and we will attempt to introduce possible solutions, thereby establishing 89 
this class of proteins as a viable addition to our tools to modify the human genome. 90 

 91 

Site-specific recombination: 2+1=2+2 92 

SSR catalyze the recombination between specific target DNA sequences. SSR mediate this 93 
process in a reaction involving a covalent intermediate with the target DNA. The final product 94 
is the recombinant molecule, which, depending on the orientation of the target sequences, 95 
can lead to integration, deletion, inversion, resolution, or translocation of the DNA between 96 
the crossover sites [6]. 97 

In contrast to homologous recombination, site-specific recombination (SSrec) has 98 
different biological roles (see Table 1). Examples in prokaryotes, which illustrate the potential 99 
of SSRec, include the integration-excision cycles of bacteriophages and other mobile genetic 100 
elements, the resolution of plasmid multimers, or the control of gene expression through the 101 
repositioning of control elements. Among those are the inversion-mediated alternate 102 
expression of flagellins, or the assembly of active genes by irreversible deletion of a DNA 103 
segment leading to the expression of a reconstructed open reading frame (ORF) in non-104 
vegetative cells, such as cyanobacterial heterocysts or Bacillus mother cells during sporulation 105 
[6]. 106 

SSR usually refer to the canonical conservative recombinases that act on two target sites 107 
and catalyze their recombination by performing four nicks and two strand-exchange reactions. 108 
They are divided into two main families, Tyr-SSR (such as Cre recombinase from phage P1) and 109 
Ser-SSR (such as Int from the Streptomyces phage ΦC31), which differ in their structure, 110 
catalytic residues and mode of action, yet perform essentially identical reactions with the 111 
same outcome, i.e. recombination (Figure 1). For a detailed description of the recombination 112 
mechanisms of Tyr- and Ser- SSR, the reader is referred to a recent review [7]. 113 
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The integrases responsible for gene cassette insertion/excision in integrons, also termed 114 
Int, belong to the family of Tyr-SSR, yet they perform a single strand exchange reaction. These 115 
SSR recognizes a folded single-stranded intermediate, thus forming an atypical Holliday 116 
junction (Fig. 1). It has recently been demonstrated that recombination is resolved by the host 117 
replication machinery [8]. Thus, a reaction starting with a double-stranded (ds) target DNA and 118 
a single-stranded (ss) donor DNA (2+1) results in a recombination product identical to those of 119 
SSR acting on two dsDNA molecules (2+2). This apparently surprising “2+1=2+2” equation is 120 
not so novel: old experiments have shown that Tn7 could switch from conservative to 121 
replicative transposition with a single mutation abolishing the second nicking reaction [9]. This 122 
observation suggests a remarkable plasticity in the ability to recruit host functions. 123 

Within this scenario, a new unexpected family of SSR has been found among members of 124 
the HUH family of enzymes, defined by the presence of a series of motifs involved in their 125 
catalytic activity [10]. These proteins are sequence-specific single-strand endonucleases which 126 
perform strand-transfer reactions on ssDNA, required in processes such as bacterial 127 
conjugation, and rolling-circle replication or transposition. In addition, some of them have 128 
been shown to catalyze site-specific recombination and integration reactions on dsDNA 129 
substrates, and thus can also be considered as SSR. These include conjugative relaxase TrwC of 130 
plasmid R388 [11];  rolling circle replicase  Rep from adeno-associated virus, AAV [12]; and 131 
transposase  TnpA(REP) from E. coli K12 [13]. To date, all proposed models involving ss-based 132 
SSR include a replication step, carried out by the host machinery, in order to complete the 133 
reaction ([14]; [11]; [15]) (Fig. 1). 134 

SSR are characteristically sequence-specific, very efficient, and often initiate 135 
recombination without cofactors or host-cell components. These features make them 136 
potentially useful tools for genome engineering [16]. Outstanding examples are the Tyr-SSR 137 
Cre from phage P1 or the Ser-SSR Int from phage ΦC31. Interestingly, most widely used 138 
SSR come from bacterial phages and have been shown to be functional in the eukaryotic 139 
environment. For instance, ΦC31 Int has been shown to catalyze site-specific integration in 140 
plant, Drosophila, murine and human cells [17]. This striking promiscuity hints at a 141 
considerable evolutionary conservation and possibly an as yet underappreciated function of 142 
these mechanisms in higher eukaryotes. 143 

Prerequisites: unidirectionality and target site 144 

SSR can perform reversible or irreversible reactions. An example of an SSR which catalyzes 145 
recombination in both senses with equal efficiency is Cre from phage P1, which has been 146 
widely used for the construction of transgenic animals, including the generation of conditional 147 
phenotypes [18]. However, the reversibility of the recombination reaction can be a limitation if 148 
the goal is to obtain stable integration of a foreign DNA into the host genome, since the 149 
recombinase can catalyze the excision of this DNA at any moment. Some strategies, such as 150 
transient expression of the recombinase, can partially overcome this limitation.  151 

In contrast, other SSR perform a unidirectional reaction. Most SSR determine the directionality 152 
of the reaction by recognizing specific target sites, which, upon recombination, generate new 153 
sites that can no longer serve as substrates. This is the case of phage integrases such as Int-154 
ΦC31, which convert the phage attP and host attB sites into two new hybrid sites attL and 155 
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attR, upon integration. Additional factors are required to catalyze recombination on these 156 
newly created sites [19], thus allowing a control of the directionality of the reaction. 157 

One of the main limiting factors for the use of SSR genome modification is the potential 158 
absence of a naturally occurring target within the human genome. To date, most proof-of 159 
concept studies use cells that have been engineered to contain respective SSR target 160 
sequences; this approach, however, is not applicable for gene therapy purposes.  161 

The integrase of phage ΦC31 catalyzes unidirectional phage integration. This integrase also 162 
recognizes target sequences in many eukaryotic genomes, including the human genome [20]. 163 
A large number of pseudo-attP sites have been characterized (Table 2) into which this SSR can 164 
integrate any incoming DNA containing an attB motif. However, not all sites are used with the 165 
same efficiency: the ψA site in chromosome 8 was reported to be used preferentially [20] and 166 
a recent report finds an additional hotspot at 19q13.31 [21]. 167 

The use of Int-ΦC31 for integration of exogenous DNA in mammals originated more than a 168 
decade ago. The system is very efficient, rendering a high percentage of viable transformed 169 
cells. It has been used for genetic correction in mice and also in cultured human cells, including 170 
stem cells. Notably, in the last few years this system has allowed phenotypic correction of 171 
hemophilia A and B in mice through the expression of human clotting factors ([22]; [23]). It has 172 
also been used for targeted integration in human muscle and cardiac progenitor cells ([24]; 173 
[25]), stem cell lines [26], as well as in approaches to generate mouse iPS cells ([27];[28]). It 174 
was not until recently that the additional protein required for phage excision was determined 175 
[19], which will allow further optimization of this tool for mammalian cells [29]. 176 

Other Ser-SSR phage integrases have been characterized and used successfully in a 177 
mammalian environment. R4 and A118 integrases can integrate an incoming plasmid into 178 
endogenous pseudo att sites in the human genome, although aberrant chromosomal events 179 
were found to be associated with R4, and for A118, four out of fifteen integration events at 180 
pseudo attB sites showed imperfect junctions ([30]; [31]). 181 

Adeno-associated virus (AAV) is the only known virus capable of targeted integration in 182 
human cells. AAV-Rep protein, an HUH protein, recognizes a unique target sequence within 183 
AAVS1 which is located on human chromosome 19 (19q13.3-qter) (Table 2), and several 184 
studies have demonstrated that insertion at this site poses no apparent risks [15]. The AAV-185 
Rep-mediated site-specific integration reaction has extensively been studied in tissue culture. 186 
The characteristic Tyr of HUH SSR orchestrates the nicking in the target locus, AAVS1. 187 
Subsequently, a DNA strand exchange between the viral and human chromosomal sequences 188 
is proposed to form a covalent junction. This junction formation is then followed by the 189 
resolution of the intermediate by the host cell replication machinery [15], as outlined in Fig. 190 
1D. AAV-Rep mediated site-specific integration of foreign DNA has been achieved in mouse 191 
[15] and human embryonic stem cells (hESCs) [32], opening the possibility of using this system 192 
in replacement therapies in several human diseases. 193 

A number of conjugative relaxases possess site-specific recombinase activity. Notably, the 194 
conjugative relaxase TrwC is also able to integrate the DNA to which it is covalently attached 195 
into its target sequence present in the recipient bacterial cell [33]. TrwC has two active Tyr 196 
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residues which are both involved in the integration reaction [34]. Several sequences 197 
resembling its natural target exist in the human genome, and it has been shown that TrwC can 198 
catalyze integration into two of these sites [34]. Interestingly, integration was stable, since the 199 
target sequences were not substrates for the excision reaction [34]. These features confer 200 
potential as a genomic modification tool; however, it remains to be demonstrated whether 201 
this activity can be transposed into human cells. 202 

Inherent risks: off-target insertion and genotoxicity 203 

A key issue for the successful use of SSR in human genomic modification protocols is their 204 
sequence specificity. SSR are generally very specific enzymes, however they can act on pseudo-205 
target sites with sufficient similarity to their natural targets. This is particularly relevant when 206 
protein levels are high, under which conditions these enzymes can introduce nicks and ds- 207 
breaks, thus possibly initiating unintended recombination events. Therefore, a main concern 208 
continues to be the inherent risk of introducing undesired DNA rearrangements during 209 
integration. Overall, the genotoxicity of SSR has not been sufficiently studied to allow for 210 
reliable predictions about the safety of their use in humans. 211 

The main drawback of using Int-ΦC31 for gene therapy, for example, is the presence of too 212 
many possible insertion sites (pseudo-att sites; Table 1). This problem may be partially 213 
overcome by the use of mutant integrases, obtained by directed evolution, that show 214 
increased specificity for the main ψA site [35]. Another hurdle is based on the observation that 215 
integration may lead to chromosomal rearrangements. This point is open to debate, since 216 
there are conflicting reports showing precise integration of Int-mediated transformed cells, 217 
while others demonstrate the presence of rearrangements upon Int-ΦC31 mediated 218 
integration in pseudo-attP sites [36]. It remains to be determined whether these differences 219 
are simply due to the cellular levels of the integrase. 220 

AAV-Rep mediated integration was reported to be targeted to AAVS1 in early works ([37]; 221 
[38]). Integration was analyzed in several latently infected human cell lines and 78% of these 222 
cells showed integration in AAVS1, highlighting the specificity of the system for the human 223 
target. Rep-mediated integration into pseudo-AAV sites has been reported [39]. However, as 224 
these studies were performed in HeLa cells, it remains to be shown whether these events were 225 
due to the well-documented propensity of AAV and AAV vectors to insert into pre-existing 226 
double-strand breaks, rather than due to a Rep-specific off-target event. Other reports have 227 
also challenged site-specificity, arguing that Rep-mediated integration was close to random 228 
[40]. However, a recent, unbiased analysis of integration sites, has provided further evidence 229 
for the specificity of Rep-mediated integration [41]. 230 

AAVS1 is located within gene PPP1R12C, in a very gene-dense region in chromosome 19, 231 
making it more likely that possible rearrangements may have deleterious effects for the cell 232 
upon integration. An exhaustive study addressing potential adverse effects resulting from 233 
AAVS1 integration has recently been presented. AAVS1-targeted mouse embryonic stem cells 234 
showed that, despite of the resulting rearrangement, the cells maintained multi-lineage 235 
differentiation potential and contributed successfully to mouse development when injected 236 
into blastocysts [15]. A potential explanation for the lack of adverse effects in spite of 237 
significant associated rearrangements in this stringent model system has been provided by the 238 
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observation of a duplication resulting from the integration mechanism, thereby preserving 239 
functional expression from the disrupted allele. These data underscore the potential of this 240 
locus as a suitable safe harbor for therapeutic transgene insertion when Rep is used to 241 
mediate integration. Several recent reports have also used AAVS1 as the target for designed 242 
synthetic nucleases [42, 43]. These studies further underscore the suitability of AAVS1 for 243 
transgene expression. However, similarly stringent assays have yet to be employed to assess 244 
whether gene addition to this locus is inert in the absence of Rep-mediated target gene 245 
duplication. 246 

As highlighted above, the cellular level of integrase is possibly a key factor in the fidelity of 247 
the integration mechanism and thus the associated genotoxicity. Expression of Int-ΦC31 248 
induces a DNA damage response and chromosomal rearrangements in human cells [44], but 249 
Int is expressed for only a few hours in both mouse liver and human cultured cells [45], making 250 
it unlikely that the integrase would induce such effects. Overexpression of Rep regulates the 251 
expression of cellular and viral genes and may induce apoptosis [46], DNA damage and cell 252 
cycle arrest [47]. This challenge underlines the necessity to strictly control recombinase 253 
expression. In this context, protein delivery by fusing a TAT domain has been reported for Int-254 
ΦC31 [48], but this approach requires protein purification, and renders lower recombination 255 
efficiency. 256 

 257 

Delivery of SSR and DNA to the human cell  258 

Any strategy for genome modification must include a way to deliver foreign DNA and the 259 
integration system to the target cells. DNA can be introduced into human cells by a variety of 260 
methods, including naked DNA, synthetic vectors, viral vectors, or bactofection [49]. SSR from 261 
any source can be introduced by any of these methods. Figure 2 compares the entry pathways 262 
for various integrases.  263 

Int- ΦC31 is routinely introduced by plasmid transfection of cultured cells, or by 264 
hydrodynamic tail-vein injection in mice. Introduction with adenovirus vectors allows for site-265 
specific integration of large DNA fragments with low genotoxicity [50]. 266 

A key advantage of the AAV-Rep system is that the virus naturally infects human cells and 267 
the site-specific integration potential has been retained throughout evolution. In addition, AAV 268 
poses no known safety issues. The main hurdle of AAV as a targeting vector is the strict space 269 
limitation imposed by its capsid. In order to overcome this problem, attempts have been made 270 
to use dual infections [51] or to incorporate Rep into other viruses, such as adenovirus or 271 
herpesvirus [52, 53]. An additional benefit of AAV is that recombinant vectors (rAAV) have 272 
been widely used in preclinical as well as some  clinical trials [54]. In addition, the availability of 273 
capsids from different AAV serotypes allows for targeting specific tissues, such as skeletal 274 
muscle, liver, central nervous system, retina and heart [54]. Furthermore, the addition of a 275 
mitochondrial targeting sequence to AAV capsids redirects the virus inside the organelle, 276 
achieving correction of Leber’s hereditary optic neuropathy in a mouse model [55]. 277 
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The conjugative relaxase TrwC also shows a potential for in vivo delivery into human cells. A 278 
recent report showed that this SSR can be delivered to specific human cells using Type IV 279 
Secretion Systems (T4SS) of pathogenic bacteria [56]. T4SS are encoded by many human 280 
pathogens, each targeting specific cell types, thereby introducting the potential for some 281 
tissue specificity for in vivo gene therapy [57]. A major advantage, however, might be that the 282 
SSR enters the cell in a covalent complex with the transgene and thus overcomes the need for 283 
recombinase expression in the cell and favors irreversible integration of the incoming DNA. 284 

Many artificial delivery systems can reach the cytoplasm, yet integration takes place within 285 
the nucleus of the cell. Accordingly, AAV-Rep has a Nuclear Localization Signal (NLS) for nuclear 286 
targeting [58]. SSR from bacteria or phage are not expected to target the nucleus, but it 287 
appears feasible to engineer an approach that includes nuclear import.  For example, while 288 
TrwC localizes to the cytoplasm, a mutant shows nuclear localization [59]. Similarly, the 289 
addition of an NLS to Int-ΦC31 increases integration [60]. In addition, a TAT-Int-NLS was shown 290 
to recombine more efficiently than TAT-Int in mammalian cells [48]. In contrast nuclear 291 
localization provides little or no benefit to φC31 integrase for liver directed gene therapy, even 292 
in the absence of cell division [61], suggesting that Int nuclear entry is not the limiting factor 293 
for integration. A small fraction of the integrase can enter the nucleus bound to the DNA, as 294 
occurs in the case of retroviral integrases [62].  295 

 296 

Future directions 297 

The main conclusions and outstanding questions on the use of SSR for human genomic 298 
modification are outlined in Box 1. Taken together, no simple solution has been put forward to 299 
address the challenge that any system ideally would i) efficiently deliver DNA to the target 300 
tissue in vivo, ii) allow there for efficient integration, iii) express only transiently the required 301 
exogenous recombinase, and iv) evade significant immune detection, and thus ensure the 302 
survival of the modified target cell. SSR are a potential tool for in vivo and ex vivo genome 303 
modification. While tailor-made nucleases show great potential, we propose that the inherent 304 
and unique characteristics of SSR might provide distinct benefits that warrant further 305 
investigation.  306 

ss-dependent SSR from the HUH family such as AAV-Rep have shown to be as efficient in 307 
integration as conservative SSR, and proof of principle together with evidence for safety and 308 
utility of this approach have been provided in mouse and human embryonic stem cells [15, 32]. 309 
Rep-mediated modification of human iPS cells is ongoing in our laboratory. The underlying 310 
strategy is that iPS cells can be obtained from patients and subsequently the genetic defect 311 
can conceivably be corrected by AAV-mediated site-specific integration of the un-312 
mutated gene where appropriate, resulting in a suitable cell population for differentiation and 313 
subsequent transplantation. 314 

Bacterial conjugative relaxases may represent promising new tools due to their site-specific 315 
integrase activity and the presence of potential target sites within the human genome. In 316 
addition, new substrate specificities can be engineered [63], thus broadening the possibility to 317 
find the adequate insertion site. In vivo delivery through bacterial T4SS as a covalent protein-318 
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DNA complex constitutes a unique feature conferring added value. However, to date, proof of 319 
concept for bacterial SSR-mediated site-specific integration into the human genome has yet to 320 
be provided. 321 

HUH recombinases may represent a family of moonlighting proteins evolutionarily selected 322 
to perform site-specific integration, in addition to their role in viral replication, bacterial 323 
conjugation, or transposition; this molecular strategy has been preserved from bacteria, to 324 
plants, to mammalian viruses. The intricacies of this approach include efficient cooperation 325 
with host enzymes (thus only one exogenous protein  is required) and, in the case of AAV Rep, 326 
a mechanism that includes partial gene duplication through which functional expression from 327 
both target alleles is retained. Among this new family of recombinases is the possibility to 328 
overcome such problems as target infidelity and thereby genotoxicity. The main limiting factor 329 
for the use of SSR is the presence of a target sequence in the human genome. However, these 330 
enzymes are highly prevalent in bacteria and viruses and, as TrwC demonstrates, it is likely that 331 
suitable candidates with human target sequences can be identified. 332 

 333 
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Box 1. Conclusions and outstanding questions 339 

 Conclusions 340 

 Site-specific recombinases are valuable tools for human genomic modification 341 

 SSR belonging to the HUH protein family catalyze integration of ssDNA with the aid 342 

of the host replication machinery 343 

 AAV-Rep catalyzes integration into AAVS1 with no known additional effect on the 344 

recipient genome, partly due to reconstruction of the target gene by partial 345 

duplication upon integration  346 

 Several conjugative relaxases have been shown to act as SSR, providing new 347 

sources of potential integration sites. TrwC from plasmid R388 can integrate DNA 348 

into two sequences from the human genome which resemble its natural target 349 

 TrwC can be delivered as a protein-DNA complex into specific human cell 350 

types through bacterial Type IV secretion systems. These machines are 351 

present in bacteria targeting different tissues 352 

 AAV is an excellent vector for delivery of the transgene and Rep. It can be targeted 353 

to different cellular types and even to mitochondria 354 

 The introduction of the SSR protein in place of the gene may be the best way to 355 

avoid genotoxicity 356 

Outstanding questions 357 

 Will it be possible to target different human cellular types through the Type IV 358 

secretion systems of different human pathogens? 359 

 Can TrwC integrate foreign DNA into its specific targets in the human genome? If 360 

so, what will be the effect of integration into these sites? 361 

 Is it possible to obtain Rep-mediated modification of human iPS cells, allowing 362 

correction of diseases such as SCID-X1? 363 

 What will be a suitable system to transiently deliver AAV Rep to target cells in 364 

order to mediate site-specific integration? 365 

  366 
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Figures 545 

 546 

Figure 1. Comparison of recombination 547 

reactions catalyzed by SSR belonging to 548 

different families. A) Tyr-SSR mediate 549 

conservative recombination by sequential 550 

action of two pairs of monomers, each 551 

catalyzing a strand-transfer reaction. The first 552 

crossover leads to the formation of a holiday 553 

junction (HJ). B) Ser- SSR mediate conservative 554 

recombination by concerted cleavage of four 555 

monomers, followed by a conformational 556 

switch of two of them, and both strand 557 

exchanges.  C) In the case of integrons, Int is an 558 

atypical Tyr-SSR which recognizes a folded 559 

single-stranded substrate and catalyzes its 560 

integration through a single crossover which 561 

leads to the formation of an “atypical holiday 562 

junction”, aHJ [8]. This intermediate is resolved 563 

by replication. D) Proteins of the HUH family of 564 

single-strand transferases such as R388-TrwC 565 

have been shown to catalyze also the 566 

integration of single-stranded substrates 567 

through two transesterification steps which 568 

can be catalyzed by the two catalytic Tyr 569 

residues of the protein. The intermediate 570 

would be resolved by replication as in C). 571 
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 574 

 575 

Figure 2. Different pathways for DNA delivery and gene targeting for human genomic 576 

modification. Representation of the different tools described in the text, which are under 577 

investigation or already being used for gene therapy purposes. (A) Bacterial T4SS + R388-578 

TrwC: (1) The human pathogen Bartonella henselae transfers a plasmid which codes for the 579 

gene of interest together with the R388 conjugative relaxase TrwC. TrwC (blue sphere) 580 

covalently attached to the single stranded DNA (ssDNA) is secreted via the bacterial T4SS [56]. 581 

(2) Once in the cytoplasm TrwC-ssDNA complex has to reach the nucleus; TrwC can be targeted 582 

to the nucleus [59]. (3) It is expected that the integrase catalyses a site-specific integration 583 

reaction (curved arrow in black) of the attached DNA into either Hu5 or HuX sites (represented 584 

by a blue square), both previously shown to be targets for TrwC integrase in in vitro assays 585 

[34], but this activity has yet to be proven in vivo. (B) Viral delivery + AAV-Rep: (1) AAV virus 586 

binds to the cell using different surface glycans as receptors and specific coreceptors for 587 

efficient infection [64].  (2) AAV is internalized by endocytosis via clathrin-coated vesicles, 588 

followed by escape from the vesicles [65]. It is likely that AAV injects its genome into the 589 

nucleus. (3) The ssDNA genome is replicated to dsDNA, required for gene expression. During 590 

replication intermediates such as circular double strand molecules are presumably assembled, 591 
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allowing episomal persistence to the viral genome [66]. (4) RNA synthesis (dashed black line) 592 

and subsequent translation (ribosome represented in light blue) is necessary to provide Rep 593 

integrase (red sphere). (5) An NLS targets Rep to the nucleus [58]. (6) The integrase targets its 594 

viral origin (presumably ssDNA [67]) in order to form protein-DNA complexes. (7) Site-specific 595 

integration (curved arrow in black) mediated by Rep occurs into AAVS1 (red square, [15]). 596 

Other pseudo-sites (light red square and curved arrow in grey) have also been reported to act 597 

as targets with lower efficiency [39]. (C) Synthetic vector + φC31-Int: (1) DNA coding for the 598 

transgene and φC31 Int can be transfected directly to the target cell or introduced with 599 

synthetic vectors such as polymers or liposomes which interact with cellular receptors to 600 

achieve internalization through endocytosis. (2) After escaping from the vesicles, the vector is 601 

disassembled and the dsDNA (double line in green) reaches the nucleus. (3) This is followed by 602 

transcription and translation of the DNA. (4) φC31 Int (green sphere) is expressed in the 603 

cytoplasm and the protein has to find its way towards the nucleus. (5) Once inside, the 604 

integrase binds its target dsDNA and (6) catalyzes its site-specific integration [68] (curved 605 

arrow in black) into specific hotspots (green square), as well as into many pseudo-sites (curved 606 

arrow in grey and light green square) in the human genome [21]. (D) Viral delivery + 607 

Lentivirus-Int: (1) The lentivirus RNA genome (dashed purple line) is contained in the capsid 608 

(purple trapezoid) together with the reverse transcriptase (black spheres) and the viral 609 

integrase (purple sphere). Upon cell entry through binding to receptors and coreceptors, 610 

capsid proteins are uncoated, resulting in the release of the RNA genome together with the 611 

viral proteins into the cytoplasm [69]. (2) Reverse transcription takes place, giving rise to an 612 

RNA-DNA hybrid structure, which is subsequently converted to dsDNA (3) (double purple line). 613 

The dsDNA enters the nucleus, and the integrase leaded by an NLS [70] is imported to the 614 

nucleus (4). (5) The integrase binds the viral origins within the dsDNA and (6) catalyzes random 615 

integration (curved arrow in white) in the human genome [71].  616 
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Table 1. A comparison of the most relevant SSR discussed in this work 617 

SSR Family 1 Source Host Biological role Stable 
integration 2 

Cre Tyr-SSR P1 phage Escherichi
a coli 

resolution of phage genome 
multimers NO 

Int-ΦC31 Ser-SSR ΦC31 phage 
Streptomy
ces 
lividans 

Integration and excision of 
phage genome YES 3 

AAV-Rep HUH 
Adeno-
associated 
virus  

Homo 
sapiens 

Replication and Integration 
of phage genome YES 4 

TrwC HUH R388 
Plasmid  

Escherichi
a coli 

Processing and Leading 
DNA during bacterial 
conjugation  

YES 5 

 618 

1 See text for details and Figure 1 for description of SSrec reaction mechanisms. 619 

2 Ability of the SSR to catalyze integration of foreign DNA on a target site present in a different 620 
genome, without catalyzing its excision subsequently. 621 

3 Int requires extra factors to catalyze excision. 622 

4 The rescue of AAV proviruses is thought to be mediated by the initiation of replication of 623 
integrated viral genomes. For this the cellular replication machinery and helper virus co-factors 624 
are required. 625 

5 TrwC-mediated reaction is reversible, but integration into the human targets could be 626 
irreversible (see text for details).  627 
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Table 2. SSR target sites in their host genomes and in the human genome 628 

 
 

 
SSR 

 
 

Natural target  

Targets in human 
genome 

Refs 

bona 
fide 

pseudo- 
sites 

 

Cre loxP   ATAACTTCGTATAGCATACATTATACGAAGTTAT none 4 ψlox  [72], [73] 
Int-
ΦC31 

attP  
attB   

CCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGG 
GTGCCAGGGCGTGCCCTTGGGCTCCCCGGGCGCG 
 

none 101 
ψattP 

[74], [21] 

AAV-
Rep 

RBEitr 

RBEP5 
GAGCGAGCGAGCGCGC 
GCCCGAGTGAGCACGC 

AAVS1 AAVS2, 
AAVS3  

[75], 
[38], [39] 

TrwC nic  GGTGCGTATTGTCTATA none 2 [11], [59] 
 629 


