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Abstract

Internet-based scenarios, like co-working, e-freelancing, or crowdsourcing, usually
need supporting collaboration among several actors that compete to service tasks. More-
over, the distribution of service requests, i.e., the arrival rate, varies over time, as well
as the service workload required by each customer. In these scenarios, coalitions can
be used to help agents to manage tasks they cannot tackle individually. In this paper we
present a model to build and adapt coalitions with the goal of improving the quality and
the quantity of tasks completed. The key contribution is a decision making mechanism
that uses reputation and adaptation to allow agents in a competitive environment to
autonomously enact and sustain coalitions, not only its composition, but also its num-
ber, i.e., how many coalitions are necessary. We provide empirical evidence showing
that when agents employ our mechanism it is possible for them to maintain high lev-
els of customer satisfaction. First, we show that coalitions keep a high percentage of
tasks serviced on time despite a high percentage of unreliable workers. Second, coali-
tions and agents demonstrate that they successfully adapt to a varying distribution of
customers’ incoming tasks. This occurs because our decision making mechanism facil-
itates coalitions to disband when they become non-competitive, and individual agents
detect opportunities to start new coalitions in scenarios with high task demand.

Keywords: coalitions, collaboration, reputation, crowdsourcing, competitive
environments

1. Introduction

In real world domains, individuals usually face the problem of solving tasks, com-
posed of subtasks, that cannot be achieved by them individually; to address this, they
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need to group together in order to be able to accomplish such tasks with guarantees.
This may be the case when supporting collaboration in new Internet-based scenarios,
like co-working [34], or crowdsourcing [30], which are becoming increasingly impor-
tant. In these scenarios, customers submit tasks to be serviced, with several actors
competing to service them. To make this more complex, however, the number and rate
of service requests changes over time, as does the service workload (the number of
subtasks per tasks) required by each customer.

Over the past decade, crowdsourcing has emerged as a cheap and efficient method
of obtaining solutions to simple tasks that are difficult for computers to solve but pos-
sible for humans. Crowdsourcing markets bring together requesters, who have tasks
they need to perform, and workers, who are willing to perform these tasks in a timely
manner in exchange for payment [30]. There are several examples of crowdsourcing
platforms, such as Amazon’s Mechanical Turk [13] or oDesk [oDesk], and the pop-
ularity of crowdsourcing markets has led to empirical and theoretical research on the
design of algorithms to optimize various aspects of these markets, such as the assign-
ment of tasks [15, 14]. Thus crowdsourcing has appeared as a new application domain
to model and analyze the problem of online decision making, as well as design algo-
rithms to tackle it. Online decision algorithms have a rich literature in operations re-
search, economics, and several areas of computer science including machine learning,
theory of algorithms, artificial intelligence, and algorithmic mechanism design [30].
However, in the case of crowdsourcing, as tasks are usually not too complex, work-
ers are typically recruited individually, without considering the possibility of recruiting
groups of people to jointly perform more complex tasks. Such complex tasks include
those demanded in several domains, such as in international commerce, bidding for
government contracts or continuous auctions.

For example, producing a magazine, an academic paper, or a new movie may in-
volve many individuals working in structured teams, each with different skills and
roles, collaborating on a common goal. In this way, a fixed pool of workers may need
to be allocated to perform tasks that arrive dynamically and that must be completed
by some deadline. Crowdsourcing therefore poses unique challenges for both work-
ers and requesters ranging from job satisfaction to direction-setting, coordination, and
quality control [16]. However, currently crowdsourcing faces many challenges that
must be addressed in order to achieve all of its potential. Kittur et al. [16] present a
framework that envisions a future of crowd work enabling more complex, creative, and
highly valued sustainable collaborations and co-working. In fact, they present several
research challenges in crowdsourcing areas; in response, in this paper we explore a
new crowdsourcing model based on their approach.

Most crowdsourcing platforms share the common feature of repeated interaction.
In this respect, Afsarmanesh et al. [3] confirm that long-lived groups (those that last
in duration beyond the servicing of a single job) are successfully used in real world
scenarios, such as in manufacturing or ICT, among others. According to them [3], when
groups are long-term creations, as in the case of our coalitions, successful repeated
collaborations help these groups to enhance their service performance over time, since
these repeated interactions improve agents collaboration. Therefore, to fully benefit
from coalition-based collaborations, we must learn how to form coalitions as well as
how to sustain them. However, sustaining a coalition poses two main challenges: (i)
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how to cope with agents within the coalition that do not honor their commitments;
and (ii) how to compete with other coalitions that offer the same services. To tackle
these problems requires that a coalition, as a whole, continuously adapts to remain
competitive, i.e., in order to have high probabilities of being assigned tasks. Indeed,
in an open environment, several competing coalitions may be formed with the aim
of performing the very same service. Thus, on the coalition side, this requires the
capability of: (i) composing the most appropriate set of agents to perform a service; and
(ii) deciding when to disband the coalition because it is no longer beneficial. Moreover,
agents immersed in such competitive environments must also individually adapt by
deciding: (i) whether to remain in a coalition or join another existing one; and (ii)
whether to remain part of a coalition or to leave it in order to start up a new one.
Therefore, both coalitions and agents require decision-making mechanisms that allow
them to adapt and to remain competitive over time.

Slivkings et al. [30] propose specific directions to tackle the design of a crowdsourc-
ing model: adaptive task assignment, dynamic procurement, repeated principal-agent
problem, reputation systems, and the exploration-exploitation tradeoff. In this paper,
we mainly focus on the first of these, also using reputation as a way to assess the risk
of cooperating with others. However, while we propose to use coalitions of agents to
perform complex tasks, most previous work on task allocation with coalitions does not
consider how coalitions can be maintained over time in the face of a change once they
are formed. For this reason, Klusch et al. [17] develop a dynamic coalition forma-
tion scheme (DCF-S) that helps agents react to changes in their set of goals and in the
agent society. Similarly, Soh et al. [32] present a dynamic coalition formation mech-
anism in which learning mechanisms are used at several levels to improve the quality
of the coalition formation process in a dynamic, noisy, and time-constrained domain.
Nonetheless, such approaches suffer from several shortcomings. First, they mainly fo-
cus on supporting the formation of a single coalition for a single task. Thus, they do
not consider the bigger picture (and more realistic situation), where there are several
coalitions competing to provide the very same service. In fact, most previous work has
commonly assumed that a coalition disbands when the current task is finished. Hence,
a coalition disappears after the coalition fulfills its goal. Mérida-Campos et al. [22]
explore this in the context of iterative games, where several coalitions compete to be
assigned tasks in several rounds. They present a dynamic coalition formation mecha-
nism where coalitions must adapt at each time step in order to be assigned more tasks.
However, with their mechanism, agents use a pre-established strategy for joining or
abandoning partners and, while there is adaptability regarding coalition composition,
the adaptation of the the number of coalition is not specifically addressed , i.e., how
many coalitions are necessary when they compete with each other to obtain tasks.

In response to these omissions, in this paper we present a model to build and adapt
coalitions so that the can be assigned complex tasks with the goal of improving the
quality and quantity of the tasks completed. Thus the key contribution in this paper is a
decision mechanism that allows agents in a competitive environment to autonomously
enact and sustain coalitions, not only in their composition, but also in the number of
coalitions that are necessary depending on the incoming tasks. Two key components
in such a mechanism are: the reputation, both of coalitions as a whole, and the repu-
tation of individual agents; and the strength of collaboration synergies (resulting from
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successful repeated collaborations) within coalitions. Reputation has been shown to be
effective to assess the risk of cooperating with other individuals. The notion of synergy
captures the insight that working together repeatedly improves cooperation among hu-
mans. In our model, when agents employ our decision mechanism, we show that it is
possible for them to maintain high levels of customer satisfaction (in terms of percent-
age of services finished on time). Note that we focus on customer satisfaction because
quality of service is a current and major problem in crowdsourcing solutions, since
there are no guarantees that a service will be good enough. In more detail, we provide
the following contributions.

• First, we provide a decision making mechanism for coalitions to help them con-
tinuously adapt to remain competitive, i.e., to have high probabilities of being
assigned tasks. On the one hand, our mechanism allows a coalition to assemble
the most reliable team of agents to service a certain task based on the reputa-
tion of agents. On the other hand, the mechanism also helps a coalition decide
whether the coalition should be sustained or otherwise disbanded because it is
no longer beneficial.

• Second, we provide a decision making mechanism that allows agents to remain
competitive, i.e., to have high probabilities of being assigned subtasks. On the
one hand, our mechanism allows an agent to decide whether to continue to re-
main as part of a coalition, or instead to join another coalition. Such a decision
is based on: (i) the strength of the successful repeated collaborations of an agent
within its coalition; and (ii) the overall reputation of the coalition. On the other
hand, our mechanism allows an agent to decide when to start a new coalition.

• Finally, we provide an empirical analysis showing that the usage of our mech-
anisms by agents makes it possible to maintain high levels of customer satis-
faction (percentage of tasks serviced on time). Here, we show that coalitions
demonstrate high resilience: even when the percentage of reliable agents is low
(∼ 40%), the percentage of serviced tasks on time is beyond 80%. In addi-
tion, coalitions and agents demonstrate that they adapt to a varying distribution,
i.e., the arrival rate, and characteristics, of customers’ incoming tasks. Thus,
we obtain ∼ 95% of tasks serviced on time despite significant variations in the
incoming arrival rate and characteristics of tasks.

Altogether, we aim at providing an interesting and simple model for managing
new emerging coalitions, composed by humans who work with new technologies.
The subject of investigation in this paper can be somewhat complex depending on
the conditions and the assumptions introduced in the model and implemented through
the simulations. However, in order to ensure clarity, the assumptions underlying our
agent-based model are deliberately simple, as our goal is to understand the fundamental
processes. This is the approach followed throughout this work.

The paper is organized as follows. First, in Section 2 we present related work.
Then, Section 3 presents a computational model for an environment in which multiple
coalitions compete to service tasks. Next, Section 4 describes the decision making
mechanisms employed by coalitions and agents during task allocation and execution,
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and Section 5 introduces the adaptive mechanism employed by coalitions and agents.
Section 6 details our empirical analysis. Finally, Section 7 draws conclusions and sets
paths to future research.

2. Related work

In this section we present a review of related work in the literature. We begin with
a brief review of coalition formation for task allocation, followed by related work on
crowdsourcing scenarios.

2.1. Coalition formation for task allocation
In multi-agent systems, agents may face the problem of achieving tasks that are

composed of subtasks that cannot be achieved by individual agents alone. Groups
of agents are not only necessary when tasks cannot be performed by a single agent,
but may also be beneficial when groups perform tasks more efficiently than individ-
ual agents [28]. Thus, given a set of agents and a set of tasks, the problem we are
concerned with is deciding how to form coalitions to achieve tasks so as to maximize
the total profit [20] (where profit can be understood in many interpretations, including
as utility). Ideally, a coalition formation mechanism would allow agents not only to
form coalitions for joint task execution, but also to achieve a coalition configuration
which is optimal (in terms of utility maximization), stable, and fair [18]. However, the
computational complexity required for such solutions is exponential [26]. Moreover,
in most real-world scenarios we do not need coalitions to be optimal, but suboptimal,
and formed in a dynamic manner.

As argued in [26, 28, 27, 17, 5], task allocation via coalition formation follows a
three step process: (i) generating the coalition structures; (ii) selecting which structure
will be adopted, and (iii) distributing gain between agents. At the same time, however,
it is hard to specify one general framework for coalition formation. This is why most
work tries to solve the coalition formation problem in a concrete environment that
establishes certain constraints. Despite this, in [5], Amgoud provides a unified formal
framework for constructing such coalitions structures. Her framework returns three
semantics of coalition structures: the basic, which returns a unique coalition structure;
and two different refinements of the basic — the stable and the preferred — each of
which may return several coalition structures at a time. This framework is general
enough to capture different proposals in the literature.

Task allocation coalition formation problems can be studied in cooperative or a
non-cooperative environments. Coalition formation in cooperative environments has
been investigated by Shehory et al. [28, 29], who assume that information about other
agents can be known or communicated. Also in a cooperative environment, Lau et
al. [20] propose a classification for the coalition formation problem, based on three
driving factors: task demands, which are the quantities of service that are demanded;
resource constraints, i.e., whether the resources are limited or unlimited; and an objec-
tive function, which is the profit obtained from achieving a task. In this work, Lau et
al. also explore the runtime complexity and propose algorithms for each category.

Zheng et al. [36] present an approach where, unlike previous approaches, each
agent can participate in coalitions for different tasks. They develop several efficient
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and effective greedy hill-climbing strategies for determining both which agents belong
to which coalitions (for their relevant task) and when these coalitiosn should start exe-
cuting to achieve their tasks. In the context of non-cooperative environments, Aknine
et al. [4] propose two methods for coalition formation, where agents cannot exchange
their knowledge, in contrast to cooperative multi-agent systems. Abdallah et al. [1]
propose to use an underlying organization to guide the coalition formation process,
using Q-learning with neural nets to optimize decisions made locally by agents in the
organizations. This underlying organization can be viewed as a search tree, which is
modified, depending on the model environment and the agent population, to achieve
the best performance.

However, the approaches above do not consider how coalitions can be maintained
over time in the face of change once they are formed. In response, Klusch et al. [17] de-
velop a dynamic coalition formation scheme (DCF-S) in an environment where agents
have goals they cannot accomplish by themselves. Their dynamic mechanism helps
agents react to changes in their set of goals and in the agent society. In this DCF-S
scheme, leaders for each coalition (CLAs) are used to concurrently simulate, select,
and negotiate coalitions that are able to accomplish at least one of their goals with an
acceptable ratio between estimated risk of failure and individual profit. Soh et al. [32]
present a scenario in which agents are not completely cooperative, but cautiously co-
operative, i.e., they are not always willing to help, but only in the case that they obtain
some benefit from doing so. Here, learning mechanisms are used at several levels to
improve the quality of the coalition formation process in a dynamic, noisy, and time
constrained domain. Moreover, the agent that initiates a coalition has the responsibility
of overseeing and managing the formation process. Ye et al. [35] propose a dynamic
coalition formation mechanism, endowed with self-organization, in a structured agent
network. Based on self-organization principles, their mechanism enables agents to dy-
namically adjust their degrees of involvement in different coalitions and to join new
coalitions at any time. The authors take the agents themselves to be the entities form
the coalitions.

While this work on dynamic coalition formation has provided valuable contribu-
tions, it largely focuses on supporting the formation of a single coalition for each
task. Thus, it generally does not consider the perhaps more appropriate scenario in
which there are several coalitions competing to provide the same service. This kind
of scenario can be found in such environments as international commerce, bidding for
government contracts or continuous auctions, which have been explored by Mérida-
Campos et al. [22], focussing on iterative games, where several coalitions compete to
be assigned a task in several rounds. In this work it is addressed how to adapt the coali-
tion composition, but it does not take into consideration the adaptation of the number
of coalitions.

With the same idea but in a different context, Mérida-Campos et al. [23, 24] focus
on the effects of heterogeneous tasks on the coalition adaptation process in a heteroge-
neous population of agents, namely: competitive, where agents try to be in a coalition
with maximal competence; and conservative, where agents try to be in a coalition with
optimal competence / size ratio in order to maximize their benefits. They investigate
how agents in a heterogeneous population cluster together across multiple coalition
formation episodes and varying tasks, and observe that the competitive strategy outper-
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forms the conservative one.
Lappas et al. [19] introduce the problem of team formation in social networks, tak-

ing into account the compatibility of two agents when cooperating together. The focus
of the work is to minimize the coordination cost, but ignoring the issue of balancing
the workload. Anagnostopoulos et al. [7] study algorithms that allocate an incoming
stream of tasks, so that no-one is overloaded or unfairly singled out. However, they
ignore the coordination costs. To tackle this, Anagnostopoulos et al. [6] present online
algorithms that assemble teams to deal with tasks, in a way that keeps coordination
costs bounded and results in a fair allocation of the workload. In our work, we are
not interested in work balancing, since, in this framework, we assume that the best
available agents should perform the task, nor in the coordination costs, since we have
mediators that are in charge of the communication and coordination of the agents.

2.2. Dynamic coalition formation (DCF) for crowdsourcing
Related to dynamic task allocation, over the past decade, crowdsourcing has emerged

as a cheap and efficient method of obtaining solutions to simple tasks that are difficult
for computers to solve, but possible for humans. In fact, crowdsourcing markets bring
together requesters, who have tasks they need accomplished, and workers, who are
willing to perform these tasks in a timely manner in exchange for payment. Thus
crowdsourcing has appeared as a new application domain for online decision making
algorithms, opening up a rich and exciting problem space in which the relevant prob-
lem formulations vary significantly along multiple modeling dimensions [30]. This
popularity of crowdsourcing markets has led to both empirical and theoretical research
on the design of algorithms to optimize various aspects of these markets, such as the
assignment of tasks and pricing. In addition, several researchers have taken an interest
in modeling and analyzing the problem of online decision making in crowdsourcing
markets. However, current crowdsourcing work typically consists of a set of small,
independent, and homogenous tasks. For example, Kittur et al. [16] criticize current
crowdsourcing models (Figure 1a) and present the future of crowdsourcing (Figure 1b),
that outlines a framework to enable complex and sustainable collaborations. In their
view, complex tasks should be decomposed into smaller subtasks. These subtasks must
be assigned to appropriate groups of workers that must be adequately selected (e.g.,
through reputation), and organized (e.g., through hierarchy). There may be a workflow
in the workers’ performance of tasks. Finally, quality assurance is needed to ensure
each worker’s output is of high quality and fits together. Similarly to their views, we
also envision a future crowdsourcing where complex tasks composed of subtasks are
dynamically created and where groups of agents are formed and adapted to the needs of
the customers. This is why our mechanisms address several of the challenges identified
in [16], such as: dynamicity, by presenting a mechanism that allows to achieve tasks
that change dynamically over time; group formation, in order to collectively perform
complex tasks; hierarchy, since we have different roles with different responsibilities;
and reputation, since we consider not only reputation for individual workers, but also
for the coalition.

There are several examples of crowdsourcing platforms, such as Amazon Mechan-
ical Turk [13], that focus on small microtasks, e.g., filling out a survey, with small
payments; or other platforms, such as oDesk [oDesk], that focus on larger jobs like
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(a) Current crowdsourcing. (b) Future crowdsourcing.

Figure 1: Comparison between current and future crowdsourcing approaches [16].

designing websites, for significantly larger payments. Most of these platforms share
the common feature of repeated interaction. However, to the best of our knowledge, no
crowdsourcing site offers the functionality of forming and sustaining groups for large
tasks composed of subtasks. Thus, given a large task composed of multiple subtasks,
all crowdsourcing sites enforce a contractor to separately contract each subtask, possi-
bly from multiple workers that operate individually. Moreover, Amazon’s Mechanical
Turk has been overly criticized for its reputation system, since it needs a mechanism
that provides more accurate information and takes more of the interaction between the
two parties into account. 1 2

While there have also been several recent empirical or applied research projects
aimed at developing online decision making algorithms that function effectively in
practice on existing crowdsourcing platforms [8, 12], these are are generally useful
only in their specific domain. From a more theoretical perspective, Slivkings et al. [30]
present a detailed and up-to-date discussion of the modeling issues that inhibit theoreti-
cal research on repeated decision making in crowdsourcing. They point out that despite
the vast scope of work in crowdsourcing, it brings several domain-specific challenges
that require novel solutions. Moreover, they suggest that to address these challenges

1http://www.technologyreview.com/view/416966/how-mechanical-turk-is-broken/
2http://www.behind-the-enemy-lines.com/2010/10/plea-to-amazon-fix-mechanical-turk.html
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in a principled way, one would like to formulate a unified collection of well-defined
algorithmic questions with well-specified objectives, allowing researchers to propose
novel solutions and techniques that can be easily compared, leading to a deeper under-
standing of the underlying issues. However, it appears very difficult to capture all of
the pertinent aspects of crowdsourcing in a coherent model. As a result, many of the
existing theoretical papers on crowdsourcing propose their own new models, making it
difficult to compare techniques, and leading to uncertainty about which parameters or
features matter most when designing new platforms or algorithms.

Given the above, Slivkings et al. [30] propose specific directions to tackle the design
of a crowdsourcing model: adaptive task assignment, dynamic procurement, repeated
principal-agent problem, reputation systems, and the exploration-exploitation tradeoff.
In this paper, we are mainly focused on the first of these, but with the specific difference
that instead of assigning subtask to individuals, we assign complex tasks to coalitions,
with the goal of maximizing the quality and quantity of completed tasks subject to bud-
get constraints. Generally, in the task assignment problem, strategic issues are ignored
in order to gain analytical tractability. In fact, the model typically does not touch on
the way in which prices are set, and does not include workers’ strategic responses to
these prices. In the most common variant of this problem, workers arrive online and the
requester must assign a task (or sequence of tasks) to each new worker as she arrives.
Karger et al. [14, 15] introduce one such model for classification tasks and proposed
a non-adaptive assignment algorithm based on random graph generation along with a
message-passing inference algorithm inspired by belief propagation for inferring the
correct solution to each task. They prove that their technique is order-optimal in terms
of budget when each worker finds all tasks equally difficult. In contrast, Ho et al.
[10, 11] show that adaptive task assignment yields an improvement over non-adaptive
assignment when the pool of available workers and set of tasks are diverse.

However, to the best of our knowledge, none of these previous approaches uses
coalitions to model the problem of complex task assignment, but instead focus on in-
dividually assigning simple subtasks. In addition, they do not consider that different
groups may apply for the very same task, thus competing with each other. These are
the challenges that we address in the rest of this paper.

3. Computational model

The purpose of this section is to outline the computational model of a competitive
environment in which agents are allowed to autonomously enact and sustain coalitions.
With this aim, we consider that such an environment is instantiated as a scenario in
which customers dynamically generate requests for their tasks to be serviced on time.
By dynamic we mean that: (i) the customers’ task arrival rate changes over time; and
(ii) the workload required by each task may also vary. Within our environment, coali-
tions, which are groups of agents that join together, compete to service tasks. Once
a task is assigned to a coalition, it may either complete the task on time or not. Over
time, some coalitions may disappear (because they are no longer competitive), while
others may be formed.

We begin with an example in order provide a better understanding of the model.
Suppose a customer submits a new task, which consists of writing a book. This task
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requires three workers: one that writes, one that corrects, and one that does the draw-
ings. Therefore, the customer sends the task to be serviced by the system. However,
the customer need not choose individual agents, since groups of agents are dynam-
ically formed in order to service these tasks. Indeed, suppose that there is a leader
agent, which acts as a mediator between the customer and the agents that will write the
book. This agent can form a new group in order to compete with other mediators for
the task. Therefore, in this scenario, several teams containing a writer, a corrector and
a drawer may be created, and from those teams that apply to service the task, their prior
performance can be used to choose one. Within this selected team, the worker agents
can deliver their subtask on time or incur a delay, affecting the process of delivering
the whole task on time. Therefore, the way in which individual workers perform their
duties should affect the probability of being selected to become part of a coalition in
the future. In addition, the way in which a team has performed will also influence the
likelihood of the coalition being selected by a customer for a future task. Now, if an
agent writer, that belongs to a team, has not been hired to work on a new task for a
long time, then it might consider forming its own coalition, or changing to a new one.
Similarly, if a mediator agent does not receive tasks to service due to the coalition it is
leading not having a good reputation, then, it can also decide to become a worker (e.g.,
a writer) to find an alternative route to increasing its gains.

Formally, we represent each task request generated by some customer as a tuple
(Ti, di), where Ti is the specification of a task to be serviced, and di is the deadline by
which it must be completed. A task Ti is composed of a set of subtasks 〈τ i1, ......., τ iki

〉,
where each subtask requires some skill to be fulfilled, from a finite set of skills S =
〈s1, .., sm〉. In our environment, there is a set of agents Ag = {ag1, ....., agn} with
different skills, and a coalition here is simply a group of agents, a subset of Ag, which
gather together to perform some task. In this context, multiple coalitions compete to
service task requests. Since agents may fail to fulfill their commitments, we say that a
task is serviced on time when all subtasks are serviced on time, and serviced with delay
when at least one subtask has not been serviced on time.

Here we assume that each coalition is led by a mediator agent. Such mediators have
been used extensively in multi-agent systems because they play the important role of
assisting in locating and connecting the providers of a service with its requester [9, 21,
33]. In our particular case, a mediator will be also responsible for the management
of the composition of a coalition, a function that, according to [2, 3], is extremely
important in supporting a coalition’s activities. Thus, a mediator leading a coalition is
responsible for searching for the agents to be part of a coalition, henceforth referred
to as worker agents, assembling teams of workers to perform tasks, and evaluating the
performance of workers. In general, a coalition (led by a single mediator) can service
several tasks at the same time, depending on its mediator’s capacity. We refer to each
group of workers that perform a task within a coalition as a team. Thus, a coalition
may contain several teams performing separate tasks at the same time.

Since the mission of a worker agent is to perform subtasks within a task, a worker
must have the necessary skill to carry out a subtask. However, a worker may fail to
complete a subtask on time, and a coalition may therefore fail to service a task on time
because some of its workers may fail to complete their individual subtasks on time.
Notice that we assume that an agent can take the role of either worker or mediator, but
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never both at the same time. Moreover, for the sake of simplicity, a mediator can lead a
single coalition and a worker can only belong to one coalition at the same time, since,
in this framework, we assume that each coalition competes with others. Also, a worker
cannot be part of more than one team at a time, since we consider that all its capability
must be focused on a single task.

Figure 2 illustrates the components of our competitive environment. Customers
submit tasks to be serviced, which come into the environment as a dynamic stream of
tasks. These tasks are collected by a contractor, which is in charge of assigning tasks
to coalitions using a contract net protocol (CNP) [31]. Note that in order to avoid com-
plexity, and without loss of generality, we consider only one contractor in the system.
The figure shows several coalitions Coalition1, Coalition2, and Coalition3, as well
as three independent agents (ag1,ag2, and ag3) that do not belong to any coalition.
Each coalition has a mediator agent (agents within hexagons in the figure). Upon task
completion, the contractor rates the quality of the service provided by a coalition and,
similarly, coalitions also rate their own workers. This rating information is maintained
and aggregated by a reputation module.

Contractor

Workers

Workers

Workers

Stream of tasks

Customers

Serviced Tasks

Reputation

T1T2...

ag1

ag2

ag3

ag4

ag5

ag6

Coalition3

Coalition2

Coalition1

Figure 2: Competitive environment.

In Table 1 we detail several steps that describe how the cyclic process that is used in
our competitive environment, addresses the servicing of incoming tasks. At the end of
this cycle, a new incoming task takes the process to Step 1 again, i.e., it is a sequential
process. Note that from here on, when we refer to steps, we mean the steps identified
in Table 1.

To illustrate the coalition formation and adaptation processes, Figure 3 depicts an
example showing a transition in the number and composition of coalitions within our
competitive environment. The figure shows the coalitions at two different moments in
time. Agents acting as mediators are within hexagons, while agents acting as workers
are within circles. First, the top half of the figure shows the existing coalitions when
a request to service task T1 arrives. At that point there are two mediator agents (ag1
and ag2), each one leading a coalition composed of worker agents ({ag3, ag4, ag5}
and {ag6, ag7, ag8} respectively). Of the agents within each coalition, some have been
selected to be part of a team. There are also three independent agents that are not
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1. Request for coalitions. For each incoming task, the contractor broadcasts a
request, (Ti, di), to all coalitions.
2. Team formation. Once a coalition receives a task request, its mediator selects
the best available team (a subset of agents in the coalition) to service the request. If
the necessary agents are not available within the coalition, the mediator can contact
free agents or agents within other coalitions. Then, a team is formed by selecting
one agent per subtask.
3. Acknowledgement. If a coalition can put together a team of agents to service the
task, it replies to the contractor that it can do so by the deadline di.
4. Task assignment. From all the positive replies received from coalitions, the
contractor assigns the task to the coalition with the highest reputation (to avoid
overfitting, with a certain small probability, pnov , the task is randomly assigned to
a coalition). Therefore, it follows that the greater the reputation of a coalition, the
more competitive, and hence the greater the chance of it being awarded tasks to
service. Note that to avoid the cold start problem, the reputation of coalitions at
the beginning is the same for all the coalitions, so tasks are randomly assigned in
this case.
5. Task execution. The coalition that is assigned a task starts the team that must
service the task.
6. Task reward. Once a task is serviced, each worker in the servicing team obtains a
reward for completing its subtask. The mediator also obtains a reward for servicing
the task, which is higher than that of the workers. This is intended to compensate
for the responsibility and the effort of a mediator in selecting, coordinating, and
evaluating workers for the team. Moreover, the mediator takes a greater risk in
accepting tasks initially.
7. Coalition and agent evaluation. Once a task is serviced: (i) the contractor
evaluates the performance of the coalition in terms of the delay in servicing the
task; and (ii) the coalition evaluates the performance of each member of the team
that performed the task. Both evaluations are provided to the reputation module,
where they are maintained and aggregated.
8. Coalition and agent adaptation. Since coalitions and agents must adapt to
remain competitive, at this point a coalition (that has no pending tasks to service)
may decide to disband, and a worker (without pending subtasks) may decide to
form a new coalition.

Table 1: Steps that describe the cyclic process to serve incoming tasks.

part of any coalition (ag9, ag10, ag11). Later on, after servicing several tasks, up to
T10, the bottom half of the figure shows the new distribution of coalitions. Now, sev-
eral changes have occurred: agent ag6 left coalition2 to start and lead coalition3
with agents {ag9, ag10, ag11}; agent ag1 disbanded coalition1 to join coalition2 as
a worker; and agents ag3, ag4 and ag5 became independent. Note that independent
agents cannot compete with coalitions, because we assume that each task is always
composed of more than one subtask, and hence more than one agent is required to
complete it.
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So far we have focused on describing the computational model of our competitive
environment. In the following sections we focus of the decision making that coalitions
and agents require to participate in such an environment.
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Figure 3: Possible evolution of the number and composition of coalitions over time in our competitive
environment.

4. Task allocation and execution

In this section, we present the decision making of coalitions and agents involved
in team formation, task assignment and execution, and evaluation (Steps 2-7, Table 1).
Thus we describe how a coalition: (i) decides and gathers the most appropriate set of
agents to service a task; and (ii) how a coalition evaluates its team. Moreover, we detail
how an agent decides which coalition to join or, if it already belongs to one, whether it
should switch. Finally, we also describe how reputation is aggregated in the reputation
module from Figure 2.

4.1. Mediator decision making
Every time a task arrives, each mediator leading a coalition has three main respon-

sibilities. First, it must form a team out of the best available agents in the coalition

13



to service the task (Step 2). Second, it must perform the task whenever it has been
awarded to the coalition (Step 5). Third, once a task has been serviced, it must eval-
uate the performance of the workers in the servicing team (Step 7). In Algorithm 1,
we specify the mediator’s general behaviour for team formation, task assignment and
execution, and performance evaluation (Steps 2 to 7 in Table 1).

Algorithm 1 Coalition formation and performance evaluation

1: function RECEIVEREQUEST((Ti, di))
2: Team = BroadcastRequest(myCoalition, 〈{τ i1, ..., τ iki

}, di〉)
3: if not Complete(Ti, T eam) then
4: AO = BroadcastRequest(AgentsOutsideCoalition)
5: Team = add(Team,AO)

6: if Complete(Ti, T eam) then
7: Assigned = send(contractor,ACK, (Ti, di))
8: if Assigned then
9: AddToCoalition(AO)

10: ExecuteTask(Ti, T eam)
11: Receive(rwdm)
12: for all agj ∈ Team do
13: EvaluateWorkers(CoalitionEval)

14: send(evaluations, contractor)

15: Release(Team)

Team formation (Step 2) We focus first on team formation, i.e., we present how a
coalition (represented by its mediator) decides and gathers the most appropriate set
of agents to service a task. Given a task, a mediator must first find a set of workers
that satisfy the skills and time constraints required by the task. There may be different
ways to choose these agents, but we assume that repeated interactions with the same
agents improve task performance. For instance, as result of task supervision, a mediator
understands better the strengths and limitations of its workers, and continues to improve
its understanding the longer they work together. Therefore, the mediator first sends a
request to the workers in its coalition (line 2). A request is a tuple 〈{τ i1, ..., τ iki

}, di〉,
where τ1, ..., τki are the subtasks that compose the task, and di the period of time to
service it. After receiving the responses from workers, if the mediator cannot find
enough workers in its coalition to carry out the task, it also sends requests both to
independent agents or to agents that belong to other coalitions (line 4). Notice that
if a mediator was not allowed to search beyond its coalition, it would not be possible
to perform adequately in a dynamic environment. This may happen for two reasons.
First, since the incoming task load or task characteristics may change, there may not be
agents with required capabilities within its coalition. Second, a coalition may have a
sufficient number of agents to service a task, but they might already be busy servicing
other tasks.

Once there are sufficient agents, the mediator must select from them. Now, recall
that agents may fail to deliver their subtask on time. Thus, to make the coalition com-

14



petitive, a mediator uses a selection criterion based on preventing failures: choose the
most reliable agents, namely those with highest reputation. In turn, to determine an
agent’s reputation, the mediator consults the contractor, which is in charge of assessing
reputation. Notice that a worker can be part of a coalition without belonging to a team
at some particular moment. Finally, note that for a newly created coalition, its reputa-
tion will depend on the performance of the coalition since the moment it is formed, but
not considering the past history of the workers in other coalitions.
Task assignment and execution (Step 3-5) Now, we focus on task assignment and
task execution. Once a mediator has formed its own team (line 5), it acknowledges to
the contractor that it can perform the task. Note that all mediators provide the same
information, stating just the task they can perform. Then, to prevent failures, the con-
tractor assigns the task to the most competitive coalition, which we define as the one
with highest reputation. Note that in order to avoid overfitting, instead of assigning all
tasks to coalitions with higher reputations, there is a small random probability of se-
lecting any of them. The coalition that obtains the task (line 8) starts servicing it (line
10), while the coalitions that do not obtain the task dissolve the teams they had formed
(line 15).

In this paper, we do not employ cost to assign tasks and subtasks, since that would
require that agents to bid, and therefore adopt a bidding model. We believe this adds
unnecessary complexity and is not the focus of the work in this paper. By not con-
sidering cost, we implicitly assume that all agents have similar costs, and are thus
differentiated only by their reputation. We therefore focus on how reputation influ-
ences interactions between agents and coalitions, as a key challenge in crowdsourcing,
already highlighted by Kittur et al. in [16]. Thus, while it is an interesting area for
exploration, studying extensions to our model that consider cost parameters is left as
future work.
Team evaluation (Step 6-7) After workers in a team have serviced their subtasks, the
mediator delivers the serviced task to the contractor. The mediator receives a reward
(rwdm > 0) (line 11) and evaluates its workers (line 13). To evaluate workers, each
coalition uses a decay function CoalitionEval that evaluates the delivery time of an
agent, where a longer delay gives a larger penalty in reputation. Once the evaluation
is computed, this value is sent to the contractor (line 14). Note that even if an agent
changes its coalition, its reputation remains.

4.2. Assessing coalition and agent reputation

The contractor is in charge of assessing reputation (i) of the coalition, depending on
how the team has performed; and (ii) of agents, depending on how they have individu-
ally performed. Using the reputation module (Figure 2), reputation for both coalitions
and agents is updated by combining an evaluation of the performance in the current
task with the current reputation. Thus we balance between past and current reputation,
which is a simple way of calculating reputation. In Equations 1 and 2 we show how the
reputation of a coalition coaz and an agent agj is updated. Note that while many dif-
ferent reputation mechanisms are possible, that is a separate problem, and it is beyond
of the scope of this paper to specify a complex reputation mechanism, as well as being
unneccesary.
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Rep(coaz) = α1 · ContractorEval(di, d̃(coaz, Ti)) + (1− α1) ·Rep(coaz) (1)

Rep(agj) = α2 · CoalitionEval(agj)(di, d̃j) + (1− α2) ·Rep(agj) (2)

where d̃(coaz, Ti) is the time the coalition took to finish its task; di is the time re-
quested to service the task; d̃j is the time the worker agj took to finish its subtask;
and α1 and α2 are factors that model the influence of current reputation. In addition,
CoalitionEval andContractorEval are decay functions to evaluate the delivery time
of an agent and a coalition, respectively, where a longer delay gives a larger penalty in
reputation. In Section 6.1 we propose a concrete evaluation function.

4.3. Worker decision making

In this section, we focus on how an agent decides the coalition to join, or if it al-
ready belongs to one, whether to switch. This is a critical decision, since the possibility
of obtaining a subtask depends on two factors: (i) how competitive an agent is; and (ii)
how competitive its coalition is. The latter factor arises because tasks are assigned ac-
cording to the reputation of each coalition (Step 4), as explained in Section 4.1. Thus,
since a worker may have several requests to perform subtasks from different coalitions,
it must decide which coalition to join to be part of a team. Moreover, if the agent al-
ready belongs to a coalition, it must decide whether leave or stay (Step 2). We therefore
endow each worker with a local stochastic decision making mechanism to make such
decisions; i.e., worker agents do not have a global perspective of the system, and they
cannot communicate with each other. Note that even if allowing agents to have a global
view could be beneficial for them, we wanted our model to resemble reality as much as
possible, i.e., to simulate an environment where workers do not have full perspective
of the available groups to join, but only to the ones that have an offer for them.

Algorithm 2 Coalition selection

1: function SUBTASKPROPOSALSANDCOALITION(Requests)
2: Collect(Requests);
3: pjstay = Calculate(RepCoa(agj), CollSynCoa(agj))

4: if (SampleofBernoulli(pjstay) then)
5: send(Coalition(agj), ”accept”);
6: else
7: send(Coalition(agj), ”leave”);
8: send(CoalitionHighestRep, ”join”);

9: send(OtherCoalitions, ”reject”);

In Algorithm 2 we specify a worker’s behavior after receiving several requests to
perform subtasks. First, a worker collects all the requests it has (line 2). If it already
belongs to a coalition then, to decide whether it should switch to another one, it must
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consider: (i) how well its current coalition is doing, i.e., how competitive its coalition
is in terms of obtaining tasks; and (ii) whether it is being selected by the mediator to
be part of teams, i.e., if it is doing well within the coalition. These factors correspond
to the reputation of a coalition coai (Rep(coai)), and the collaboration synergy of the
agent in the coalition (CollSynCoa(agj)). We introduce the concept of collaboration
synergy to reflect the fact that repeated collaborations improve performance when hu-
mans interact. Thus, the collaboration synergy between a worker and the coalition it
belongs to represents how well the worker is performing, in terms of obtaining sub-
tasks in the coalition. This is assessed as the number of subtasks that a worker has
performed without changing from one coalition to another, and considering the total
number of subtasks it could have performed within the coalition. Note that this value
is reset every time an agent changes its coalition. Thus to calculate the probability of
staying in a coalition, we trade off exploration (reputation) and exploitation (collabora-
tion synergy). Formally, we define the probability of an agent agj staying in its current
coalition coai in Equation 3:

pjstay = β ·Rep(coai) + (1− β) · CollSynCoa(agj) 0 ≤ β ≤ 1 (3)

Once a worker has computed pjstay (line 3), which follows a Bernoulli distribution,
it decides whether to stay in its current coalition or not. Note that again we have opted
for a simple model to avoid complexity in simulations. If the worker decides to stay, it
sends its acceptance to its current coalition (line 5). If it decides to leave, it notifies its
former coalition (line 7) and joins the coalition with the highest reputation (line 8). In
both cases, it sends a rejection to any other coalition requests (line 9).

Finally, if the task is not assigned to the coalition (the coalition receives a "reject",
line 9), the worker is released from the team. In contrast, if the task is assigned (Step
4, Table 1), the worker starts performing its subtask until it is completed (Step 5). At
that point, the worker notifies the mediator, receives a reward rwdw > 0 (Step 6) and
is evaluated by the mediator (Step 7). After this, it is free to perform another subtask.

5. Adaptive virtual organizations

In this section we present our decision making for coalitions and agents to allow
them to adapt in order to remain competitive in a dynamic environment (Step 8, Table
1). Thus we present how: (i) a coalition may disband; and (ii) an agent may start a new
coalition. In Figure 4 this mechanism is shown as a stochastic automaton. Thus each
agent has two possible states, either being a mediator or a worker. With probability
pm→w, a mediator changes its role to worker; and with probability pw→m, a worker
changes its role to mediator. Since the behavior of an agent in each state has already
been specified (for mediators in Section 4.1, and for workers in Section 4.3), we are
now able to focus on this policy to change state.

In the following sections we specify the local stochastic decision making mecha-
nisms for mediators and workers, allowing them to change their roles depending on
their own knowledge.
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Figure 4: Change of roles modeled as a stochastic automaton.

5.1. Mediator adaptation

In this section, we specify how to determine when to make the transition from me-
diator to worker as shown in Figure 4, i.e., the probability pjm→w. As stated previously,
a mediator is in charge of forming and adapting coalitions to obtain new tasks. The
higher the reputation of a coalition, the more competitive it is (since tasks are assigned
according to coalition reputation), and the higher the probability of being awarded
tasks. However, since there are always possible reasons for failure, especially in dy-
namic environments, there might come a time when a coalition is no longer valuable.
To assess this, we specify the local decision making mechanism by which a mediator
decides whether to change its role, and hence disband the coalition it leads.

To decide whether it pays off to remain as a mediator, we define um as mediator
utility, which measures the actual utility of being a mediator given the number of tasks
assigned and the rewards as a result of them. We also define ũw as the estimated
worker utility, which is an estimation of the number of tasks a mediator would have
participated in if it had been a worker instead. To calculate ũw, a mediator uses an
optimistic approach, since it assumes that every time it is not busy servicing a task, it
would have been assigned a subtask if it was a worker.

Again, in order to avoid excessive complexity, we assume that recent past expe-
rience is the most useful indication of future performance. Thus each mediator only
calculates its utilities for a time window ∆t before the current time, in order to discard
the influence of performance in the distant past (since performance changes over time).
Thus, in Equations 4 and 5 we specify two utility functions for a mediator that measure
how well it performed in the recent past:

um(∆t) = Nt(∆t) · rwdm (4)
ũw(∆t) = Ns(∆t) · rwdw (5)

where Nt(∆t) is the number of tasks that a mediator has coordinated during the last
time window; Ns(∆t) is the number of subtasks that it could have performed as a
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worker during ∆t, adopting the optimistic approach mentioned above; and rwdm and
rwdw are the rewards for being a mediator and a worker, respectively.

Once um(∆t) and ũw(∆t) are calculated, a mediator can determine their ratio to
decide its preferred role. This is useful in deciding whether to change or not, since if
the utility of being a worker is higher than that of being a mediator, then the probability
of becoming worker becomes higher. Equation 6 shows the probability of a mediator
becoming a worker (pjm→w), which we compute by using the um(∆t) and ũw(∆t)
ratios, and limiting the obtained value to one. Once a mediator has computed this
probability, which follows a Bernoulli distribution, it decides whether to change from
one state to the other (Figure 4).

pjm→w(∆t) =
ũw(∆t)

um(∆t)
(6)

5.2. Worker adaptation

In this section, we specify how a worker determines when to make the transition
to mediator shown in Figure 4, i.e., the probability pjw→m. We consider two situations
in which a worker may benefit from changing its role: (i) when it is not requested to
service subtasks (either because it is not performing as it should, or because there are
insufficient tasks); or (ii) when it is busy servicing subtasks all the time. In the first case,
a worker should try to become a mediator to obtain some reward since it is clearly not
succeeding as a worker. In the second case, since it is busy all the time, it assumes the
workload is high, and thus may assume that by becoming a mediator it could receive a
higher reward. Note that even if more mediators mean more competition, we will see
that by using our adaptive mechanism, if the workload is not high enough, a mediator
becomes a worker, in this way avoiding the problem of unserviced tasks not having
enough workers.

In this case, in contrast to the mediator, which can estimate its utility as a worker, a
worker cannot compute its estimated utility as a mediator, since a worker is not aware of
the number tasks that are assigned (a mediator has extra information as it sits between
the workers and the contractor). Thus, we define a function where the probability of
changing from worker to mediator (pjw→m) increases with the time a worker is both idle
and busy. In Figure 5 we present the basic function used to calculate pjw→m, which is
specified in Equation 7.

fib(tp) =


2 · t2p − 150

650
tp ≤ −10 (7a)

1

2

t2p
650

−10 < tp (7b)

where tp represents a period of time. Negative values of tp represent periods of time
when a worker is idle, while positive values represent busy periods. As we observe in
the figure, workers increase their probability of becoming mediators as they increase
the period of time they are idle or busy. The reason for the different slopes is that if
an agent is idle for a long period (tp ≤ −10), its probability of becoming a mediator
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Figure 5: Probability of becoming a mediator for workers.

must be higher than if it is busy for the same period of time (positive values of tp). The
reason for this is that while it is busy, it is still obtaining some benefit (reward), and
becoming a mediator could imply an unnecessary risk.

In addition, each agent applies to this probability a decay factor of q−wmj , with
q > 1 and wmj is the number of times a worker j has tried to become a mediator.
We introduce this decay factor to model the fact that being a mediator implies more
effort, since it must coordinate a coalition. Finally, once a worker has computed the
probability pjw→m, described in Equation 8, which follows a Bernoulli distribution, it
decides whether to change from one state to the other (see Figure 4).

pjw→m(tp) = q−wmj · fib(tp) (8)

6. Experiments

In the previous sections, we provided a decision mechanism that allows agents
in a competitive environment to autonomously enact and sustain coalitions. Now, in
our experiments we show how, by employing our decision mechanism, it is possible
to maintain high levels of customer satisfaction, in terms of the percentage of tasks
serviced on time. First, in Section 6.2, we analyze the resilience of coalitions to the
failure of workers, i.e., to workers not servicing their subtasks on time. Second, in
Section 6.3 we focus on how our adaptive mechanism allows coalitions to adapt to
dynamic changes in task load. Before our analysis, we describe our empirical settings.

6.1. Empirical settings
For each experiment, we ran ten multi-agent simulations with 225 agents, and we

present medians and variances. Unless otherwise stated, each task is composed of eight
subtasks, and each subtask is managed by one agent, so eight workers are necessary to
service a task. For the sake of simplicity, we assume that all the subtasks to be serviced
require the same skill, so all agents are potentially eligible to service any subtask. Also,
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for the sake of simplicity, we assume that all mediators have the same capacity, which
we fix to one task. We define the probability to avoid overfitting (pnov) to 0.01.
Agent behavior. We need to specify some parameters in order to simulate the behavior
of the agents. First, a worker may finish its subtask with a certain delay. To model this
we specify a probability, pjf , different for every agent, which is the internal probability
of a worker j finishing on time.

We have also assumed that repeated interactions improve collaborative performance.
To model this, we specify that the probability of a worker finishing on time depends
not only on pjf , but also on the number of times that a worker has collaborated with
a coalition (collaboration synergy, CollSynCoa(agj)). In Equation 9 we specify the
combined probability as pjF . Once calculated, it is sampled with a Bernoulli distribu-
tion to assess whether the worker has finished on time or not.

pjF = γ · pjf + (1− γ) · CollSynCoa(agj) 0 ≤ γ ≤ 1 (9)

Thus, because a worker may not finish its subtask on time, we assess the delivery
time for a worker as:

d̃ = (1 + δ) · d (10)

where 0 ≤ δ ≤ 1 is a parameter that models an increase of the extra time a worker
needs to finish if it fails to deliver on time.
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Figure 6: Decay function.

Moreover, in order to evaluate both agents and coalitions, we must instantiate the
decay functions CoalitionEval and ContractorEval. In this case, we assume that
both coalitions and the contractor use the same decay functionEvalC. We have chosen
a linear decrease of reputation with delay (Figure 6), which is specified in Equation 11.
Alternative decay functions are possible, but we have chosen this one for the sake of
simplicity. Recall that the definition of a complex reputation mechanism is out of the
scope of this paper.
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EvalC(d, d̃) = 1− (d̃− d) (11)

where (d̃− d) is the delay in the task and d̃ ≥ d.
Finally, in Table 2 we set the parameters from Equations 1, 2, 3, 8, 9, and 10.

Notice that rwdm/rwdw = 2, since being a mediator has a greater reward than being
a worker. Finally, we present our results with respect to a reference value, which is the
best value that can be obtained when considering the maximum probability of finishing
on time in each scenario.

Parameter Value
γ 0.8

α1 = α2 0.7
β 0.5
δ 0.1
q 2

rwdm/rwdw 2

Table 2: Parameters.

6.2. Resilience analysis

In this section, we have three main goals. First, we study the resilience of coalitions
in relation to the reliability of workers and the choice of the reputation mechanisms.
Second, we study the capability of coalitions to distinguish unreliable workers. Third,
we study how the collaborative synergy affects the percentage of serviced tasks on
time. Notice that the task workload models the number of incoming tasks. For the
sake of simplicity, we consider two binary selections for reliability: an agent j is a
reliable worker if its probability of finishing a task is pjf = 0.9, while for unreliable
workers it is pjf = 0.1. When we refer to the percentage of reliable workers, we mean
the percentage of those agents from the overall agent population; i.e., workers of all
coalitions.

6.2.1. Resilience of coalitions depending on workers reliability
In Figure 7, we present how the percentage of tasks serviced on time varies when

we vary the percentage of reliable workers. In the figure, we are only interested in
the results with full reputation, which is when both the reputation of individuals and
groups is used. We observe that: (i) the percentage of tasks serviced grows as reliable
workers grow; (ii) a low percentage of reliable workers (∼40%) is enough to achieve
more than 80% of tasks serviced on time; and (iii) when more than 50% of the workers
are reliable, more than 90% of tasks are serviced on time. Therefore, we conclude that
our decision making mechanism helps coalitions to achieve very high resilience: the
percentage of tasks serviced on time is high despite the high percentage of unreliable
workers.
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Figure 7: Percentage of tasks serviced on time, varying the percentage of reliable workers.

6.2.2. Resilience of coalitions depending on reputation mechanism
In addition, in Figure 7 we also compare the resilience that results from using indi-

vidual and coalition reputation (full reputation), with respect to: no reputation, which
does not use reputation for either individual selection or for group selection, but where
subtasks are randomly assigned to agents; individual reputation, where only agents
have reputation, so mediators form groups using it; and coalition reputation, where we
only use reputation for the coalition, but not for the agents. As expected, we observe
that the results when using no reputation are very poor when the percentage of reliable
workers is not very high. When coalition reputation is used, the results are only im-
proved by approximately 4%. This is because, if we use coalition reputation without
individual reputation, coalitions are not formed by choosing the best workers. Thus,
even if a coalition had a good reputation in the past, it can perform badly in the fu-
ture. When only individual reputation is used, the percentage of tasks serviced on time
increases by 30% when half of the agents are reliable, since most agents with higher
reputation, agents are chosen. Finally, we observe that adding coalition reputation to
individual reputation (full reputation) indeed improves the percentage of tasks serviced
on time when compared to all previous reputation mechanisms. We observe that when
half of the agents are reliable, using full reputation leads to 30% more tasks being ser-
viced on time than only using individual reputation, and 70% more when compared
with the other two approaches. This is because in competitive environments, there is a
need to assess not only the most reliable agents, but also the most reliable coalitions to
assign a task.

23



6.2.3. Discriminating unreliable workers
Now, we aim at understanding whether coalitions using our full reputation mecha-

nism are able to discriminate between reliable and unreliable workers. We set 50% of
all the agents in the population to be reliable (pjf = 0.9), and the remaining 50% agents
to be unreliable (pjf = 0.1). Moreover, we set the incoming task load so as to keep all
the reliable workers busy. Figure 8 shows the evolution of the percentage of reliable
and unreliable workers that are busy. We observe that unreliable workers are promptly
distinguished. Conversely, reliable workers are busy most of the time, because since
they fail less, they obtain better reputation, and hence they are chosen first to service
subtasks.
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Figure 8: Discrimination of unreliable workers.

6.2.4. Collaborative synergy
In Figure 9 we show how the percentage of tasks serviced on time varies depending

on the collaborative synergy. Here, instead of allowing each agent to calculate its own
collaborative synergy, we fix it for all agents. We set all agents to pjf = 0.9, and
γ = 0.5, in order to give a greater weight to collaborative synergy.

As can be seen, the percentage of serviced tasks increases exponentially as soon
as we raise the collaborative synergy, and the high influence of this parameter is very
visible in the figure. In this case, as the weight of the synergy is high, the percentage
of serviced tasks does not increase until this value is approximately 0.6.

6.3. Adaptiveness analysis

In this section we analyze the adaptive capabilities of our decision mechanism.
Recall from Section 5 that our adaptive decision making mechanism is aimed at: (i)
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Figure 9: Serviced tasks on time increase exponentially when increasing collaborative synergy.

allowing coalitions to disband when they are no longer competitive; and (ii) allowing
agents to start new coalitions. We show that such features lead to an adaptation of the
number and composition of coalitions while maintaining a high percentage of tasks ser-
viced on time. Moreover, this occurs in a dynamic environment where the task arrivals
and the workload required by each task may vary. Thus, in Section 6.3.1 we consider
how coalitions evolve according to the initial number of coalitions and different task
workloads. In addition, in Section 6.3.2, we analyze how coalitions adapt when the
task workload varies during a simulation.

6.3.1. Adaptation to dynamic distributions of tasks
Here, we investigate how coalitions adapt when varying: (i) the initial number

of coalitions; and (ii) the customers’ incoming task workload. Figure 10a compares
the percentage of tasks serviced on time when using our adaptive mechanism (with
adaptation in the figure) with respect to not using it (no adaptation). Not adapting
means that new coalitions cannot be formed nor can coalitions be disbanded, so the
number of coalitions remains unaltered. Regarding the non-adaptive mechanism, we
present the evolution for three different initial conditions (low: 1 coalition; medium:
5 coalitions; high: 10 coalitions). Regarding the adaptive mechanism, we present the
percentage of tasks serviced on time when our adaptive mechanism starts with a low
number of coalitions (1 coalition). Note that, while we also ran experiments with
different initial numbers of coalitions, there are no significant differences, since our
mechanism allows coalitions to adapt to the needs of the environment.

When agents use our adaptive mechanism, the percentage of tasks serviced on time
remains stable even when varying the task workload. In fact, we see that 95% of tasks
are serviced on time, regardless of the incoming task workload. This is because our
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Figure 10: Comparison without adaptation (no adaptation) with our adaptive mechanism (with adaptation).

mechanism leads to adaption of the number and composition of coalitions to different
task workloads. In fact, in Figure 10b we show that as we increase the task workload,
the number of coalitions also increases in order to be able to service all incoming tasks.
Thus if we start with one coalition, we observe that when the task workload reaches
8, the number of coalitions increases to 8. In contrast, starting with a high number
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(10 coalitions), and a task load of 5, the number of coalitions decreases to 5. Thus
our adaptive mechanism allows: (i) the less competitive coalitions to disband when the
incoming load is not sufficiently high, so that there are no unused coalitions; and (ii)
any agent to start a new coalition when it considers it to be beneficial, so that tasks are
not unserviced as a result of there being no available coalitions.

Finally, we see that, as expected, without the adaptive mechanism, as the task work-
load increases the percentage of tasks serviced on time decreases. As the number of
coalitions is fixed, when coalitions reach their capacity, they cannot accept new incom-
ing tasks, so these tasks are not serviced. Note that as we increase the number of initial
coalitions, more tasks are serviced with the same incoming load. However, if the in-
coming task load is increased, then the behavior is similar to the results already shown.
Furthermore, we have calculated that if we increase load to more than approximately
30, then the percentage of tasks serviced on time degrades, regardless of whether it
uses our adaptive mechanism, because there are insufficient agents to service tasks.

6.3.2. Adaptation to dynamic changes
Finally, we analyze whether the decision making of coalitions and agents allows

them to adapt when the incoming task workload changes over time while maintaining a
high percentage of tasks serviced on time. Figure 11 presents a comparison between the
results obtained with (adaptive) and without our adaptive mechanism (non-adaptive).
For this experiment, we set the task workload to 7 (L = 7). Regarding adaptation, we
set the initial number of coalitions so that all task workloads can be serviced. Here,
every 500 units of time we changed the task workload, to observe its effects on the
percentage of tasks serviced on time. From time step 0 to time step 500 we used a
load L. Then, the load changed as follows: (1) double workload (L → 2L); (2) half
workload (2L→ L); (3) triple workload (L→ 3L); (4) reset workload (3L→ L).

We observe that when we use our adaptive mechanism: (i) the percentage of ser-
viced tasks on time remains constant and ∼ 95%, independently of the task workload;
and (ii) the results are independent of the initial L that we chose (L < 30).

Without adaptation, coalitions cannot be disbanded and agents cannot start coali-
tions, so the number of coalitions remains fixed. Thus, when the incoming workload is
higher than L, this causes the percentage of tasks serviced on time to decrease. More-
over, having a fixed number of coalitions, even from time step 0 to time step 500, also
causes the percentage of tasks serviced on time to be lower than with adaptation. This is
because if a coalition has a delay, no other coalition is formed, and there is no available
coalition to service tasks. Finally, after load changes, even when we set the load to L
again, the percentage of tasks serviced on time does not recover, since it has degraded.

7. Conclusions

In this paper, we have focused on building a dynamic coalition formation mecha-
nism that could be employed in collaborative scenarios like crowdsourcing, co-working,
etc., where complex tasks are performed by groups of working humans, modeled as
agents in this paper. Thus with the goal of improving the quality and quantity of com-
pleted tasks, in the context of a realistic scenario, we have introduced a novel decision-
making mechanism that allows agents in a competitive environment to autonomously
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Figure 11: Percentage of tasks serviced on time over time. Adaptive vs. non-adaptive.

enact and sustain coalitions. First, our mechanism allows a coalition: (i) to assemble
the most reliable team of agents to service a certain task based on agent reputation;
and (ii) to decide whether the coalition must be sustained or disbanded because it is
not longer beneficial. Second, our mechanism allows agents to decide whether to con-
tinue to be part of a coalition, or instead to join another coalition. In this approach, the
reputation mechanisms of agents and coalitions are a fundamental aspect of evaluating
individual and group quality, in order to recruit new members or to assign new tasks. In
evaluating our model and mechanisms, we have provided a set of quantitative simula-
tion results to show that the model of crowdsourcing envisioned by Kittur [16] delivers
major benefits. In fact, our study empirically reinforces Kittur’s model and proposals.

More specifically, we have provided empirical evidence showing that when agents
employ our decision mechanism it is possible for them to maintain high levels of cus-
tomer satisfaction (in terms of percentage of tasks serviced on time). First, we showed
that coalitions exhibit high resilience: the percentage of tasks serviced on time is high
despite a high percentage of unreliable workers. Even when the percentage of reli-
able agents is low (∼ 40%), the percentage of serviced tasks on time is beyond 80%.
Coalitions achieve high resilience through the use of a reputation mechanism that fa-
cilitates ratings about individual workers and coalitions as a whole. This mechanism
helps coalitions to quickly discriminate between good and bad workers. Second, we
showed that coalitions and agents successfully adapt to a varying distribution of cus-
tomers’ incoming tasks, both regarding the arrival rate and their characteristics. Thus,
we observe that ∼ 95% of tasks are serviced on time despite significant variations in
the incoming distribution of tasks. This occurs because our decision-making mecha-
nism enables: (i) coalitions to disband when they become non-competitive (particularly
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in scenarios with a low demand of tasks); and (ii) individual workers detect opportu-
nities to start a new coalition (particularly in scenarios with a high demand of tasks).
Thus, we have empirically seen that it is worth engineering group formation facilities
in crowdsourcing sites, using reputation in order to improve the overall performance.

As future work we plan to investigate further reputation mechanisms that take into
account not only delivery time, but also further task achieving dimensions. We also
plan to combine cost and reputation to create utility functions able to better discrim-
inate among coalitions. Similarly, we plan to study the effects of allowing agents to
belong to different coalitions at the same time. Although the main goal of this paper
is to improve the quality and the quantity of completed tasks in order to maintain high
levels of customer satisfaction, a study of agent gains and behavior is also relevant and
interesting, and we will undertake such an analysis in future work. In addition, we plan
to extend the model by allowing an agent to adopt more than two roles. Finally, we
plan to perform experiments involving humans, to validate our simulations, in order
that our approach may generate recommendations to humans regarding whether to join
a coalition, abandon a coalition, change a coalition, etc., in order to assemble the most
reliable teams of humans to maintain high levels of customer satisfaction.
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