
1

Using IRON to Build Frictionless On-line
Communities
Javier Morales a,b, Iosu Mendizabal b, David Sanchez-Pinsach b,
Maite Lopez-Sanchez b and Juan A. Rodriguez-Aguilar a

a Artificial Intelligence Research Institute, IIIA-CSIC, Spanish National Research Council.
E-mail: {jmorales, jar}@iiia.csic.es
b MAiA Department, Universitat de Barcelona, Spain.
E-mail: iosu.mendizabal@alumni.mondragon.edu, sdividis@gmail.com, maite@maia.ub.es

On-line communities are virtual environments where users exchange contents. Occasionally, users’ interactions lead to frictions,
jeopardising the proper functioning of the community. Trying to avoid frictions, on-line communities typically incorporate a
regulation mechanism based on (i) norms set by the owner of the community; and (ii) human moderators. In this paper we present
a participatory legislation mechanism that automatically synthesises norms for an on-line community based on users’ complaints
about contents. With this aim, we present an agent-based simulator to model the interactions within on-line communities. We then
exploit IRON, an automatic norm synthesis mechanism, to regulate simulated on-line communities. As a result, IRON synthesises
norms that prevent a user from uploading contents that users regard as unacceptable by means of complaints, hence avoiding
frictions.
Keywords: multi-agent normative systems, on-line communities, norm synthesis

1. Introduction

Since the diffusion of the Internet in the middle 90’s,
on-line communities have become extremely popular
tools for content exchange. On-line communities are
virtual environments that work over the Internet, al-
lowing users to share different types of contents (e.g.,
opinions, videos, and pictures). An on-line commu-
nity is an open, dynamic system. On the one hand, it
is open because the users may enter and exit along
time. On the other hand, it is dynamic because users
may also change their preferences and behaviours.
Within on-line communities users eventually interact
with other users that have very different opinions. As a
consequence, occasionally users’ interactions may lead
to frictions between users, which can be regarded as
conflicting situations (i.e., conflicts). These situations
complicate information exchange, causing discomfort
to users, who eventually may abandon the community.
As an example, uploading an inappropriate content can
be regarded as a conflict. Consider a user that uploads
a content that is not considered as acceptable by other
users, hence leading these to complain about it. Users
may engage in an argument, hence jeopardising the
frictionless of the on-line community.

Most on-line communities (e.g., Facebook, Twitter)
regulate users’ behaviours to prevent users from up-
loading contents that cause users’ complaints, hence
ensuring frictionless interactions. Typically, a regula-
tion mechanism is based on: (i) some pre-designed
terms and conditions (i.e., norms) set by the owner of
the community that describe, in general terms, users’
obligations, permissions and prohibitions; and (ii) hu-
man moderators who actively participate in the com-
munity, performing corrective actions in order to avoid
and solve conflicts. In some way, moderators’ actions
can be regarded as norms that are not explicit for the
users. However, this regulatory approach suffers from
lack of:

1. Democracy. The terms and conditions of an on-line
community are fixed by the owner of the community,
hence not allowing users to participate in the regulation
process.
2. Specificity. From a user’s point of view, the norms
of the community are not clear enough. The terms and
conditions of on-line communities are general descrip-
tions of what users should and should not do, but in
general they are not specific enough.
3. Transparency. The corrective actions that modera-
tors perform are somehow subjective, since they de-

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/45447491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

pend on their individual beliefs and principles. As an
example, consider a user that shares spam contents
within a community. A particular moderator may de-
cide to remove the content and ban the user for three
days, while another moderator may decide to simply
remove the content.
4. Adaptability. Users and their behaviours may change
along time. Therefore, the regulations that initially per-
formed well to regulate users’ behaviours may not be
effective any longer as the community changes.

Against this background, the main contribution of
this paper is a participatory legislation mechanism
for on-line communities aimed at trying to ensure
frictionless users’ interactions. Our mechanism takes
into account users’ actions and feedback to synthesise
norms that prevent users from uploading inappropri-
ate contents, hence avoiding frictions. Thus, the regu-
lation of the community becomes a participatory pro-
cess involving users. With this aim, our mechanism is
founded on the configuration and exploitation of IRON
(Intelligent Robust On-line Norm synthesis machine)
[12], a state-of-the-art norm synthesis mechanism, to
employ it in an agent-based simulation of an on-line
community. More precisely, the contributions of this
paper are:

1. An On-line Communities Simulator that allows to
simulate an on-line community as a Multi-Agent Sys-
tem (MAS). In our simulator, users are modelled as
agents that interact by exchanging contents.
2. The adaptation of IRON [12] to synthesise norms
for our on-line community simulator at runtime. In this
work, we exploit IRON to synthesise norms aimed at
avoiding frictions, considering users’ actions and feed-
back.
3. An empirical evaluation that shows that IRON is ca-
pable to synthesise norms for the users of our simulated
on-line community, based on the complaints they re-
port about conflicting contents. In general, we observe
that regulation occurs when the population as a whole
produces a significant enough number of complaints.

As a benefit of employing IRON, our mechanism
manages to synthesise norms which are: (i) concise,
allowing to regulate a MAS with a minimal set of
norms; and (ii) specific, since they describe users’ obli-
gations and prohibitions for specific situations; More-
over, our resulting legislation mechanism is: (i) partic-
ipatory, since the users of the community participate in
the synthesis of norms by means of their complaints;
(ii) transparent, because users are provided with ex-

plicit norms; and (iii) adaptive, since IRON is capable
of adapting the norms of the community to changes.

To the best of our knowledge, this paper is the first
contribution that studies the automated synthesis of
norms for on-line communities.

The paper is organised as follows. Next Section 2
describes our on-line community simulator. Section 3
describes IRON mechanism so that Section 4 can detail
the configuration and exploitation of IRON to synthe-
sise norms for our on-line community scenario. Sec-
tion 5 illustrates an empirical evaluation of IRON’s
norm synthesis for our on-line community scenario.
Section 6 connects this work with related work. Fi-
nally, Section 7 draws some conclusions and sets paths
to future research.

2. A Simulator for On-line Communities

Our On-line Communities Simulator allows to per-
form agent-based time-discrete simulations of users’
interactions within an on-line community scenario. It
has been implemented with the aid of Repast Simphony
[13]. In what follows we outline its features.

2.1. Simulator Outline

Within an on-line community, each user’s behaviour
is simulated by means of an agent. Henceforth we
will refer to user and agent interchangeably. The on-
line community has a population of users that in-
teract by exchanging contents in three different sec-
tions: The Reporter, Forum and Multimedia. Sec-
tion The Reporter allows users to share news. In the
Forum section, users interact by sharing contents. Fi-
nally, section Multimedia lets users to upload multi-
media contents such as videos and pictures.

Briefly, our simulator works as follows. Time is dis-
crete and measured in ticks. At each tick, each commu-
nity user may: (1) upload new contents to some section
in the community; (2) view contents; and (3) complain
about viewed contents that she regards as conflictive.
Each content a user uploads has a category out of a
set of categories Cct = {correct,spam,porn,insult,
violent}. On the one hand, correct contents are
those that users feel comfortable with, and hence do
not complain about. On the other hand, conflicting con-
tents (i.e., spam, porn, insult and violent) are those
that may cause frictions between users. For the sake
of simplicity, in our simulator agents use a contents
database in order to generate contents. Furthermore,
we assume that contents in the database are previously

3

(1) By order (2) Most viewed (3) Random

sectionsusers

users' complaintsconflicting content correct contentconflicting content

Fig. 1. On-line Communities Simulator: Grid representation of our on-line community scenario.

assigned a category out of Cct , and that the assigned
category is correct.

Our simulator allows to classify community users
with different behaviours regarding which categories
of contents they upload. In particular, a user can be
classified in a category out of a set of categories Cu = {
moderate,spammer,pornographic,rude,violent}.
For instance, a moderate is a user that mostly uploads
correct contents, while a spammer tends to upload
spam contents. Users may complain about contents.
When complaining, users must label the complaint
with a category out of a set of categories Ccm = {spam,
porn,insult,violent}. Our simulator assumes that
when a user complains about a content, the category of
the complaint is the same category as the content. As
an example, consider a user that views a spam content
and finds it unacceptable. Then, she reports a complain
which is considered to be of spam category.

Our simulator provides facilities to configure, ex-
ecute and monitor simulations: (i) a scenario display
that allows to visualise users’ interactions in the on-
line community; and (ii) an agents’ population design
tool that allows to design populations of agents with
different profiles. Hence, in order to execute a simula-
tion, a designer must first design a population by means
of the population design tool, and subsequently run a
simulation with the configured population. Addition-
ally, our simulator allows to run single simulations that
can be monitored with a graphical display, or, alterna-

tively, to run simulations in background to perform ex-
periments. The results of background executions can
be analysed by means of charts. Furthermore, the sim-
ulator is prepared to execute simulations in background
in a computer cluster.

In what follows we describe the scenario display, as
well as the population design tool.

2.2. The On-line Community Display

Our simulator provides tools to display informa-
tion about simulation runs. On the one hand, it pro-
vides a display to show qualitative information about
the state of the scenario at each tick. On the other
hand, it provides an inspector panel to show quanti-
tative information about contents and their associated
complaints. Figure 1 shows a screen shot of the dis-
play. Our simulator represents an on-line community
as a grid where each cell corresponds to a position
where a user can upload a content. Columns in the
grid are grouped into the three different content sec-
tions previously introduced: The Reporter, Forum,
and Multimedia. Each row corresponds to an agent in
the user population of the on-line community. When-
ever a user uploads a new content into a section, it is
displayed into the next empty cell for that section in
the corresponding user’s row. Different types of con-
tents may be distinguished to be correct (displayed
in light-green in the figure with an ”OK” label) from

4

Fig. 2. On-line Communities Simulator: User profile definition and
population specification.

(yellow/red coloured) conflicting ones, with the corre-
sponding label in the display. When clicking on a con-
tent, the inspector panel shows its number of views.
Contents with associated complaints are marked with
a blue as exclamation mark below the content. When
clicking on the complaints mark, the inspector panel
shows the number of complaints that are associated to
the corresponding content.

2.3. Designing Users’ Populations

Within an on-line community we may find users
with different preferences and behaviours. With the
aim of modelling different types of users, our simulator
incorporates a population design tool, which is shown
in Figure 2. It allows the designer to define users’ pref-
erences and describe their behaviours with regard to
the contents they upload, view and complain about.
The top of Figure 2 shows the current population that is
being specified (depicted with label ”Standard”). The
bottom of the figure shows the composition of the pop-
ulation which is being designed. In particular, it shows
a population of six different agents, which corresponds
to the simulation run in Figure 1. For a given popu-
lation, our design tool allows to create and define the
profile of each user type (a moderate agent in the pic-
ture). A user profile describes how often a user up-
loads, views and complains about contents. Moreover,
it also allows to specify the category of contents the
user will choose to upload, view and complain about.
As Figure 2 shows, a user profile contains three sub-
profiles: the upload profile, the view profile, and the
complaint profile. Next, we describe each sub-profile.

The upload profile describes: (i) the upload frequency

of the user, namely the probability of the user of up-
loading contents at a given tick; and (ii) different up-
load probabilities for each content category. Thus,
whenever a user uploads a content, the category of this
content (correct, spam, porn, insult and violent) de-
pends on some probability. Notice that all the probabil-
ities assigned to different types of contents must sum
up 1. As an example, the left part of Figure 2 shows the
upload profile of a moderate user. It describes a user
that uploads contents at each tick with probability 0.4.
Every time she uploads contents, she has probability
0.8 of uploading correct contents, while she uploads
insults with probability 0.2.

The view profile defines users’ preferences in terms of
the probability of viewing contents from each section
of the community. The central part of Figure 2 shows a
user’s view profile. Likewise the upload profile, all the
probabilities assigned to different sections must sum
up 1. Moreover, the view profile also considers the view
mode, which describes three different ways to choose
contents to view:

1. By order. This method chooses the most recently
uploaded contents in the community. Specifically, this
method works as follows. First, it sorts all uploaded
contents by the time they were uploaded. Second,
it assigns a probability to each content according to
a gamma distribution (Γ(1,2)).1 Third, it randomly
chooses the next content to view, according to the
gamma distribution.
2. Most viewed. It chooses the contents with a larger
number of visits. Specifically, it sorts contents by num-
ber of views, assigning to each content a probability
according to a gamma distribution (Γ(1,2)).
3. Randomly. This method chooses contents accord-
ing to a uniform random distribution.

The complaint profile defines the probability of a user
of complaining about each type of visited content. No-
tice that, unlike previous probabilities, these values are
independent and, hence, their addition is not required
to be 1. The right hand side of Figure 2 depicts the
complaint profile of a moderate user that complains
about all type of conflicting contents with probability
one.

Notice that, even though two users may have the same

1A graphical representation of this distribution can
be found at http://en.wikipedia.org/wiki/File:
Gamma_distribution_pdf.svg

http://en.wikipedia.org/wiki/File:Gamma_distribution_pdf.svg
http://en.wikipedia.org/wiki/File:Gamma_distribution_pdf.svg

5

Upload Profile View Profile Complain Profile
Type P Section P Type P
Correct: 1 The Reporter: 0.4 Correct: 0
Spam: 0 Forum: 0.4 Spam: 1
Porn: 0 Multimedia: 0.2 Porn: 1
Insult: 0 TOTAL 1 Insult: 1
Violent: 0 View Mode Violent: 1
TOTAL: 1 By Order ◦
Upload Frequency Most Viewed •
Frequency: 1 Random ◦

Table 1
A single-behaviour moderate user’s profile (P stands for probability)

category, their user profiles may be different. As an ex-
ample, a moderate user may upload 100% correct con-
tents, while another moderate user may upload 95%
correct contents and 5% violent contents. As a conven-
tion, whenever a user is configured to upload a single
content category with probability 1, we say that she is a
single-behaviour user. As an example, table 1 depicts a
single-behaviour moderate user’s profile, since she has
probability 1 to upload correct contents, while she has
probability 0 to upload any other type of content. By
contrast, whenever a user is configured to upload more
than one content category with probabilities lower than
1, we say that she is a mixed-behaviour user. Figure
2 depicts a mixed-behaviour moderate user’s profile,
since she has probability 0.8 of uploading correct con-
tents and probability 0.2 of uploading insults.

3. Background

At this point we have described our on-line com-
munities simulator. We now survey IRON, an abstract
and domain-independent online norm synthesis mech-
anism that we employ to regulate on-line communi-
ties. With this aim, IRON synthesises norms that are
employed by the users of a community to avoid con-
flicts. Figure 3 illustrates the abstract architecture of
IRON. In brief, it works by continuously monitoring
agents’ interactions in a distributed manner through its
sensors, searching for conflicting situations. At each
system’s time step, IRON carries out the overall norm
synthesis process throughout three subsequent stages.
Firstly, whenever it detects new conflicts it performs
a norm generation process that synthesises norms for
the agents of the MAS. These new norms, which regu-
late agents’ behaviour and are aimed at avoiding con-
flicts in the future, are then communicated to the agents
of the MAS. Secondly, since at each time step agents
choose whether to comply or not with norms, IRON
monitors the consequences of such decisions to evalu-

IRON Machine

Norm-aware multi-agent system

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

Scenario-
dependant
inputs

Normative
system (Ω)

observations

1. Norm
generation

2. Norm
evaluation

3. Norm refinement

Fig. 3. IRON’s abstract architecture.

ate norms. In other words, it performs a norm evalua-
tion process to assess if norms manage to avoid con-
flicts or not. Thirdly, it carries out a norm refinement
process, which: (i) generalises norms when possible,
joining several norms to a single parent that concisely
represents all of them; and (ii) discards those norms
that have not performed well for a period of time.
Fourthly, if IRON has made any changes to the nor-
mative system, either by adding or removing norms, it
sends the new normative system to the agents within
the MAS. Notice then that IRON’s norm synthesis is
a conflict-driven process. It generates norms whenever
new conflicts arise, and it evaluates norms based on the
conflicts that arise after agents fulfil or infringe norms.
Moreover, it generalises and specialises (deactivates)
norms based on their continuous evaluations. There-
fore, conflicts also affect norm refinement.

Before detailing IRON’s norm synthesis process, first
we will detail IRON’s information model. Consider
a Multi-Agent System (MAS) composed of a set of
agents Ag = {ag1, . . . ,agn} and a set of actions Ac =
{ac1, . . . ,acc} available to the agents. Agents in the
system have their local, individual context, which is
described in terms of their local point of view (that
is, mimicking their perception) In IRON, norms are of
the form 〈ϕ,θ(ac)〉 where ϕ is the norm’s precondi-
tion, θ is a deontic operator (e.g., a prohibition) and
ac ∈ Ac is an action available to the agents. The pre-
condition of a norm is a set of first-order n-ary predi-
cates p(τ1, . . . ,τn), where p is a predicate symbol and
(τ1, . . . ,τn) is a set of terms. In IRON, norms are ex-
pressed in terms of agents’ individual contexts so that
they can be understood by them. Hence, whenever the
individual context of an agent satisfies the precondi-
tion ϕ of a norm, then the norm applies to the agent
and θ(ac) holds for it. We define a normative system

6

Ω as the set of norms that are currently active in the
multi-agent system.

As an example, consider a traffic scenario where
agents are driving cars, and conflicting situations
are collisions between cars. We consider three unary
predicate symbols {le f t, f ront,right} representing the
three road positions that an agent perceives. Each pred-
icate has a single term from {police,ambulance, f ire−
brigade,emergency,nil} representing different types
of emergency vehicles, and symbol “nil” standing for
no vehicle. The actions available to agents are Ac =
{go,stop}. With these definitions in place we can cre-
ate norms such as n1,n2,n3. All three norms establish
a prohibition to go to an agent that has different types
of emergency vehicles to its left position, and nothing
to its front and right positions.

n1 : 〈{left(police), front(nil), right(nil)}, prh(go)〉
n2 : 〈{left(ambulance), front(nil), right(nil)}, prh(go)〉
n3 : 〈{left(fire-brigade), front(nil), right(nil)}, prh(go)〉

IRON is an abstract, domain independent mechanism.
However, in order to configure it for different sce-
narios, it requires some domain-dependant inputs that
must be implemented for each specific scenario. In
what follows, we will describe IRON’s norm synthesis
process as well as the inputs it requires to synthesise
norms for a specific scenario.

3.1. Norm Synthesis Process

IRON is based on three components to perform
norm synthesis: (i) a normative network (NN), which
is a graph-based data structure to represent explored
norms, (ii) a set of normative network operators that
allow to apply changes to the normative network, and
(iii) a strategy to apply operators to the normative net-
work. The right-hand side of Figure 4 illustrates the
components of IRON. The control unit contains the set
of operators O, as well as a strategy Π to apply opera-
tors. IRON’s strategy applies operators to the normative
network in order to retrieve information about norms
and to apply changes to the normative network (see
read and write arrows in Figure 4). In what follows, we
briefly describe these three main components.

3.1.1. The Normative Network
IRON represents explored norms by means of the

normative network (NN). Specifically, a normative net-
work is a graph-based data structure whose nodes stand
for norms and whose edges stand for (generalisation)

IRON Machine

Control
Unit
(Ο,Π)

Normative
network

read

write

I
N
P
U
T

S E N S O R S

O
U
T
P
U
T

G
Grammar

G
Conflict detectorf

conflict

Aplicability function

μ
eff

, μ
nec

Utility functions

Time interval
T

Satisfaction degrees
Θ

f
apply

& thresholds

Scenario
observations

Normative
system (Ω)

Fig. 4. IRON’s components and inputs.

n
1

n
1

n
2

NN
i

NN
i+1

n
1

n
2

NN
i+2

create deactivate

Fig. 5. Evolution of a Normative Network along time.

relationships among norms. In a normative network,
norms can be either active or inactive. The set of active
norms in the normative network constitutes the norma-
tive system that is provided to the agents in the sce-
nario. Figure 5 illustrates the evolution of a normative
network (and its corresponding normative system) over
time period ti− ti+2. At time step ti, the normative net-
work NNi contains one unique active norm n1 (repre-
sented as a white circle), hence representing the norma-
tive system Ωi = {n1}. At time ti a new active norm n2
is created and added to the normative network, hence
leading to NNi+1 = {n1,n2} and Ωi+1 = {n1,n2}. Fi-
nally, at instant ti+2 norm n2 is deactivated (repre-
sented as a gray circle), yielding NNi+2 = {n1,n2} and
Ωi+2 = {n1}. Notice that at time step ti+2 the norma-
tive system contains one unique norm n1, even though
the normative network contains two norms n1,n2. Re-
call that a normative network represents a normative
system as its active norms, and at time ti+2 the only
active norm in the normative network is n1.

3.1.2. Operators for normative networks
IRON transforms the normative network over time,

leading from one normative system into another, search-
ing for a normative system that effectively coordinates
the MAS. With this aim, it includes four different op-
erators. More precisely, IRON implements operators to
perform: (i) the creation of a new norm, activating it
and adding it then to the normative network, (ii) the de-
activation of a norm in the normative network, hence
removing it from the normative system, (iii) the gen-
eralisation of a group of norms in the normative net-
work to a more general norm that concisely represents

7

all of them, and (iv) as a dual operation to generalisa-
tion, the specialisation of a general norm to more spe-
cific norms. Next we detail each operator:

Add. The add operator adds a norm to the normative
network so that IRON can keep track of its ability to
avoid conflicts.

Activate. As described above, norms in a normative
network may be either active or inactive. Operator ac-
tivate sets the state of a norm in the normative network
to active so that it belongs to the normative system.

Create. The create operator synthesises a new norm
from each new detected conflict. Next, it employs op-
erators add and activate to activate the norm and add it
to the normative network. Thus, the created norm will
be included in the normative system. IRON assumes
that a conflict can be avoided if some of the agents’
previous actions are not performed. Thus, it generates
norms that prohibit agents to perform such actions in
the same conflictive context. Specifically, the create
operator receives a set of detected con f licts and gen-
erates a new norm for each conflict. This generation
process is based on an unsupervised version of clas-
sical Case-Based Reasoning (CBR) [1] (more details
can be found at [12]). Figure 5 illustrates the creation
of a norm. At time ti, the normative network NNi con-
tains one active norm n1. By applying operator create,
a new active norm n2 is added to the normative net-
work, yielding NNi+1 = {n1,n2} and Ωi+1 = {n1,n2}.

Deactivate. Consider that at a given time IRON detects
that a norm does not succeed in avoiding conflicts, and
hence must be removed from the normative system.
IRON will not remove the norm from the normative net-
work, but it will use operator deactivate to set the state
of the norm to inactive. Therefore, the norm will no
longer belong to the normative system but the norma-
tive network will still have it to keep track of its explo-
ration. Again, Figure 5 depicts the normative network
NNi+1, which at time ti+1 contains two active norms
n1,n2. Then, operator deactivate deactivates norm n2,
yielding NNi+2 = {n1,n2} and Ωi+2 = {n1}.

Generalise. As part of the norm refinement process,
IRON uses operator generalise to represent several
norms as a more general, single norm that implicitly
includes all of them. Specifically, norm generalisations
can be performed for any norm in the normative net-
work. Thus, by means of norm generalisations IRON
reduces the cardinality of synthesised normative sys-

n
1

n
2

NN
i

n
3

n
1

n
2

NN
i+1

n
3

n
4

generalise

Fig. 6. Generalisation of norms
n1,n2,n3 to a new norm n4.

n
1

n
2

NN
i

n
3

n
1

n
2

NN
i+1

n
3

n
4

specialise

n
4

Fig. 7. Specialisation of norm n4
to its child norms n1,n3.

tems. As an example, consider norms n1,n2,n3 de-
scribed above in this section. All these three norms can
be generalised to the following norm:

n4 : 〈{left(emergency), front(nil),right(nil)}, prh(go)〉

Norm n4 prohibits an agent to go whenever it per-
ceives any type of emergency vehicle (either police,
ambulance or fire-brigade) to its left position, and noth-
ing to its front and right positions. Figure 6 illustrates
the generalisation of n1,n2,n3 to n4. At time ti, the
normative network NNi contains three active norms
n1,n2,n3. Then, IRON generalises them to n4 by per-
forming the following steps: (i) it generates norm n4,
(ii) it activates n4 and adds it to the normative net-
work, (iii) it establishes generalisation relationships
from n1,n2,n3 to n4, and (iv) it deactivates norms
n1,n2,n3, removing them from the normative system.

Specialise. Operator specialise undoes a norm gener-
alisation, specialising a general norm into a set of more
specific norms. As an example, consider the normative
network NNi depicted in Figure 7. It represents nor-
mative system Ωi = {n4}, containing one single norm
which is applicable in the specific situations described
by norms n1,n2,n3. Consider now norm n2 does not
succeed in avoiding conflicts, and hence it must be
removed from the normative system. Even though n2
does not belong to the normative system, it is implic-
itly represented by n4. Therefore, operator specialise
specialises n4, deactivating it and activating n1,n3 in
the normative network. Thus, after the norm specialisa-
tion, the normative system becomes NNi+1 = {n1,n3},
which no longer contains the situation described by n2.

3.1.3. IRON’s strategy
IRON invokes previous operators by following a spe-

cific strategy to perform the norm synthesis process.
Specifically, the proposal of [12] is to monitor the evo-
lution of the system at regular time intervals and apply
operators under certain conditions. The strategy that
IRON follows may be divided into three consecutive
stages: norm generation, norm evaluation and norm re-
finement. Next we detail each stage of the norm syn-
thesis strategy.

8

Norm generation. During this phase, IRON first mon-
itors the multi-agent system operation through a set
of distributed sensors, searching for conflicts. As de-
picted in Figure 4, IRON represents agents’ perceived
interactions in the form of observations, which are par-
tial descriptions of the scenario from a global, external
observer’s perspective. Then, it performs conflict de-
tection within perceived observations. Whenever con-
flicts arise, it invokes the previously described opera-
tor create to generate norms that regulate agents’ be-
haviour in order to avoid detected conflicts in the fu-
ture. Recall that, since agents must be able to under-
stand norms, IRON describes norms from an agent’s lo-
cal perspective.

Norm evaluation. At each time step, some norms may
apply to the agents. In this case, agents decide whether
to fulfil norms or infringe them. During the norm eval-
uation stage, IRON monitors the effects of such deci-
sions in order to assess if norms succeed in avoiding
conflicts. With this aim, it determines if agents have
fulfilled or infringed norms, and which of these ful-
filments or infringements have led to conflicts. Then,
norms are evaluated in terms of their effectiveness and
necessity, represented as µe f f and µnec. On the one
hand, IRON measures the effectiveness µe f f of a norm
from the outcomes of its fulfilments: the higher the ra-
tio of successful fulfilments (fulfilments that did not
end up with conflicts), the more effective the norm.
On the other hand, it measures the necessity µnec of a
norm according to the following principle: the higher
the ratio of harmful infringements (infringements lead-
ing to conflicts), the more necessary the norm. Finally,
IRON computes the effectiveness and necessity ranges
of norms during a period of time T . Specifically, a
range of a norm contains a lower and upper bound
for the range of values of effectiveness or necessity
(µe f f ,µnec) of the norm during T . These ranges will be
used, as we show below, to refine norms.

Norm refinement. The norm refinement process yields
a new normative system transforming the norma-
tive network, deactivating ineffective or unnecessary
norms, and performing norm generalisations and spe-
cialisations. On the one hand, it generalises a norm
whenever the lower bound of its effectiveness and ne-
cessity ranges are over a generalisation threshold αgen.
On the other hand it specialises (deactivates) a norm
whenever the upper bound of its effectiveness or neces-
sity ranges are under a specialisation threshold αspec.

3.2. IRON’s inputs

As detailed above, IRON’s norm synthesis is an ab-
stract, domain-independent mechanism. However, dur-
ing the norm synthesis process it requires some do-
main information: (i) a grammar G to define norms
for the given scenario; (ii) a conflict detection func-
tion fcon f lict that allows to detect conflicts in perceived
observations; (iii) a norm applicability function fapply
to determine whether a norm applies to the agents in a
perceived observation; (iv) norm evaluation functions
to compute the effectiveness and necessity of norms in
the normative network; and (v) a set of configuration
parameters composed of a time interval (T) to compute
effectiveness and necessity ranges of norms during a
period of time T , as well as a set of thresholds to define
the acceptable range of effectiveness and necessity of
norms, to consider to generalise and specialise norms.

3.2.1. A Grammar for norm synthesis
The first input IRON requires is a grammar to syn-

thesise norms of the form 〈ϕ,θ(Ac)〉 for the given
scenario. IRON adapts its grammar from [4], us-
ing as building blocks atomic formulae of the form
pn(τ1, . . . ,τn), p being an n-ary predicate symbol and
τ1, . . . ,τn terms of an agents’ language that describes
agents’ individual contexts.

Norm ::= 〈ϕ,θ(Ac)〉
ϕ ::= ϕ & ϕ | α
θ ::= obl | prh
Ac ::= ac1 | ac2 | . . . | acn
α ::= pn(τ1, . . . ,τn)

In order to configure IRON to synthesise norms for a
given scenario, this abstract grammar must be instanti-
ated, specifying the predicates and terms that are con-
sidered for that particular scenario.

3.2.2. A function for conflict detection
The definition of conflict is domain-dependant. For

instance, in a traffic scenario a conflicting situation
may be a collision among cars, while in an on-line
community scenario a conflict may be defined as a
user that uploads inappropriate contents (e.g., upload-
ing a spam content), hence leading other users to com-
plain about it. Therefore, IRON requires as an input
a function fcon f lict to detect conflicts for a given sce-
nario. Specifically, function fcon f lict receives as an
input a set of perceived observations, and returns
a set of con f licts that it has detected within these
observations.

9

3.2.3. A function to detect norm applicability
As described in Section 3.1.3, IRON evaluates norms

based on the consequences of agents’ norm fulfilments
and infringements. With this aim, function fapply re-
ceives as an input a set of perceived observations, and
returns a set of norms that apply in the situations de-
scribed by the observations. Specifically, this func-
tion operates as follows. First, it computes the individ-
ual context of each agent in the observation. Second,
for each agent’s individual context, it retrieves which
norms apply to that context. As an example, consider
an agent which perceives a police car to its left, and
nothing to its front and right positions. In this specific
individual context, norm n1 applies to the agent and
hence the agent is forbidden to go.

3.2.4. Functions to evaluate norms
During norm evaluation, IRON requires as an input

two functions µe f f and µnec to evaluate the effective-
ness and necessity of norms. In fact, these functions
are not really scenario-dependant. They evaluate norms
based on the conflicts (in general) that arise after agents
fulfil or infringe norms. However, IRON provides two
default utility functions µe f f and µnec that may be re-
placed by other functions explicitly implemented for a
specific scenario. IRON’s default utility functions eval-
uate norms along the lines of the explanation of norm
evaluation in section 3.1.3. Function µe f f computes the
effectiveness of a norm as its ratio of successful fulfil-
ments. Function µnec computes the necessity of a norm
as its ratio of harmful infringements. The definition of
default formulas µe f f ,µnec correspond to the formulas
1, 2, 3, 4 in [12].

3.2.5. Configuration parameters
Recall from section 3.1.3 that IRON refines the nor-

mative system deactivating, generalising and special-
ising norms, based on their effectiveness and neces-
sity ranges and a set of generalisation and specialisa-
tion thresholds. Therefore, IRON requires as an input
parameter T to compute ranges, as well as thresholds
αgen,αspec to generalise and specialise norms. A low
time interval T , will make IRON to be more reactive
to changes in effectiveness and necessity ranges, re-
fining the normative system in consequence. By con-
trast, large time intervals T will make IRON to be more
conservative to refine the normative system, since ef-
fectiveness and necessity ranges will be less reactive
to changes. Moreover, the greater the generalisation
threshold is, the more conservative IRON is about gen-
eralising norms. Finally, the lower the specialisation
threshold is, the more conservative IRON will be about
deactivating norms.

4. Frictionless On-line Communities: Exploiting
IRON to Synthesise Norms
At this point we have described our on-line commu-

nities simulator, as well as IRON, a mechanism for the
on-line automated synthesis of norms for MASs. We
now employ IRON to build a participatory legislation
mechanism for an on-line community, where commu-
nity users participate in the regulation process. With
this aim, in this section we describe how to configure
IRON to synthesise norms for the agents in our on-line
communities simulator.

Even though IRON is an abstract mechanism (i.e.,
scenario independent), during the norm synthesis pro-
cess it employs some elements that are scenario-
dependant. First, IRON’s perceived observations are
scenario-dependant, since each scenario may be com-
posed of different elements, and may be described in
different ways. Second, in order to generate, evalu-
ate and refine norms, IRON requires some scenario-
dependant inputs (described in Section 3.2), which al-
low to generate norms for the scenario, as well as
detecting conflicts, norm applicability and evaluate
norms. In what follows we provide the specification
of IRON’s perceived observations, as well as IRON’s
scenario-dependant inputs.

4.1. Perceiving On-line Communities

Recall from Section 2 that our on-line commu-
nity scenario is divided into three different sections
where the users upload, view and complain about con-
tents. In order to perceive the scenario, at each time
step the simulator generates observations for IRON. A
observation is composed of three lists, one for each
section. Each element in a list contains a content that
has been uploaded, viewed, or complained about, as
well as the corresponding action, and the identifier of
the user who performed the action. Moreover, each
content incorporates the information about its cate-
gory and its owner, namely the user that uploaded the
content. As an example, consider that during the cur-
rent time step user u1 has uploaded a correct con-
tent in section Forum, and user u2 has viewed and com-
plained about a spam content (whose owner is user u1)
in section Multimedia. The corresponding observa-
tion can be thus described as shown in Table 2. In sec-
tion Forum, it shows user u1 that has performed the ac-
tion upload over a content of category correct. In
section Multimedia, the table shows that user u2 has
performed two actions: a view and a complain over a
content with category spam, whose owner is user u1.

10

n : 〈(user(u1), section(Multimedia), contentCatg(spam)), prh(upload)〉
n′ : 〈(user(u3), section(Forum), contentCatg(violent)), prh(upload)〉

Fig. 8. Examples of norms for the on-line community scenario.

The Reporter Forum Multimedia
content: id(1) content: id(2)
• action: u1→ upload • action1: u2→ view

• category: correct • action2: u2→ complain

• owner: u1 • category: spam
• owner: u1

Table 2
An example of an IRON’s observation

4.2. Norms for On-line Communities

We must provide IRON with a specific grammar
to synthesise norms for the on-line community sce-
nario. By following the grammar specification in
Section 3.2.1, we instantiate our grammar as fol-
lows. On the one hand, a norm precondition has
three unary predicates with predicate symbols in P =
{user,section,contentCatg}. The term for predicate
user is one out of the set of user identifiers U . The term
for predicate section is one out of the set of section
names S= {Forum,Multimedia,The Reporter}. The
term for predicate contentCatg is one out of the
set of content categories Cct = {correct,spam,porn,
insult,violent}. On the other hand, we consider
each norm’s consequence only specifies a prohibition
to perform the action upload of the content in the con-
text (thus, the deontic operator is θ = phr). Therefore,
norms establish prohibitions for users to upload certain
types of contents to some community sections. Figure
8 shows two examples of norms n and n′ automatically
synthesised by IRON by means of this grammar. Norm
n prohibits user u1 to upload spam contents into the
Multimedia section, while norm n′ prohibits user u3 to
upload violent contents into the Forum section. Recall
from Section 3 that IRON generates new norms when-
ever it detects new conflicts in the scenario. In what
follows we explain how to detect conflicts in our on-
line community scenario.

4.3. Detecting Conflicts in On-line Communities: A
Participatory Approach

Function fcon f lict identifies conflicts in a observation
perceived by IRON. Our definition of fcon f lict is aimed
at letting users jointly decide what type of situations
represent a conflict for them (e.g., the upload of an of-
fensive content). Particularly, in our on-line commu-

nity scenario, conflicts can be identified based on the
complaints users report about contents. Consider that
a user uploads some content, and then that content re-
ceives a number of complaints which is high enough
with respect to the number of views. In that case, the
action of uploading the content is considered as a con-
flict. Recall from Section 3 that IRON’s norm synthesis
is conflict-driven, since it generates, evaluates and re-
fines norms based on conflicts. Therefore, thanks to our
definition of conflict, the whole norm synthesis pro-
cess becomes a participatory process which is guided
by users’ complaints.

Our instantiation of function fcon f lict is designed to
assess if the contents within a given observation are
conflictive or not. In particular, for each given content
it uses function con f lictive(content) to check if it is
conflictive. This function computes the complaint ra-
tio of contents that have been viewed at current time
step. The complaint ratio of a content is computed as
the ratio of the accumulated number of complaints over
its total number of views. This function returns true if
the content: (i) has a minimum number of N views (to
ensure that the conflict computation is performed with
enough evidence); and (ii) is considered to be conflic-
tive, namely if its complaint ratio is larger than a con-
flict threshold αcon f lict ∈ [0,1]:

con f lictive(content) =

{ true if views(content)≥ N and
complaints(content)

views(content)
> αcon f lict

f alse otherwise

As an example, consider that user u1 uploads a
spam content in section Multimedia. Consider now
that other users view the content and complain about
it, reporting a complaint of type spam. In case the ra-
tio between users’ complaints about that content and
its total number of views is over threshold αcon f lict ,
then uploading spam contents in section Multimedia
is considered as a new conflict. Therefore, the users of
the on-line community trigger, by means of their com-
plaints, the generation of norm n (depicted in Figure 8),
which prohibits user u1 to upload spam contents into
section Multimedia.

4.4. Detecting norm applicability

Our implementation of the applicability function
fapply required by IRON works as follows. Given a

11

observation, it performs the following steps: (i) it gen-
erates a list with the identifiers of the users that have
uploaded new contents into the community during the
current time step; (ii) it computes the individual con-
text of each user that has uploaded contents; and (iii) it
retrieves the norms that apply to each agent’s individ-
ual context. As an example, consider that the current
normative system is Ω = {n,n′}. Consider now that
IRON perceives that user u1 uploads a spam content in
section Multimedia. First, function fapply builds a list
with the identifier of user u1, since it has recently up-
loaded contents. Second, it computes u1’s individual
context in the same format than the precondition of a
norm as specified by the grammar. Thus, u1’s individ-
ual context can be compared with the preconditions of
norms in order to detect what norms apply to the user.
For instance, say that u1’s individual context is:

(user(u1),section(Multimedia),contentCatg(spam))

Third, function fapply retrieves the norms within the
current normative system that apply to this specific in-
dividual context. Notice that the individual context of
u1 is equal to the precondition of norm n. Therefore,
norm n applies to user u1, and hence the prohibition to
upload spam contents to section Multimedia holds for
her.

4.5. Evaluating norms in on-line Communities

Recall from Section 3.2.4 that IRON provides default
functions to evaluate norms in terms of their effective-
ness and necessity. Within our on-line community sce-
nario, norms cannot be evaluated in terms of their ef-
fectiveness since norm applicability is not observable.
As an explanation, recall that (i) norms are aimed at
prohibiting users to upload conflicting contents, and
(ii) the effectiveness of a norm is computed from the
outcomes of its fulfilments. Whenever a user fulfils a
norm, then it does not upload conflicting contents and
conflicts do not arise. As a consequence, IRON cannot
detect whether the absence of conflicts is because ei-
ther the user fulfilled a norm or because she did not
have the intention to upload conflicting contents.

By contrast, norms can be evaluated in terms of their
necessity. Whenever a user uploads conflicting con-
tents, then conflicts arise and IRON can detect that the
user has infringed a norm. Specifically, we evaluate
norms’ necessity by means of IRON’s default neces-
sity function µnec. Specifically, the necessity of a norm
is computed as its ratio of harmful infringements. On
the one hand, norm infringements that lead to con-

flicts make IRON to evaluate the norm as necessary. On
the other hand, norm infringements that lead to non-
conflictive situations make IRON to evaluate the norm
as unnecessary.

5. Empirical Evaluation

We now perform a preliminary empirical evalua-
tion of IRON’s norm synthesis for the online com-
munity scenario described in Section 2. We first de-
tail in section 5.1 the empirical settings of our experi-
ments. Thereafter, in section 5.2 we empirically show
that IRON is capable of synthesising norms for on-line
communities, searching for a normative system that
avoids conflicts, hence satisfying the community users
by avoiding frictions.

5.1. Empirical settings

Our experiments employ the simulator described in
Section 2 to simulate an on-line community scenario.
As depicted in table 3, in addition to the user popula-
tion design tool, the simulator provides a set of param-
eters to configure simulations. The table also shows
IRON’s parameters, which allow to configure the norm
synthesis process performed by IRON. As initial exper-
iments with our simulator, in our experiments we con-
sider different populations composed of 10 agents that
model community users. In particular, our populations
are composed of single-behaviour moderate users and
spammers. On the one hand, single-behaviour moder-
ates upload correct contents with probability 1. Mod-
erate users complain about spam contents according to
a probability (complain rate or CR hereafter), which
is defined in their individual complain profiles. On the
other hand, single-behaviour spammers upload spam
contents with probability 1 (divided equally into the
three sections of the community), while they never
complain about spam contents.

We aim at studying how IRON manages to converge
to a stable normative system that avoids conflicts when
the users’ population is composed of different percent-
ages of complaining users (i.e., moderate users). With
this aim, we perform our empirical evaluation for:

1. A population with a majority of complaining users,
composed of 7 moderates and 3 spammers.
2. A balanced population, composed of 5 moderates
and 5 spammers.
3. A population with a minority of complaining users,
composed of 3 moderates and 7 spammers.

12

Parameter Description Value
CR Users probability to complain See Section 5.1

about inappropriate contents
NIR Norm infringement rate 30%,50%,70%
N Min. number of views to assess if 10

a content is conflicting
αcon f lict Threshold to evaluate contents 0.3

as conflictive
T Window size to compute norms 100

performances
αgen Norm generalisation threshold 0.6
αspec Norm specialisation threshold 0.2
wIC Importance of harmful infringements. 1
wIC̄

Importance of harmless infringements. 2

Table 3
Empirical evaluation parameters

At each tick, each user decides whether to comply
or not with the norms published by IRON according
to some probability, namely a norm infringement rate.
The probability of violating norms is a parameter NIR
which is fixed for each simulation and is the same for
all users. Consider a user with profile probability 0.5
of uploading contents. Consider now that a norm pro-
hibiting to upload content holds for this user, which in
turn has probability 0.3 of violating norms. First, the
user uses its profile probability of uploading contents
(which is 0.5) to decide whether updating a content or
not. In case she decides to upload a content, then she
uses the norm infringement rate (0.3) to decide if she
still wants to upload the content (thus, infringing the
norm) or if she aborts its initial uploading purpose so
that she fulfils the norm.

Each simulation finishes when it reaches 3,000 ticks.
We consider a ”warm-up” period of 500 ticks for all
simulations: from tick 0 to 500, users only upload con-
tents, and from tick 500 onwards, users upload con-
tents and also view and complain about contents. The
warm-up period allows a simulation to reach normal
conditions in on-line communities, where users enter
in the community and there already exist contents to
view and complain about. Contents are considered to
be conflictive whenever they: (i) have a minimum num-
ber of N = 10 views; and (ii) their complaint ratio is
over a threshold αcon f lict = 0.5

Regarding IRON’s configuration parameters (de-
scribed in section 3.2.5), we have taken a conserva-
tive approach to set them. That is intended to refine
the normative system only when it is necessary. In our
particular scenario, we have established a time inter-
val (T = 100) that leads IRON to compute necessity
ranges with a large number of values along time. Re-
garding IRON’s thresholds, we just generalise norms

that perform well (with high necessity), and to deacti-
vate norms that perform poorly. Thus, the generalisa-
tion threshold has been set to a high value (αgen = 0.6),
and the specialisation threshold has been set to a low
value (αspec = 0.2). As for the IRON’s function µnec
to evaluate norms’ necessity, it requires to set two
weights wIC > 0, wIC̄ > 0 that measure the importance
of harmful infringements and harmless infringements
of a norm, respectively. In our experiments, we have
decided to set weights as they were set in the empirical
evaluation in [12]. Specifically, the chosen values are
wIC = 1, wIC̄ = 2. This means that a norm infringement
that did not end up with conflicts is two times more im-
portant than a norm infringement that led to conflicts.

Finally, we consider that IRON converges to a nor-
mative system if during a 1,000-tick period: (i) no
new conflicts arise; (ii) the normative system contains
norms; and (iii) the normative system remains un-
changed.

5.2. Empirical results

We now analyse the results of our empirical evalua-
tion. First, we perform a micro analysis of IRON’s con-
vergence process. Our purpose is to shed light on how
IRON manages to synthesise norms from scratch based
on users’ complaints, yielding a normative system that
avoids conflicting situations. Thereafter, we perform a
macro analysis of IRON’s percentage of convergence
for different populations, namely its capability to syn-
thesise normative systems that avoid conflicts.

5.2.1. Micro analysis: IRON’s convergence process
Our first analysis focuses on how IRON manages to

synthesise norms from scratch for a given population,
converging to a normative system that avoids conflicts.
Specifically, we focus on the convergence process for
a population with a majority of moderate users, since it
is the one which approximates better the actual-world
conditions of on-line communities. Therefore, we em-
ploy a population of 7 moderate users with 50% com-
plain rate, and 3 spammers with 50% norm infringe-
ment rate. Figure 9 aggregates the results of 100 dif-
ferent simulations. It shows the cardinality of the nor-
mative system along time, the average of conflicts and
the cardinality of the normative network. During the
warm-up period (up to tick 500) users only upload con-
tents, and therefore there are no user complaints. At
tick 500, moderate users start complaining about spam
contents that they view. These complaints lead IRON to
consider the uploading of these contents as new con-

13

 0

 3

 6

 9

 12

 0 500 1000 1500 2000 2500 3000

Tick

Normative System Cardinality
Average conflicts

Normative Network Cardinality

Fig. 9. IRON ’s convergence process for a population of 7 moder-
ate users and 3 spammers with complain rate 50% and 70% norm
infringement rate.

na : 〈(user(u8), contentCatg(spam)), prh(upload)〉
nb : 〈(user(u9), contentCatg(spam)), prh(upload)〉
nc : 〈(user(u10), contentCatg(spam)), prh(upload)〉

Fig. 11. Norms that IRON synthesises to regulate spammers’ be-
haviour.

flicts. Therefore, after tick 550, IRON generates new
norms to prevent spammers from uploading spam con-
tents in the different sections of the community. As
a consequence, the cardinality of the normative net-
work increases, as well as the cardinality of the norma-
tive system. Near tick 750, IRON performs norm gen-
eralisations, joining several norms into more general
norms, decreasing the cardinality of the normative sys-
tem. Near tick 1,000, IRON manages to synthesise a
compact normative system of 3 general norms that reg-
ulate the on-line community. Notice that, by contrast,
the normative network contains 12 norms. It contains:
(i) nine norms to prohibit the three spammers to up-
load spam into the three sections of the community (3
spammers × 3 sections = 9 norms); and (ii) three gen-
eral norms that IRON has synthesised to yield a com-
pact normative system of 3 norms. Figure 11 shows the
three norms na,nb,nc that IRON converged to. Norms
na,nb,nc are general norms that prohibit users u8,u9
and u10 to upload spam contents to any section of the
on-line community. After the synthesis of these tree
norms, the simulation converges and no new conflicts
are detected from tick 1,100 onwards.

5.2.2. Macro analysis: IRON’s convergence outcome
We now analyse the convergence outcome of IRON

for different populations of users. First, for each popu-
lation we analyse IRON’s convergence rate for different
users. Furthermore, for each population we analyse its
convergence for different users’ behaviours regarding

conflicting contents and norms. Second, we measure
the compactness of the normative systems synthesised
by IRON. This measure tells us the number of norms re-
quired to regulate all the conflicts detected during sim-
ulations. We compute compactness of a normative sys-
tem Ω as (1− |Ω|

|NN|)× 100, where |Ω| stands for the
number of norms in the normative systems and |NN|
stands for the number of norms in the normative net-
work (i.e., the total number of norms that IRON synthe-
sised during simulations).

With this aim, we run simulations combining dif-
ferent: (i) populations with different percentages of
complaining users (majority of complaining users, bal-
anced population and minority of complaining users);
(ii) complain rates, namely different probabilities for
moderate users to complain about conflicting (spam)
contents; and (iii) norm infringement rates, that is, dif-
ferent probabilities for spammers to violate norms that
apply to them. Specifically, for each population we per-
formed simulations for complain rates ranging from
0% to 100%, and for norm infringement rates ranging
from 30% to 70%. We performed 100 different simu-
lations for each combination of population, complain
rate and norm violation rate. In what follows we show
the empirical results, which are organised into differ-
ent populations.

1. Majority of complaining users. We now analyse
IRON’s convergence rate with a population of 7 mod-
erates and 3 spammers. Figure 10a illustrates IRON’s
convergence rate for this population, given different
combinations of complain rates and norm infringement
rates (depicted as NIR). For very low complaint rates
(up to 20%), IRON never synthesises norms to regu-
late spammers’ behaviour. Since moderate users rarely
complain about spam contents, then these contents are
never considered to be conflicting2 and hence IRON,
never triggers norm generation. Therefore, all simula-
tions finish with an empty normative system. As the
complaint rate increases, IRON’s convergence rate in-
creases as well. For low complaint rates, (between 25%
and 30%), IRON enters into a transition area where the
convergence rate starts to increase. Notice that, for a
given complain rate, the convergence rate increases as
long as the norm infringement rate increases. As an
example, we now focus on the 25% complaint rate.
For low norm infringement rates (30% of norm in-

2Recall from Section 4.3 that a content is considered to be con-
flictive whenever its ratio of complaints with respect to the total num-
ber of views is over a certain threshold.

14

0%

20%

40%

60%

80%

100%

20% 25% 30% 50% 70% 100%

C
o
n
v
er

g
en

ce
 r

at
e

Complaint rate

30% NIR 50% NIR 70% NIR

a) Population: 7 moderates, 3 spammers.

0%

20%

40%

60%

80%

100%

35% 38% 42% 50% 70% 100%

C
o
n
v
er

g
en

ce
 r

at
e

Complaint rate

30% NIR 50% NIR 70% NIR

b) Population: 5 moderates, 5 spammers.

0%

20%

40%

60%

80%

100%

55% 58% 62% 65% 70% 100%

C
o
n
v
er

g
en

ce
 r

at
e

Complaint rate

30% NIR 50% NIR 70% NIR

c) Population: 3 moderates, 7 spammers.

Fig. 10. Convergence rate of IRON for different populations of users, users’ complain rates and norm infringement rates (NIR).

fringements), IRON converges to a normative system
with norms for 23% of the total simulations, while it
converges 36% and 71% of the times for 50% and
70% norm infringement rates respectively. As the norm
infringement rate increases, spammers have a higher
probability to violate norms, hence uploading spam
contents. These spam contents cause moderate users’
complaints, leading IRON to detect new conflicts and
to generate new norms. Finally, for medium and high
complaint rates (from 50% on) IRON converges to a
normative system 100% of the times. Here IRON ben-
efits from the high number of complaints that moder-
ate users report about spam contents, which trigger the
generation of norms to regulate spammers’ behaviour.
For each simulation that converged, IRON found 9 con-
flicts, and hence synthesised 9 norms to regulate them,
one per conflict. Thereafter, IRON managed to gener-
alise those 9 norms to 3 new general norms. Overall,
IRON synthesised 12 norms and managed to end up
with a 3-norm normative system. Therefore, IRON con-
verged to normative systems with 75% compactness.

2. Balanced population of users. Figure 10b illus-
trates the convergence rate of IRON for a population
of 5 moderates and 5 spammers for different combina-
tions of complain rates and norm infringement rates.
In contrast with the previous population, for this popu-
lation IRON starts generating norms when users’ com-
plaint rate goes beyond 38%3. Since this population
has a lower percentage of complaining users than the
previous population, then there exists a lower num-
ber of complaints, and IRON detects a lower number
of conflicts. As a consequence, IRON starts to gener-

3We have chosen to show the results for 38% complaint rate to
capture the transition area where IRON passes from 0% convergence
to 100%.

ate norms to regulate conflicts, hence converging to a
normative system, whenever the complaint rate goes
beyond 38%. Specifically, given a 38% complain rate,
IRON converges between 78% and 86% of the times
as the norm infringement rate increases. Finally, be-
yond 42% complaint rate, IRON converges 100% of the
times. Overall, IRON synthesised 20 norms, and ended
up simulations with a 5-norm normative system. Like-
wise the case of population 1 (majority of complain-
ing users), IRON converged to normative systems with
75% compactness.

3. Minority of complaining users. To conclude, we
now analyse IRON’s convergence rate for a population
of 3 moderates and 7 spammers. Figure 10c illustrates
the results. Even though this population has the low-
est degree of moderate users, and therefore the low-
est capability to detect conflicting contents, IRON starts
generating norms when moderate users complain about
58% of the contents. Specifically, for a 58% complaint
rate, IRON converges between 8% and 11% of the sim-
ulations, and for 62% complaint rate it converges be-
tween 82% and 88% of the total simulations. Finally,
for simulations with a complaint rate equal or higher
than 65%, IRON converges 100% of the simulations
for each norm infringement rate. Overall, IRON syn-
thesised 28 norms, and ended up simulations with a 7-
norm normative system. Likewise the cases of popu-
lations 1 and 2, IRON converged to normative systems
with 75% compactness.

As a summary, these experiments demonstrate that
IRON manages to synthesise very compact normative
systems by means of generalisations. Specifically, for
the three populations that we evaluated, IRON con-
verged to normative systems with 75% compactness.

15

6. Related Work

Regulating users’ behaviours in on-line communi-
ties is a complex problem that has been tackled through
several approaches. Most on-line communities aim at
regulating communities by: (i) imposing some pre-
designed terms and conditions to the users; and (ii) em-
ploying human moderators who perform corrective ac-
tions. As an example, FansCup [8] is a soccer on-line
community that bases its regulation on human modera-
tors. In particular, moderators are users of the commu-
nity promoted by the community managers. To facil-
itate moderation tasks, FansCup provides moderators
with a moderator’s manual that describes what actions
to perform in some situations. Other large on-line com-
munities externalise some moderation tasks, assigning
them to companies that offer moderation services. As
an example, eModeration [9] and Crisp [6] are com-
panies that offer moderation services to on-line com-
munities. For instance, Yahoo employs Crisp to exter-
nalise some moderation tasks. In general, the terms and
conditions used by moderators are set by the owner of
the on-line community without users’ participation.

Most current scientific research in on-line commu-
nities has focused on studying users’ dynamics and
behaviours within on-line communities. Some works
use computational frameworks to model and simulate
users behaviours and interactions in on-line communi-
ties. The work in [19] uses an agent-based approach,
the so called VLCs (Virtual Learning Communities
simulator), to study the relationship between the in-
dividual behaviour of participants and the overall de-
velopment of an on-line community. The authors per-
form an empirical evaluation where they discuss gen-
eral observations on users’ behaviours, based on a se-
ries of comparative simulations. In [11] the authors
present Comtella, a framework to model on-line com-
munities with a system dynamics approach to simulate
the overall behaviours of participants in on-line com-
munities. However, this simulator does not take into
account the feedback effects on content quality. The
work in [16] presents COSIMO, a simulator to predict
the behaviour in an on-line community for different
policies which are pre-established by a designer. The
authors employ real data from Lycos [10] to empiri-
cally evaluate COSIMO, studying how different poli-
cies affect the quality of the contents in the commu-
nity. However, to the best of our knowledge, no previ-
ous work has tackled the automatic synthesis of norms
for on-line communities.

Regarding the synthesis of norms for coordinat-
ing Multi-Agent Systems (MAS), we differentiate two

strands of work tackling this problem: off-line and on-
line approaches. On the one hand, off-line approaches
(such as [17,3]) aim at synthesising norms for a MAS
that constrain the behaviour of agents while ensuring
the achievement of global system goals. Off-line ap-
proaches require detailed knowledge of a MAS (i.e.,
its full state space) at design time. Following [17], the
complexity of the norm synthesis problem is high (NP-
complete). This has recently spurred research to better
cope with the size of the state space [2].

Nonetheless, off-line design is not appropriate to
cope with open, dynamic MAS, whose agents’ popu-
lation, composition and state space change with time.
On-line norm synthesis approaches try to overcome
such limitations by synthesising norms that regulate a
MAS at run-time instead of at design time. More re-
cently, norm emergence has become a popular tech-
nique for on-line norm synthesis. Norm emergence
approaches (such as [15]) do not require any global
state representation or centralized control. Instead, it
considers that agents collaboratively choose their own
norms out of a space of possible norms. A norm is
considered to have emerged when a majority of agents
adopt it and abide by it. The work in [5] explores
characteristics that affect the longevity and adoption
of emerged norms in a tag-based cooperation sce-
nario. Other works like [18] focus on social instru-
ments like rewiring and observation to facilitate the
emergence of norms from repeated interactions be-
tween the individuals in a society. In [14], the authors
design a spreading-based convention emergence mech-
anism that helps agents to agree, in a distributed man-
ner, on the best convention when there are multiple
alternatives. Nevertheless, approaches based on norm
emergence are highly sensitive to the initial conditions
in the MAS. Moreover, norm emergence assumes that
agents are endowed with the necessary machinery to
participate in the emergence process. Other works like
[7] focus on norm compliance checking. Briefly, in this
work the authors model a set of interrelated norms as
Norm Nets, and then map them to Coloured Petri Nets
to check whether agents can comply with the norms
imposed on them.

Against this background, our work in [12] proposes
a novel mechanism called IRON (Intelligent Robust
On-line Norm synthesis machine) for the on-line syn-
thesis of norms. IRON produces norms for the agent
population in a MAS that characterise necessary condi-
tions for coordination, while avoiding over-regulation.
However, [12] does not take into account agents’ feed-
back to identify conflicts, unlike we do in this paper.

16

7. Conclusions and Future Work

In this paper we have applied IRON, a novel mecha-
nism for the automated synthesis of normative systems,
to a particular on-line community scenario, where
agents model users that share contents within an on-
line community. First, we have presented an on-line
communities simulator that provides the MAS sce-
nario for IRON to regulate. Our simulator allows to de-
sign different populations of users with different user
profiles, which establish the frequency and type of
contents that users upload, view and complain about.
Moreover, it provides visualisation tools that allow to
analyse the norm synthesis process. In particular, the
scenario display allows to visualise agents’ interac-
tions in the community. Second, we have described
the process to configure and exploit IRON to synthe-
sise norms for our on-line community. With this aim,
we have described our domain-specific implementa-
tion of IRON inputs. As a result, IRON synthesises
norms for the users of the on-line community, prevent-
ing them from uploading inappropriate contents, and
hence avoiding frictions between users. Third, we have
performed an empirical evaluation to study IRON’s
convergence. We have first performed a micro analysis
of IRON’s convergence process, showing how it man-
ages to synthesise norms based on users’ complaints
that avoid new conflicts. We have also performed a
macro analysis to analyse IRON’s convergence rate for
different populations, as well as complaint rates and
norm infringement rates. Initial results demonstrate
that for medium and high complain and norm infringe-
ment rates, IRON is capable of synthesising norms that
avoid frictions in the on-line community scenario.

As future work, we plan to extend the simulator to
include punishments for those agents that do not com-
ply with norms. We also aim at performing large-scale
experiments that capture more realistic situations. Ad-
ditionally, we also plan to implement a basic on-line
community in order to perform experiments with hu-
mans. Thus, our final aim is to apply IRON’s norm syn-
thesis to actual-world on-line communities, automati-
cally synthesising norms for humans.

References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational
issues, methodological variations, and system approaches. AI
Communications, 7(1):39–59, 1994.

[2] G. Christelis and M. Rovatsos. Automated norm synthesis in
an agent-based planning enviroment. In Proceedings of the
8th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 161–168, 2009.

[3] D. Fitoussi and M. Tennenholtz. Minimal social laws. In Pro-
ceedings of the National Conference on Artificial Intelligence,
pages 26–31. John Wiley & Sons LTD, 1998.

[4] A. Garcı́a-Camino, J. A. Rodrı́guez-Aguilar, C. Sierra, and
W. Vasconcelos. Constraint rule-based programming of norms
for electronic institutions. Autonomous Agents and Multi-Agent
Systems, pages 186–217, 2009.

[5] N. Griffiths and M. Luck. Norm Emergence in Tag-Based Co-
operation. In 9th International Workshop in Coordination, Or-
ganizations, Institutions and Norms (COIN), in the Interna-
tional Conference on Autonomous agents and multi-agent sys-
tems (AAMAS’10). 79-86, 2010.

[6] A. Hildreth. Crisp. http://www.crispthinking.com, 2005.
[7] J. Jiang, V. Dignum, H. Aldewereld, F. Dignum, and Y.-H. Tan.

Norm compliance checking. In Proceedings of the 2013 in-
ternational conference on Autonomous agents and multi-agent
systems, pages 1121–1122. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2013.

[8] P. Lanas and D. Garzón. FansCup. http://www.fanscup.
com, 2005.

[9] Littleton, Tamara. eModeration. http://www.emoderation.
com, 2002.

[10] M. Loren Mauldin. Lycos. http://www.lycos.com, 1995.
[11] Y. Mao, J. Vassileva, and W. Grassmann. A system dynam-

ics approach to study virtual communities. In System Sciences,
2007. HICSS 2007. 40th Annual Hawaii International Confer-
ence on, pages 178a–178a, 2007.

[12] J. Morales, M. Lopez-Sanchez, J. A. Rodriguez-Aguilar,
M. Wooldridge, and W. Vasconcelos. Automated synthesis
of normative systems. In Proceedings of the 2013 interna-
tional conference on Autonomous agents and multi-agent sys-
tems, AAMAS ’13, pages 483–490, 2013.

[13] M. North, N. Collier, J. Ozik, E. Tatara, C. Macal, M. Bra-
gen, and P. Sydelko. Complex adaptive systems modeling with
repast simphony. Complex Adaptive Systems Modeling, 1(1):3,
2013.

[14] N. Salazar, J. A. Rodriguez-Aguilar, and J. L. Arcos. Robust
coordination in large convention spaces. AI Communications,
23(4):357–372, Dec. 2010.

[15] B. Savarimuthu, S. Cranefield, M. Purvis, and M. Purvis. Role
model based mechanism for norm emergence in artificial agent
societies. Lecture Notes in Computer Science, 4870:203–217,
2008.

[16] F. Schwagereit, S. Sizov, and S. Staab. Finding optimal poli-
cies for online communities with cosimo. Proceedings of the
WebSci10: Extending the Frontiers of Society On-Line, April,
2010.

[17] Y. Shoham and M. Tennenholtz. On social laws for artificial
agent societies: off-line design. Journal of Artificial Intelli-
gence, 73(1-2):231–252, February 1995.

[18] D. Villatoro, J. Sabater-Mir, and S. Sen. Social instruments for
robust convention emergence. In T. Walsh, editor, Proceedings
of the 22nd International Joint Conference on Artificial Intelli-
gence, pages 420–425. IJCAI/AAAI, 2011.

[19] Y. Zhang and M. Tanniru. An agent-based approach to
study virtual learning communities. In System Sciences, 2005.
HICSS’05. Proceedings of the 38th Annual Hawaii Interna-
tional Conference on, pages 11c–11c. IEEE, 2005.

http://www.crispthinking.com
http://www.fanscup.com
http://www.fanscup.com
http://www.emoderation.com
http://www.emoderation.com
http://www.lycos.com

