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Abstract 

The outcrop of "Los Azulejos" is visible at the interior of the Cañadas Caldera in 

Tenerife Island. It exhibits a great variety of alteration processes, which could be 

considered as terrestrial analogue for several geological processes on Mars. This 

outcrop is particularly interesting due to the content of clays, zeolite, iron oxides, and 

sulfates corresponding to a hydrothermal alteration catalogued as “Azulejos type 

alteration”. A detailed analysis by portable and laboratory Raman systems as well as 

other different techniques such as X ray diffraction (XRD) and Mössbauer spectroscopy 

have carried out (using twin-instruments from Martian lander missions: Mössbauer 

spectrometer MIMOS-II from the NASA-MER mission  of 2001 and the XRD 

diffractometer from the NASA-MSL Curiosity mission of 2012). The mineral 

identification presents the following mineral species: magnetite, goethite, hematite, 

anatase, rutile, quartz, gregoryite, sulphate (thernardite and hexahydrite), diopside, 

feldspar, analacine, kaolinite and muscovite. Moreover, the in-situ Raman and Micro-

Raman measurements have been done in order to compare the capabilities of the 

portable system specially focused for the next ESA Exo-Mars mission. The mineral 

detection confirms the sub-aerial alteration on the surface and the hydrothermal 

processes by the volcanic fluid circulations in the fresh part. Therefore, the secondary 

more abundant mineralization acts as the color agent of the rocks such as zeolite-illite 

group as bluish, feldspar and carbonate as whitish and iron oxide as redish. The XRD 

system was capable to detect a minor proportion of pyroxene, which is not visible by 

Raman and Mössbauer spectroscopy due to the “Los Azulejos” alteration of the parent 

material. Mössbauer spectroscopy was capable of detecting different types of iron-

oxides (Fe3+/2+-oxide phases). These studies emphasize the strength of the different 



techniques and the working synergy of the three different techniques together for 

planetary space missions. 

1. Introduction 

Several volcanic places have been used as possible terrestrial analogues taking into 

account the volcanic activities and the huge variety of geological processes discovered 

on Mars heretofore (Chevrier and Mathé, 2007) such as Hawaiian Island, Marion Island, 

among others (Graham et al., 2015; Prinsloo et al., 2011). Considering the previous 

research, one of the most important alteration processes of volcanic materials on 

Martian surface are related to the hydrothermal processes (Merle et al., 2010). All the 

information yielded from the different missions such as MER-NASA mission (Mars 

Exploration Rover) (Rayl, 2014) and MSL-NASA-Curiosity mission (Mars Science 

Laboratory) (Kuhn, 2015a) has improved the understanding of the geological diversity 

of the planet. Also, the possibility of establishing new terrestrial environments as 

analogue test sites for future space missions such as ESA-ExoMars mission (Bost et al., 

2015; Courrèges-Lacoste et al., 2007; Rull-Pérez and Martinez-Frias, 2006) and the 

future NASA mission in 2020 (Grossman, 2013) is needed. In this regard, new 

terrestrial volcanic analogue environments can provide new data which could be used 

for the interpretation of the geological history of Mars and the data collected by the 

different future space missions (Bishop et al., 2004; Lalla, 2014; Prinsloo et al., 2011). 

Special attention has to be paid to the mineralogy because it is the best indicator of the 

physical-chemical geo-processes and the paragenetic assemblages. Thus, the mineral 

diversity of new terrestrial analogues could allow the scientific community to increase 

the knowledge about the geological processes throughout the history of Mars 

(Mouginis-Mark and Robinson, 1992). Comparing the Martian mineralogy, it has been 

observed that it is as rich as the Earth mineralogy showing secondary mineralization 



such as oxides, phyllosilicates, sulfates, carbonates, zeolites and clays (Chevrier and 

Mathé, 2007; Lalla et al., 2010; Minitti and Hamilton, 2010; Ruff, 2004). Secondary 

and accessory minerals have a paragenetic origin from hydrothermal reactions with the 

sub-surface fluids, water alteration, and sub-aerial processes. Nevertheless, there is a 

controversy about the detailed processes occurred on Mars, especially with the 

chemically weathered basalt (Mahaney et al., 2012). Thus, the use of natural samples 

from basaltic terrestrial analogues have been selected to perform future analysis on 

Mars relevant samples (with which the technology can be tested and improved).  

It has been demonstrated that Tenerife Island is an area of reference for carrying out 

research and technological studies with planetary and astrogeological implications (E.A. 

Lalla et al., 2015). Several places of the island have been selected considering the fluid-

rock interactions caused by the weathering processes, the submarine and sub-aerial 

alteration, hydrothermalism and the geomorphological features (E. A. Lalla et al., 2015; 

E.A. Lalla et al., 2015) 

The main motivation of this paper is to study and register a complete spectroscopic 

analysis (mainly by Raman spectroscopy) of the selected outcrop corresponding to “Los 

Azulejos”, which exhibit visible alterations from the original rocks (called Azulejos 

alteration type), and the results could  be used as potential model substances for the 

original altered material on Mars.  On the other hand, the data collected using twin-

instrument from actual and future different space mission in terrestrial analogues could 

be also used for the next generation objectives in space exploration. Thus, the study is 

also focused to improve the strength of the Raman spectroscopy for space exploration 

and to complement the results with the capabilities of the XRD and Mössbauer 

techniques. 

2. Geological setting 



The Cañadas  caldera, at the central part of Tenerife, formed by several collapse 

episodes of the Cañadas central volcanic edifice during several highly explosive 

eruptions of phonolitic magmas (Marti and Gudmundsson, 2000)  (Figure 1). From the 

geo-chemical point of view, the Cañadas edifice has been and is also affected by active 

hydrothermal and fumaloric activities as well as CO2 diffuse emission (Villasante-

Marcos et al., 2014) which acted after the Caldera formation. The combination of the 

mechanical and geochemical processes produced a heterogeneous volcanic system, 

where really interesting specific outcrop could become a terrestrial analogue for 

instrument testing and contribute to the science development of new space missions. In 

this regard, one of the most interesting macro-structural formation is the called the 

outcrop of “Los Azulejos” (Figure 1), which forms a part of the Caldera wall. One of 

the most impressive features at this outcrop is the variety of the different processes 

involved (i.e. hydrothermal processes, argilization and parent mineralogical alteration) 

(Galindo et al., 2005; Villasante-Marcos et al., 2014). Galindo et al., have described 

these geological features indicating that the faults within “Los Azulejos” structure affect 

the igneous materials of the Cañadas edifice by the inclined and sub-vertical sheets 

intrusions formation. A variable displacement of the fault is reported in (Galindo et al., 

2005). They also point out that the kinetic indicators such as the offset of stratigraphic 

layers, shear-cleavage structures in mylonitic foliation, among others, in combination 

with the CO2 active diffuse degassing activities and the hydrothermal activities cause a 

huge variety of mineralogical species. The colored outcrop of Los Azulejos presents 

bluish, greenish, whitish, and yellowish colors (Figure 1). The bluish to greenish 

degradation corresponds to a combination of analcime and clay minerals such as 

smectite and illite. On the other hand, yellowish and blank coloration can be observed 

on the fumarolic structure and the argilization of the parent minerals. These colorations 



present really interesting formations like mushrooms textures and veins circulation with 

sulfates and iron oxides mineral species (Bustillo, 1989; Galindo et al., 2005). The 

colors in the alteration correspond to a process called “Los Azulejos” type alteration and 

it is also present on other Canary Island graben formations such as Gran Canaria Island, 

Spain (Donoghue et al., 2008).  

3. Analytical Techniques 

3.1.In-situ portable instrumentation:  

The Raman analyses were performed with an i-Raman device from B&W TEK Inc. 

designed to work at field conditions (Unidad Asociada UVa-CSIC al Centro de 

Astrobiología, Valladolid, Spain). The optical system was adapted and positioned in 

front of the samples using a mechanical positioner, which allows a surface mapping at 

near mineral grain scale (Figure 1). A baffle was used to minimize the solar light 

background. The excitation used was a laser with 532 nm wavelength, 15 mW power on 

the sample, a spot diameter of 85 μm and the best spectral resolution of 5 cm-1. Some of 

the zones present a strong effect of the fluorescence, with inconclusive results and these 

samples have been carefully selected to carry out a Micro-Raman measurement at the 

Unidad Asociada UVa-CSIC al Centro de Astrobiología. 

The Mössbauer spectra were collected with a copy of the MIMOS II spectrometer 

(MER) from the past NASA-MER-mission (AK Klingelhoefer, Mars Mössbauer Group, 

Mainz, Germany). The system has a Co 57/Rh source with an intensity of about 50 mCi. 

The measurements have been performed at room temperature and without sample 

preparation in a backscattering geometry.  

The XRD system for the measurement was the Terra XRD diffractometer instrument 

(based on the MSL-CheMin concept, available at the Unidad Asociada UVa-CSIC al 



Centro de Astrobiología with a detector of 1024 x 256 pixels, 2D peltier cooled CCD 

camera for XRD with a source of cobalt X-ray tube, working at 30 kV and 300 µA. For 

the XRD analysis, a preparation was necessary: powdering a minimum part of the 

samples (from 2 to 4 mg) and sieving with a granulometry lower than 150 µm. The 

XRD measurement and analysis were obtained using a 0.25° 2θ FWHM resolution, a 2θ 

spectral range of 5-55° and 200 accumulations with an exposition time of 15 seconds. 

The mineral identification software used was the Xpowder12 (Martin-Ramos, 2004) 

3.2.Laboratory instrumentation:  

The micro-Raman mineralogical characterization of the samples was performed with a 

Micro-Raman system from the Unidad Asociada UVa-CSIC, Valladolid, Spain. The 

system is composed by a microscope Nikon Eclipse E600 coupled to a spectrometer 

KOSI Holospec f/1.8i, with best spectral resolution of 5 cm-1, illuminated by a laser 

REO LSRP-3501 He-Ne (632.8 nm wavelength). The detector was a CCD Andor 

DV420A-OE-130. The maximum laser power used on the sample was 14 mW with a 

minimum spot diameter of 15 µm. The Raman mapping of the bulk surface of the 

sample was done by the micro-Raman Prior Proscan II motorized stage in automatic 

mode in order to detect the different compositional mineralization. However, the 

optimum recording conditions were obtained by varying the laser power, microscope 

objective and the confocal spot size (XY instrument) as required for the different 

samples. The spectra were directly acquired on the sample material without any sample 

preparation.  

The conventional X-ray diffraction analyses were carried out at University of 

Valladolid, Spain with a XRD diffractometer Philips PW1710 equipped with an 

automatic divergent slit graphite monochromator and Cu-anode. Experimental 

conditions: CuKα radiation, λ = 0.154 nm, a nickel filter, an aluminum sample-holder, 40 



kV generator voltage, generator current 30 mA with a relation intensity of 0.5 (α1/ α2) 

and angle range (2θº) from 5 to 70º. The steps size applied is 0.02º and the identification 

have been done using Match! Program system, the crystallography Open Database 

(COD), the ICDD System (International Centre for Diffraction Data) in PDF-2 (Power 

Diffraction Files) and the JCPDS (Joint Committee on Powder diffraction Standards). 

4. Results 

3.1. Sample recollection and description 

The samples from the different places of the in-situ analysis have been collected 

according to the coloration and characterized by the laboratory instrumentation at the 

Unidad Asociada UVa-CSIC and at Mars Mössbauer Group, Mainz, Germany. 

Moreover, the selected samples present different grain size, color, morphological 

characteristics, and stratigraphic position which are visually distinctive to the naked 

eyes and under microscope magnification. A total of 14 samples have been collected 

using a hammer and the blade of knife, and, also, carefully stored in plastic bags to 

avoid/minimize possible contamination. Table 1 presents the pictures, cataloguing, the 

general Raman analysis and XRD of each sample collection.  

      3.2 Raman Analysis 

The in-situ Raman analysis can be observed in Figure 2 and the laboratory measurement 

is presented on the Figure 3. Moreover, the complete minerals species are depicted on 

Table 1. The identification of the mineral species has been done considering the 

following references: Fe-oxides (Jubb and Allen, 2010; Rull et al., 2007), Ti-oxides 

(Lukačević et al., 2012; Sekiya et al., 2001), Si-oxides (Karwowski et al., 2013; Zotov 

et al., 1999), carbonates (Buzgar and Apopei, 2009; Koura et al., 1996), sulfates  

(Buzgar et al., 2009; Chio et al., 2005), silicates (Freeman et al., 2008), zeolites (Chen 



et al., 2007; Frost et al., 2014) and clays (Frost et al., 2001; Haley et al., 1982; Martens 

et al., 2002) (See Table 3). Also, the RUFF database and the Unidad Asociada spectra 

collection have been used for the identification  (Downs et al., 2015). 

The iron oxides detected on the outcrop correspond to hematite, goethite and magnetite. 

The detection has been done considering the principal active Raman vibrations of each 

mineral. The vibrations exhibited by the magnetite were at 670, 550 and 300 cm-1 

approximately which can be assigned to the following modes A1g, T2g and Eg vibrational 

modes (Jubb and Allen, 2010; Rull et al., 2007). In the case of the hematite, the Raman 

principal vibrations modes are produced at 225 (A1g), 245 (Eg), 291 (Eg), 410 (Eg), 500 

(A1g) and 611 (Eg) cm-1 with the magnon at 1321 (2Eu) cm-1. The goethite presents a 

combination of several vibrations at 244 (Eg), 299 (Eg), 385 (Eg), 480 (A1g), 550 (A1g) 

and 681 (Eg) cm-1 (Hanesch, 2009). The Ti-oxides detected on the different samples 

correspond to anatase and rutile.  According to the factor group analysis, the anatase has 

six Raman active modes (A1g + 2B1g + 3Eg) allowed to appear at 145 (Eg), 200 (Eg), 393 

(B1g), 512 (A1g), 520 (B1g) and 640 cm-1 (Eg) (Rull et al., 2007). However, the rutile 

phase presents only 4 Raman-active modes at 235 (B1g), 448 (Eg), 609 (A1g) and 810 

cm-1 (B2g) (Rull et al., 2007; Sekiya et al., 2001). 

The carbonate detected can correspond to hydrotalcite, being a Al-Mg rich hydrous 

carbonate, which have several modes at 237, 288, 484, 700, 1026, 1062, 1370 cm-1 

according to the references (Frost et al., 2005). The most intense vibration correspond to 

the C-O stretching in CO3 bonded to Al3+-bound OH groups (1062 cm-1) followed with 

a shoulder at 1050 cm-1 (caused by C-O stretching in CO3 bonded to Mg2+-bond OH 

group) and the peaks group at  720 to 650 cm-1 assigned  to CO3 in- plane bending 

mode. However, other authors (Buzgar and Apopei, 2009; Buzgar et al., 2009) present 

similar vibrations as the detected which can correspond to an anhydrous K-carbonate. 



The vibrations can be attributed to a doublet at 1064 (vs) and 1048 (sh) cm-1 attributed 

to the ν1(A1) stretching modes- CO3
2- , the 1306 and 701 cm-1 bands assigned to the 

ν3(E´) - symmetric CO stretching mode and ν4(E´) - COH bending mode (Buzgar and 

Apopei, 2009; Buzgar et al., 2009). 

In the case of the sulfate, several mineral phases have been detected corresponding to 

the thernardite and hexahydrite that can be easily detected by the SO4 vibrational modes 

and also by the H2O vibrational bands. The peaks within water stretching and bending 

modes of the hexahydrite are shown at around 3450/3250 and 1650 cm-1 (Wang et al., 

2006). However the major interest is more focused on the SO4 vibrations at 983 (ν1), 

466 (ν2), 1146 (ν3) 610 (ν1) and at 364 cm-1 (no detected) according to the other authors 

(Wang et al., 2006). On the other hand, the thernardite, which is an anhydrous sulfate, 

present the principal band at 991 (ν1), a doublet 463/450 (ν2), a triplet band 

1110/1129/1153/ (ν3) and other triplet 620/631/545 cm-1 (ν1) (Wang et al., 2006). In our 

case, the thernardite has been better detected because it presents a better crystalline 

structure than the hexahydrite. This has been fairly compared with the RUFF database 

(Downs et al., 2015). 

The identification process of the feldspars and plagioclases has been done based on a 

band fitting method to overcome the overlapping of Raman signals with other mineral 

species. The classification method developed by other authors was applied  (Freeman et 

al., 2008), where the strongest vibrational bands are produced by the structure of SiO4 

of tecto-silicate group  and it is characterized by triplet or doublet bands located on the 

450‒515 cm-1 region with the strongest peak is at 505‒515 cm-1. Also, other vibrational 

regions have been considered for the correct mineral identification such as: (1) the 

rotational-translational modes (200‒400 cm-1); (2) the deformation modes of the 

tetrahedral (600‒800 cm-1); and (3) the region of the vibrational stretching mode of the 



tetrahedral structure 900‒1200 cm-1 (Freeman et al., 2008). However, this identification 

depends upon the sample under analysis due to some of the spectra matches with the 

references in some case, but in others were necessary the use of the RUFF database 

(Downs et al., 2015). The different types of feldspars are indicative of different cation 

contents in the solid solution expected in basaltic material formation.  

The analcime present the main following vibrations: (1) the water librations Eg at 390 

cm-1; (2) the O—(Al, Si)—O bending Eg at 480 cm-1; (3) the (Al, Si)—О stretching F2g 

in the 1100 cm-1 (Frost et al., 2014). Concerning the clays, two types were detected: (1) 

kaolinite and (2) muscovite. The first clay (kaolinite) vibrations matches with the results 

from other measurements carried out by other authors. The main Raman bands are at 

290, 406 and 700 cm-1 that are assigned to: the lattice vibrations, the Al-O-Al vibrations 

(symmetrical stretching vibrations are the strongest vibrations) and the Si-O-Si 

vibrations at the teatrahedral site (Haley et al., 1982). For last, the kaolinite present 

several active Raman bands at 258, 333, 393, 461, 510 and 640 cm-1 (Frost et al., 2001)  

3.3 XRD diffraction analysis 

The XRD analyses of several samples are shown in Figure 4 and 5. The identifications 

have been obtained by pattern matching and taking into consideration the main bands of 

the diffractograms using the methods aforementioned. Also, the analysis of both 

diffraction systems converges that they present several crystalline structures with some 

minor amorphous phases. Furthermore, the results have been compared with other 

commercial standard patterns. However, the XRD could detect other mineral structure 

like the diopside, which can be related due to a very low proportion or a low crystal size 

for the Raman techniques. For the different samples, the majority of the mineral phases 

have been obtained being similar to the Raman measurements 



3.4. Mössbauer Spectroscopy 

Mössbauer spectroscopy analysis has been performed measuring the different colored 

areas of the samples as done with XRD. The hyperfine parameter, derived from the data 

is depicted in Table 3 and Figure 6. The different sub-spectral areas obtained by a band 

fitting from the different samples show Fe oxide-content. Moreover, the Fe3+/2+ oxide 

phases present on the different samples have a similar isomer shift (IS), quadrupole 

splitting (QS) and spectral line width (Fleischer et al., 2012). The observed presence of 

hematite, magnetite goethite and oxide phase with different degrees of crystallinity have 

been also confirmed by Raman analyses and XRD. 

5. Discussion of the results 

The Raman analysis shows the primary mineralization and it is also confirmed by XRD 

measurement such as the feldspar. On the other hand, the Fe-oxides has been confirmed 

by Mössbauer spectroscopy like the hematite, magnetite and goethite. The Raman 

identifications have been done carefully by the peak assignment of the principal bands, 

by several methods developed by other authors, and, also by comparison with internal 

and external database. The analysis in-situ shows, in several case, strong activities of 

fluorescence maybe caused by external contamination due to biological activities or 

saturation caused by large exposition. However, other difficulties have to be considered 

from the technological point of view such as that some constituents from basaltic rocks 

have their own fluorescence (Bathgate et al., 2015). In this regard, other authors 

proposed to stablish specific methodologies for the identification and the diagnosis of 

the peaks in order to mitigate this effect (Bathgate et al., 2015; Wang et al., 1994). But, 

in the case of remote planetary laboratories, they cannot applied because of the 

limitation in the capabilities. Thus, a greater understanding and greater quantity of in-

situ spectra from terrestrial analogues are needed for the success of the future space 



missions. On the other hand, the XRD supplementary technique have shown to be more 

powerful than the Raman techniques in the mineral identification with a 88% success 

rate than 77% rate. Nevertheless, if the fluorescence effect is eliminated on Raman 

techniques, it can be possible to achieve 90% success rate (Bathgate et al., 2015). The 

main motivation of using a 532 nm portable Raman system is due to the Raman Laser 

System (RLS) onboard on the ESA-ExoMars that will be working with the same 

wavelength. In this regard, previous studies using the RLS simulator working at 532 nm 

shows that the system was capable of detecting the secondary materials, which are 

related with the different alteration processes. However, the laser power has to be 

chosen carefully as a trade-off between general instrument performance and the risk of 

damaging thermolabile mineral species (Lalla et al., 2013). 

In the geological considerations, the analogue outcrop presented shows strong mineral 

similarities with the long term and earliest volcanology of Mars. In this point of view, 

the Martian surface present extensive partial melting mineral with unaltered basalt and 

low evidence of evolved siliceous rocks. The main justification is the absence of plate 

tectonics on the Martian surface that prevent the cycling of material as found on Earth 

(Christensen et al., 2003; Kuhn, 2015b; Sigurdsson et al., 1999). However, the earliest 

Martian volcanic activity, in the recent discoveries, has been more influenced by 

explosive eruptions.  Thus, the large quantities of volatiles or the present of ground 

water have been responsible for hydrothermal and fumarolic activities with its mineral 

alteration (Chevrier and Mathé, 2007; Mangold et al., 2007). In this regard, the 

fumarolic activity and their diffuse emission processes presented on the outcrop of “Los 

Azulejos” with the formation of hydrothermal sulfate minerals could be used as parent 

model for the alteration processes aforementioned. The sulfates are products of the 

interaction of magmatic fluids, volcanic gases (H2S and SO2) and the surrounding rocks. 



They can be of interest for future studies and to increase our knowledge of the processes 

occurred over the Martian geological time. Taking into account the recent space 

missions like NASA-Curiosity mission and NASA-MER-mission, where twins 

instrument have been used in this investigation, present similar mineral phases 

(Anderson et al., 2015; Klingelhöfer et al., 2003). Moreover, the minerals detected on 

Mars are in accordance with our investigations on the outcrop of “Los azulejos”, and 

this could be of importance for future testing of Raman spectrometers of Martian 

automatic laboratories. Our Raman results encourage a continue development for 

Raman systems in space science and for the Mars exploration. A comparison of the 

different techniques is available on the Table 4 showing the capabilities of the Raman 

spectroscopy applied to the geological context, where in the combination with the other 

techniques they are capable to obtain a full detail of the mineralogy and the geological 

process occurred on the selected target. 

6. Conclusions 

Different measurements have been performed by in-situ and laboratory Raman 

spectroscopic techniques, X-ray diffractometers and Mössbauer spectrometer for the 

very first time on the outcrop of “Los Azulejos”, through a complete analysis of the 

mineralogy. Regarding to this, its possible relation to Mars based on its possible 

alteration processes has been also studied. Crystalline primary phases such as pyroxene, 

feldspar, oxides, as well as secondary minerals like carbonate, Fe-oxides/oxy-

hydroxides, sulfates, zeolites, and clays have been confirmed by Raman spectroscopy 

and XRD analyses. Moreover, the Mössbauer spectroscopy also detected Fe-oxides and 

other amorphous Fe3+/2+ oxide phases as a result of hydrothermal alteration. The phases 

of mineral species described along the paper are similar to those reported on other 

volcanic terrestrial analogue materials and Martian observations. The possibility to 



distinguish between different alteration processes by Raman spectroscopy will help us 

to deduce the rock-process formation by the combined processes occurred on “Los 

Azulejos” outcrop and its possible extension to Mars. Thus, the enlargement of 

knowledge on terrestrial analogues provide an aid and a relevant knowledge support for 

the planetary research field, especially when astrogeological implications are addressed. 

The results reveal that Raman technique, XRD and Mössbauer spectroscopy are 

powerful and robust systems. The three techniques in combination will be suitable for a 

complete identification of alteration processes inferred on Mars. In this regard, the 

measurements support the continued endeavors of the system developments for the 

Mars exploration on the future space mission such as the Raman Laser Spectrometer 

(RLS) included in the ESA Exo-Mars Mission. However, a continued improvement of 

the Raman technique is needed for the improvement of the future space missions 
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