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Abstract 20 

 21 

Pollinator spill-over among habitats can arise in order to fulfill the pollination 22 

function and whenever differences in floral offering change over time or space. 23 

Flowering crops offer pulsed and abundant floral resources (i.e., mass flowering 24 

crops) that might promote pollinator spill-over between cultivated and adjacent 25 

natural areas. We explored pollinator patterns in the mass flowering legume 26 

crop Hedysarum coronarium and its influence on the bee pollinator communities 27 

of adjacent shrublands in a heterogeneous and patchy agricultural landscape. 28 

We studied the temporal (i.e., during vs. after mass flowering in adjacent 29 

shrublands) and spatial (i.e., inside crops, adjacent and distant shrublands 30 

during mass flowering) functional pollinator spill-over. The honeybee was highly 31 

attracted to Hedysarum crops, yet its abundance and that of other bee species 32 

visiting native plants in adjacent shrublands did not differ during and after 33 

Hedysarum mass flowering. However, at the landscape scale, the honeybee 34 

and the other bee species were less abundant in shrublands adjacent to 35 

Hedysarum crops compared to distant ones; their visitation rates showing a 36 

similar trend. 37 

These results show that some mass flowering crops can influence pollinator 38 

patterns in the surrounding landscape by competing for generalist pollinators 39 

with native plants. The characteristics of the crop species and the landscape 40 

can modulate and determine the role of mass flowering crops as competitors or 41 

supporters of wild pollinators for adjacent natural areas. 42 

 43 

 44 
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   48 

1. Introduction 49 

 50 

There is growing concern about local and regional declines in pollinator species 51 

and the pollination services they provide (Bartomeus et al., 2013; Potts et al., 52 

2010). Moreover, plant-pollinator interactions may be even more sensitive than 53 

the species themselves (Tylianakis et al., 2008), and factors driving the decline 54 

of pollinators might interact in non-additive ways (González-Varo et al., 2013). 55 

More than 75% of the cultivated species depend on, or benefit from, animal 56 

mediated pollination (Klein et al., 2007), and the area devoted to pollinator-57 

dependent crops is disproportionately growing (Aizen et al., 2008). In this 58 

context, during the last two decades, scientists have explored the role of 59 

remaining natural areas within agricultural landscapes as reservoirs of 60 

pollinators to provide pollination service to pollinator-dependent crops. 61 

Maintaining and restoring these areas in agricultural landscapes is one of the 62 

most commonly implemented agri-environment schemes. The underlying 63 

rationale is that remaining natural areas offer pollinators feeding resources 64 

and/or nesting sites not provided by the crop or not stable over time due to the 65 

inherent disturbance frequency (Westphal et al., 2003). 66 

Pollinators move from one area to another in order to meet their feeding and/or 67 

nesting requirements. When such a movement results in the achievement of 68 

their functions (e.g. pollination), it is called functional spill-over (hereafter, spill-69 
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over) (Blitzer et al., 2012). Spill-over can occur whenever the offer of required 70 

floral resources differs between habitats; therefore, it can occur in both 71 

directions. However, only recently has the spill-over of pollinators from 72 

entomophilous mass flowering crops (MFCs, hereafter) to natural habitats 73 

received the attention of scientists and managers (Blitzer et al., 2012; 74 

Holzschuh et al., 2011). MFCs, despite offering only pulsed floral rewards, could 75 

compensate for food resource limitation during periodic intervals, and help in 76 

maintaining and enhancing pollinator communities in agricultural landscapes 77 

(Westphal et al., 2003), as long as nesting sites and other feeding areas are 78 

also available within the foraging ranges of pollinators. Thus, those natural 79 

areas that offer alternative resources and that are close to MFCs could benefit 80 

from a pollinator spill-over from MFCs. That is, the MFC could exert a magnet 81 

effect (Johnson et al., 2003; Molina-Montenegro et al., 2008) over close natural 82 

areas. This magnet effect would more likely occur in heterogeneous agricultural 83 

landscapes (Blitzer et al., 2012). 84 

In addition to spill-over between habitats with different resource offer at a given 85 

period of time (i.e., spatial spill-over), differences in resource offer between 86 

habitats can also arise at different moments in time (i.e. temporal spill-over). For 87 

instance, the high floral rewards of a MFC compared to its surrounding habitats 88 

can be reverted after the MFC flowering peak (Hanley et al., 2011). 89 

Here we study the effect of the highly rewarding Hedysarum coronarium L. MFC 90 

on the pollinator community in adjacent shrublands in a patchy and 91 

heterogeneous Mediterranean agricultural landscape. We specifically focus on 92 

the bee pollinator community because this MFC is mainly bee-pollinated (the 93 

honeybee, Apis mellifera L., accounting for more than the 80% of its visits; 94 
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Montero-Castaño et al., 2014). We address the following questions: (a) Does 95 

the MFC affect the bee community visiting plant species in adjacent shrublands 96 

through a temporal bee spill-over during and after mass flowering? (b) Is there a 97 

spatial bee spill-over from the MFC to adjacent shrublands during mass 98 

flowering? (c) Is the role of the honeybee (the main pollinator of the MFC) 99 

different from that of the other bee species, for both the temporal and spatial 100 

spill-over? 101 

We expect the MFC to attract a large number of bees and to exert a magnet 102 

effect on adjacent shrublands. That is, increasing the abundance of bees in 103 

adjacent shrublands compared to shrublands away from MFCs (i.e. spatial spill-104 

over). Additionally, after mass flowering, bees may spill-over from the MFC to 105 

adjacent shrublands (i.e. temporal spill-over). We expect both temporal and 106 

spatial spill-over to be largely mediated by the honeybee, as it is the main 107 

pollinator of the MFC. 108 

  109 

2. Materials and methods 110 

 111 

2.1. Crop species 112 

 113 

The MFC species studied was H. coronarium L. (Fabaceae; hereafter 114 

Hedysarum). Hedysarum is a short-lived N-fixing perennial (Bullitta et al., 2000; 115 

Sulas et al., 2000) that can reach a height of 1.5 m (Bustamante et al., 1998; 116 

Montes Pérez, 1993/94). Its inflorescences are racemes with up to 30 pink 117 

flowers rich in pollen and nectar that bloom during April and May. Its flowers are 118 

self-compatible, although they need to be tripped, and have high out-crossing 119 
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rates (Louati-Namouchi et al., 2000; Yagoubi and Chriki, 2000). Bees are the 120 

primary pollinators of Hedysarum with the honeybee being the most abundant 121 

(Louati-Namouchi et al., 2000; Montero-Castaño et al., 2014; Satta et al., 2000). 122 

 123 

2.2. Study sites 124 

 125 

We conducted our study in Menorca (Balearic Islands, Spain), where 126 

Hedysarum was introduced between the end of the 18th and the beginning of 127 

the 19th centuries (Ortells and Campos, 1983). Since 1860 it has been used in a 128 

traditional cyclical agro-farming system (Bustamante et al., 2007) which 129 

consists of growing crops of Hedysarum for two consecutive years, followed by 130 

cereal cropping in the third year, and leaving the land fallow during the fourth 131 

year (Bustamante et al., 2007). To some extent, this traditional system is still 132 

present in the extensive and heterogeneous agricultural landscape of the island, 133 

but the area devoted to it has been reduced by 97% in the last three decades 134 

due to land use intensification (Bustamante et al., 2000; Díaz-Ambrona 135 

Medrano et al., 2014). Currently, the public administration is attempting to 136 

restrain this trend by subsidizing Hedysarum crops.  137 

Hedysarum is the only spring MFC on the island. Most Hedysarum crops are 138 

harvested during the flowering peak, when the balance between plant yield and 139 

its nutritional value is greatest (Bustamante et al., 2005), in order to provide 140 

feed for cattle during the summer. 141 

In 2009, to explore whether there was a temporal bee spill-over between 142 

Hedysarum crops and adjacent shrublands, we selected four Mediterranean 143 

shrublands adjacent to Hedysarum crops (≤ 10 m apart), which were studied 144 



7 
 

during and after mass flowering (i.e., after crops were harvested during the 145 

flowering peak). The distance among study shrublands ranged from 500 m to 146 

12.01 km. Although honeybees and bumblebees can fly distances greater than 147 

500 m (Greenleaf et al., 2007; Osborne et al., 2008), pollinators do not usually 148 

travel very far when rewards are available in the vicinity (Greenleaf et al., 2007; 149 

Johnson et al., 2003; Wolf and Moritz, 2008). Moreover, due to the 150 

heterogeneity of the Minorcan agricultural landscape, we considered 500 m to 151 

be a sufficient minimum distance to assure shrubland independence. 152 

In 2010, in order to investigate whether there was a spatial bee spill-over at the 153 

landscape scale, we selected four Hedysarum crops (inside, hereafter) and six 154 

Mediterranean shrublands, four adjacent to the selected Hedysarum crops (i.e., 155 

≤ 10 m apart; adjacent, hereafter) and two without Hedysarum crops in the 156 

surrounding 500 m radius landscape (distant, hereafter). The distance among 157 

study shrublands ranged from 690 m to 15.27 km.  158 

For the two study years, the area of MFCs ranged from 2240 to 21066 m2 with a 159 

mean flower density of 557.40 ± 142.85 flowers/m2. Study shrublands had an 160 

area that ranged from 133 to 29743 m2 (Table 1). They were early successional 161 

shrublands of Quercus ilex L. and Olea europaea L. subsp. sylvestris Brot. 162 

(Carreras et al., 2007) with a rich herbaceous understory. The flowering 163 

community slightly differed among study shrublands but was mainly composed 164 

by Leguminosae and Compositae species. The species that overlapped their 165 

flowering peak with Hedysarum and that contributed the most to the total 166 

abundance of floral units (hereafter flowers, according to Dicks et al., 2002) 167 

were all legumes, either Calicotome infesta (C. Presl) Guss., Lotus 168 

angustissimus L., Lotus ornithopodioides L. and/or Trifolium campestre Schreb. 169 
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There were no honeybee hives within any of the 500 m radius surrounding 170 

landscapes (landowners’ personal communication). 171 

Adjacent and distant shrublands in our 2010 study had similar flowering plant 172 

species richness (0.46 ± 0.04 and 0.43 ± 0.03 species/m2, respectively; t = -173 

0.067, p-value = 0.950), similar total flower density (100.12 ± 24.49 and 163.24 174 

± 30.95 flowers/m2, respectively; t = 0.616, p-value = 0.571) and showed a 175 

proportional similarity index of 0.37 (see below for vegetation surveys and index 176 

calculation details). 177 

 178 

2.3. Pollination censuses 179 

 180 

We conducted pollination censuses during the flowering peak of Hedysarum 181 

(from 30th April to 25th May and from 28th April to 24th May in 2009 and 2010, 182 

respectively) on sunny, warm (≥ 17 ºC) and non-windy days, from 10 am to 6 183 

pm. In both years weather conditions fell within the average ranges for these 184 

months in the study area (Agencia Estatal de Meteorología). 185 

Unidentified bee pollinator species in the field were caught and sorted into 186 

distinct morphospecies for later identification by specialists. Voucher specimens 187 

are deposited at Doñana Biological Station (EBD-CSIC). 188 

 189 

2.3.1. Temporal bee spill-over 190 

In 2009, in each adjacent shrubland we surveyed two or three target plant 191 

species out of seven: Asphodelus aestivus Brot., Cistus albidus L., Daucus 192 

carota L., Galactites tomentosa Moench, Hypochoeris achyrophorus L., Oxalis 193 

pes-caprae L. and Urospermum dalechampii (L.) Scop. ex F. W. Schmidt 194 
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(Supplementary material, Appendix A). They all shared pollinators with 195 

Hedysarum and were in their flowering peak during the study period. Moreover, 196 

we selected target plant species with low-restrictive flower morphologies 197 

because we expected them to attain higher visitation rates than those with more 198 

restrictive flower morphologies (Córdoba and Cocucci, 2011). 199 

For each target species we conducted focal censuses that lasted 15 min during 200 

which we noted the number and identity of bee pollinators and counted the 201 

number of open flowers of the observed target plants. A visitor was considered 202 

a pollinator when it entered a flower and touched its reproductive structures. 203 

Censuses were taken daily for 13 days and on average were conducted 3.50 ± 204 

1.35 days before and after crop harvesting. The order of observation of each 205 

site, plant species and individual was randomly established. We conducted a 206 

total of 134 focal censuses (33.5 h), including 66 during and 68 after 207 

Hedysarum mass flowering. Each plant species was observed an average of 208 

1.84 ± 0.09 h and 1.89 ± 0.08 h during and after mass flowering, respectively. 209 

For statistical analyses, data for each target plant species was pooled. 210 

 211 

2.3.2. Spatial bee spill-over 212 

In 2010, during the mass flowering, we conducted bee censuses in the adjacent 213 

and distant shrublands by walking along 20 m long and 1 m width parallel 214 

transects, for a duration of 10 min. During those 10 min, we noted the identity, 215 

number and visits of bees and the identity of the plants visited. 216 

In each shrubland we marked between three and 17 parallel transects, 217 

depending on the area of the shrubland. In total, we marked 36 and 16 parallel 218 

transects in adjacent and distant shrublands, respectively. Each transect was 219 
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walked an average 5.35 ± 0.35 times (0.89 ± 0.06 h), ranging from two to 11 220 

times. Overall, we conducted a total of 278 transect walks (46.33 h): 164 (27.33 221 

h) in adjacent and 114 (19.00 h) in distant shrublands, respectively. 222 

The sampling order of shrublands and of transects within shrublands was 223 

randomly established. We sampled shrublands until we found no new plant-bee 224 

pollination interaction after six or more transect walks according to rarefaction 225 

curves (Supplementary material, Appendix B), which we considered a good 226 

compromise between sampling effort and data accuracy. For statistical 227 

analyses, data for each study shrubland or crop was pooled. 228 

To account for the abundance and richness of flowers in the shrublands, 229 

quadrats (0.4 x 0.4 m) were laid at every meter along each transect in the 230 

shrublands. All plant species were identified and all open flowers were counted. 231 

In total we observed 46 plant species belonging to 34 genera and 17 families: 232 

38 species in adjacent shrublands and 24 in distant ones. 233 

Simultaneously, we conducted censuses in the four Hedysarum crops (i.e., 234 

inside) following the same methodology as in the shrublands. We marked a total 235 

of 21 transects (three to seven transects per crop). Each transect was walked 236 

an average of 5.24 ± 0.39 times (0.87 ± 0.07 h) accounting for a total of 18.33 h 237 

of crop sampling. Quadrats were also laid every meter along each transect 238 

inside the crops to account for the abundance of Hedysarum flowers. 239 

 240 

2.4. Data analyses 241 

 242 

We explored the similarity of bee communities, in terms of their identity and 243 

relative abundance across time (during vs. after mass flowering, in 2009), and 244 



11 
 

across space (inside, adjacent and distant, in 2010) with the proportional 245 

similarity index (PS; Hurlbert, 1978). PS was calculated as: 246 

𝑃𝑆 = ∑ min(𝑝𝑖𝑎, 𝑝𝑖𝑏
𝑛
𝑖=1 ) where for n species  𝑝𝑖𝑎 is the relative abundance of 247 

species i at time a (i.e., during or after Hedysarum mass flowering) or at 248 

distance a (i.e., inside, adjacent or distant to Hedysarum crops) and 𝑝𝑖𝑏 is the 249 

relative abundance of species i at time or distance b. PS values range from 0 250 

(no overlap between species composition) to 1 (complete overlap). 251 

To explore the temporal and spatial spill-over, we built generalized mixed 252 

models with bee species richness and abundance per target plant species (in 253 

2009) or per study shrubland or crop (in 2010) as response variables. In 2010, 254 

bee visitation rate and plant-bee pollination interaction richness were also 255 

explored as response variables.  256 

 257 

2.4.1. Temporal bee spill-over 258 

In 2009, for the response variable bee richness, time (during vs. after mass 259 

flowering) was included as a fixed factor in the model. For the response variable 260 

bee abundance, pollinator group (honeybee vs. other bees) and its interaction 261 

with time were also included as fixed factors. In both models target plant 262 

species nested in study shrubland was included as a random factor. The 263 

logarithm of the flowers under observation and the logarithm of the hours of 264 

observation of each target plant species were included as offsets. Poisson was 265 

used as the error distribution family. Post hoc comparisons were conducted by 266 

building contrast matrices. 267 
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We also explored whether the effect of time and pollinator group in these 268 

response variables differed for each target plant species and site by conducting 269 

Wilcoxon tests (Supplementary material, Appendix C). 270 

 271 

2.4.2. Spatial bee spill-over 272 

In 2010, for the response variable bee species richness, distance (inside, 273 

adjacent and distant) was included as a fixed factor in the model and study site 274 

as a random factor. For the response variables bee abundance and visitation 275 

rate, pollinator group (honeybee vs. other bees) and its interaction with distance 276 

were also included as fixed factors and study site as a random factor. In the 277 

three models, the logarithm of the number of 10 min transect walks conducted 278 

in each shrubland or crop was included as offset. Poisson was used as the error 279 

distribution family. Post hoc comparisons were conducted by building contrast 280 

matrices.  281 

We are aware that the number of replicates is unbalanced among treatments 282 

with distant shrublands underrepresented. To account for this limitation, we 283 

repeated the analyses by randomly excluding two MFC and two adjacent 284 

shrublands while keeping the geographical spatial distribution of the study sites. 285 

The results obtained did not qualitatively differ from those including all study 286 

sites (Supplementary material, Appendix D).  287 

Additionally, we explored whether the richness of plant-bee pollination 288 

interactions differed between adjacent and distant shrublands by conducting 289 

Wilcoxon tests.  290 

 291 
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All analyses were conducted in R (R Development Core Team, 2014). We used 292 

the library nlme for building the generalized mixed models and the library 293 

multcomp for building the post hoc comparisons. Mean ± SE values are given 294 

throughout the text unless otherwise specified. 295 

 296 

 297 

3. Results 298 

 299 

Pooling the 2009 and 2010 data, we observed a total of 25 bee species 300 

belonging to 16 genera, all of them considered native in the study area. Nine 301 

species visited Hedysarum crops while 23 species visited plants in shrublands 302 

(19 in adjacent and 14 in distant ones). All bee species that visited Hedysarum 303 

were shared with shrubland plants except two, Bombus terrestris L. and Eucera 304 

numida Lepeletier, which were exclusive to Hedysarum MFC (Table 2). 305 

 306 

3.1. Temporal bee spill-over 307 

 308 

In adjacent shrublands there were not significant differences in bee species 309 

richness in target plant species during and after Hedysarum mass flowering 310 

(during = 0.028 ± 0.008 and after = 0.035 ± 0.014 species/flower/h, Table 3). 311 

Despite that, the composition and relative abundance of the species partially 312 

differed during and after mass flowering, as indicated by the proportional 313 

similarity index PS = 0.65. 314 
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Honeybee abundance did not differ between during and after mass flowering, 315 

and neither did the combined abundance of all other bee species (Fig. 1, Table 316 

3). 317 

When analyzing each target plant species in each site separately, the trend was 318 

not consistent. For example, after mass flowering, honeybee abundance 319 

marginally decreased in one target plant species (A. aestivus) while in other two 320 

target plant species (C. albidus and G. tomentosa in the Binicalaf site) the 321 

abundance of other bees increased (Fig. C.2). Hedysarum mass flowering also 322 

affected bee species richness in three target plant species. In C. albidus and G. 323 

tomentosa at the Mila1 site, bee species richness increased after mass 324 

flowering while in G. tomentosa at the Binicalaf site it decreased. 325 

 326 

3.2. Spatial bee spill-over 327 

 328 

Bee species richness did not differ with distance to Hedysarum crops (0.128 ± 329 

0.033, 0.201 ± 0.075 and 0.150 ± 0.017 species/transect, for inside, adjacent 330 

and distant sites, respectively; Table 4). However, composition and relative 331 

abundance of the species partially differed across distances as indicated by the 332 

proportional similarity indexes. The similarity in bee communities was the 333 

highest between adjacent and distant shrublands (PS = 0.58), in which the 334 

honeybee and the wild bee Eucera oraniensis Lepeletier were the most 335 

abundant species (Fig. 2). Meanwhile, the bee community in Hedysarum crops 336 

was largely dominated by the honeybee but lacked E. oraniensis. The similarity 337 

of Hedysarum crop with adjacent (PS = 0.30) and distant (PS = 0.36) 338 

shrublands was low (Fig. 2). When the bee pollinator communities of 339 
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Hedysarum crops and adjacent shrublands were pooled together, the similarity 340 

with distant shrublands was PS = 0.62. 341 

Distance to Hedysarum crops affected bee abundance, and the effect differed 342 

between pollinator groups (Fig. 3a and Table 4). The abundance of honeybees 343 

and other bees was almost two times higher in distant than in adjacent 344 

shrublands. Inside Hedysarum crops, the two pollinator groups showed different 345 

trends. The abundance of the honeybee was one order of magnitude higher 346 

than in shrublands, while the abundance of other bee species was lower than in 347 

distant shrublands and did not differ from that in adjacent shrublands (Fig. 3a 348 

and Table 4). When excluding E. oraniensis from the analysis, differences in the 349 

abundance of other bees were not significant among distances (Table 4). 350 

Visitation rates showed the same trends as abundance of bees (Fig. 3b and 351 

Table 4). There were no significant differences in plant-bee pollination 352 

interaction richness between adjacent and distant shrublands (0.304 ± 0.053 353 

and 0.303 ± 0.086 interactions/transect, respectively; N = 6, W = 4, p-value = 1). 354 

The most frequently observed interactions in both types of shrublands were 355 

between G. tomentosa and honeybees (20.37%) and E. oraniensis (30.73%). 356 

 357 

 358 

4. Discussion 359 

 360 

4.1. No temporal bee spill-over from Hedysarum MFCs to adjacent 361 

shrublands 362 

 363 
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Contrary to what we expected, we did not observe a temporal spill-over of 364 

honeybees from the MFC to adjacent shrublands after Hedysarum mass 365 

flowering. During mass flowering, the floral offer of MFCs seems to cover all the 366 

requirements of the honeybee so that the crops monopolize their visits. 367 

However, after mass flowering, due to their large foraging ranges (Greenleaf et 368 

al., 2007; Osborne et al., 2008), capacity to locate highly rewarding resources at 369 

greater distances (Cresswell and Osborne, 2004) and developed 370 

communication skills (Steffan-Dewenter and Kuhn, 2003), honeybees 371 

might move to other still unharvested MFCs or to other highly rewarding plant 372 

communities within their foraging ranges, such as old-fields (Gathmann et al., 373 

1994). For instance, in our study system, communities with abundant G. 374 

tomentosa might be highly attractive to the honeybee. Therefore, the temporal 375 

spill-over effect mediated by honeybees in patchy and heterogeneous 376 

agricultural landscapes might be spatially diluted. 377 

A temporal spill-over of other bees from MFC to adjacent areas was also not 378 

observed. We did not expect the other bee species to be strongly attracted to 379 

Hedysarum crops as prior studies have shown that most Hedysarum visits in 380 

cultivated and naturalized populations are made by the honeybee (Montero-381 

Castaño et al., 2014; Satta et al., 2000).The pollinator survey conducted in 2010 382 

inside Hedysarum crops also supported this observation, as the other bee 383 

species represented only 3.87% of the total visitors. Thus, even if a temporal 384 

spill-over of a particular bee species could occur, it would be difficult to detect it 385 

due to their low abundance. In our study system, this was the case for 386 

Megachile pilidens Alfken and Osmia caerulescens L. Despite that the 387 

phenologies of these species overlapped with the flowering peak of Hedysarum 388 
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(they were observed visiting Hedysarum crops); in adjacent shrublands they 389 

were only observed after mass flowering. 390 

Therefore, the lack of a significant general pollinator temporal spill-over is due 391 

to both non-significant trends for most of target plant species, and to significant 392 

but opposed trends that nullify each other for few target plant species. 393 

In addition, other bee species able to access the restrictive flowers of 394 

Hedysarum are medium to large-sized ones (Córdoba and Cocucci, 2011) with 395 

medium-large foraging ranges (Greenleaf et al., 2007), so that their potential 396 

temporal spill-over could also be spatially diluted. Nonetheless, we would 397 

expect this spatial dilution to occur at shorter distances than in the case of the 398 

honeybee because maximum foraging distances for wild bees, which are mostly 399 

solitary central place foragers, fall below the ones described for honeybees 400 

(Gathmann and Tscharntke, 2002; Steffan-Dewenter and Kuhn, 2003). 401 

 402 

4.2. No spatial spill-over from Hedysarum MFCs to adjacent shrublands 403 

but the reverse 404 

 405 

We did not observe a spatial spill-over from the MFC to adjacent shrublands 406 

neither of honeybees nor of other bee species. However, the explanation for 407 

this result differs between the two pollinator groups. 408 

The honeybee preferentially selected Hedysarum crops and did not spill-over to 409 

adjacent shrublands. Pollinators, seek to optimize their floral rewards intake 410 

(Armbruster and Herzig, 1984) and might benefit greatly from MFCs, where the 411 

relative abundance and quality of available floral resources are usually high 412 

(Dietzsch et al., 2011). This behavior is amplified if they have an intensive 413 
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foraging behavior with short flying distances between consecutive flower visits, 414 

as is the case of the honeybee (Gross, 2001). In fact, the predominance of the 415 

honeybee in MFCs is not exclusive to Hedysarum crops as in many parts of the 416 

world crop pollination relies on this single species (Winfree et al., 2007). 417 

In the case of the other bee species, they did not highly select Hedysarum 418 

MFCs and, consequently, they did not significantly spill-over to adjacent 419 

shrublands. We suggest three non-exclusive explanations for the pool of other 420 

bee species not highly selecting the MFC. First, flower constancy at the 421 

individual level might be more highly associated with social pollinators like the 422 

honeybee (Leonhardt and Blüthgen, 2012) than with solitary bees. Therefore, 423 

monospecific areas like MFCs do not fulfill the individual requirements of 424 

solitary bees. Second, other bee species could be excluded from MFCs due to 425 

competition with the honeybee for the use of floral resources (Paini, 2004; 426 

Roubik, 1983) or by physical disturbance (Gross and Mackay 1998). Floral 427 

resources would not be expected to be limiting in MFCs. However, interspecific 428 

competition depends on the relative abundance of interacting species (Steffan-429 

Dewenter and Tscharntke, 2000), and we cannot disregard the possibility of 430 

competition to arise due to the high abundance of honeybees inside crops. 431 

Third, other factors co-varying with the presence of MFCs (for instance, some 432 

agricultural practices like the use of pesticides), could lead to the avoidance of 433 

MFCs by bee species. 434 

Nevertheless, despite that the pool of other bee species did not highly select 435 

Hedysarum MFCs, it did not avoid them either, as indicated by the similar 436 

abundance inside crops and in adjacent shrublands for the pool of other bee 437 

species. That is, some particular species might spill-over from MFCs to adjacent 438 
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shrublands. Most wild bees are central placed foragers (Cresswell et al., 2000) 439 

and due to their more restrictive foraging ranges compared to honeybees, their 440 

spill-over occurs at smaller spatial scales. However, due to the low abundance 441 

of other bee species, we could not conduct analyses for particular species 442 

separately to elucidate such specific responses. 443 

Finally, some bee species did not profit from the resources offered by 444 

Hedysarum. Moreover, they seemed to prefer landscapes without Hedysarum 445 

MFCs. That was the case for E. oraniensis, whose relative abundance was 446 

twofold in distant shrublands than in adjacent ones, and in fact, it was the main 447 

responsible for the higher bee abundance in distant shrublands compared with 448 

adjacent ones. In general, medium to large-sized bees (Greenleaf et al., 2007) 449 

are able to perceive their landscapes at larger spatial scales (Steffan-Dewenter 450 

et al., 2002). Therefore, regardless of the reason for their not exploiting a 451 

particular crop species, these bees can chose landscapes without such MFCs 452 

and with high concentrations of their preferred required resources (e.g. nesting 453 

sites, food) (Tscharntke et al., 2012). 454 

Our approach allowed us to detect a spatial bee spill-over, not from Hedysarum 455 

MFC to adjacent natural habitats, but rather the reverse. As Hedysarum crops 456 

are part of a cyclical agro-farming system (Bustamante et al., 2007) and are 457 

grown a maximum of two consecutive years in the same field, their negative 458 

effect in the abundance of bee pollinators in adjacent areas could be buffered in 459 

the long term. Therefore, we would not expect the observed spill-over to alter 460 

the demography of neither pollinator populations nor of the entomophilous wild 461 

plants in adjacent shrublands. However, at larger spatial scales than the one 462 

considered here, Hedysarum MFCs could have an indirect positive effect on the 463 
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abundance of wild bees in natural areas. If honeybee hives are spread across 464 

the Minorcan landscape and Hedysarum MFCs attract honeybees not only from 465 

adjacent but also from distant shrublands, MFCs could be reducing the 466 

abundance of honeybees in natural areas at a large spatial scale. As this 467 

species can outcompete wild pollinators (Gross and Mackay, 1998; Paini, 2004; 468 

Roubik, 1983), these latter could profit from the decrease of honeybee 469 

abundance and increase their visitation rates, as we have observed at smaller 470 

spatial scales (Montero-Castaño and Vilà, unpublished result). At such large 471 

spatial scale, the rotation of crops might not dilute the effect on pollinators and 472 

entomophilous wild plants. It would have been very interesting, though not 473 

feasible, to test this hypothesis by manipulating the presence and absence of 474 

honeybee hives at larger spatial scales like Valido et al., (2014) did. 475 

In addition, and though the study years were representative of the average 476 

weather conditions for the study area (Agencia Estatal de Meteorología), 477 

pollinator communities show a high interannual variability (Williams et al., 2001). 478 

Thus, a long term study would be necessary to elucidate whether the observed 479 

pattern is maintained in the long-term or if Hedysarum crops support and 480 

enhance the abundance of generalist pollinators and provide a benefit through 481 

greater pollinator service overall (Holzschuh et al., 2011; Mitchell et al., 2009). 482 

Finally, the extrapolation of our results to other MFCs should be done cautiously 483 

and taking into account the particular characteristics of our study crop species, 484 

specially its restrictive flower morphology and its high attractiveness to 485 

honeybees. For instance, Hedysarum MFC can only directly compete for or 486 

share with natural areas those pollinators able to access its floral rewards 487 

(Córdoba and Cocucci, 2011). Meanwhile, other MFCs with non-restrictive 488 
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flower morphologies, such as sunflower (Helianthus annuus L.) and oilseed 489 

rape (Brassica napus L.), might compete for or share with natural areas a 490 

broader array of pollinators including bees, butterflies, flies and beetles 491 

(Bommarco et al., 2012) potentially showing larger spill-over effects on one 492 

direction or another. 493 

 494 

4.3. Conclusions 495 

 496 

In the studied agricultural landscape in Menorca the presence of Hedysarum 497 

MFCs decreased pollinator abundance in adjacent shrublands by monopolizing 498 

the visits of the honeybee, and by attracting some wild bees away from the 499 

surrounding natural areas. Thus, the proposed role of MFCs as supporters and 500 

sources of wild pollinators for surrounding natural areas should be cautiously 501 

analyzed for each particular system. Factors such as the flower morphology 502 

(i.e., restrictive or easy access to floral resources) of the crop species, the 503 

presence of honeybees and their preference for the crop species and the 504 

landscape configuration, might modulate and determine the role of MFCs as 505 

supporters and sources of wild pollinators for surrounding natural areas. 506 

 507 
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Figure captions 695 

 696 

Figure 1. Temporal spill-over. Mean + SE abundance of the honeybee and 697 

other bee species in plants in shrublands adjacent to Hedysarum MFCs during 698 

(black) and after (bold) mass flowering. 699 

 700 

 701 

Figure 2. Pollinator communities similarity. Percentage of bee species 702 

inside, adjacent and distant to Hedysarum MFCs. The honeybee is represented 703 

in black, the wild bee Eucera oraniensis in grey and the rest of species in white. 704 

Total number of individuals observed in each habitat type is given above each 705 

pie chart. Below brackets values for the proportional similarity index (PS) are 706 

given. 707 

 708 

 709 

Figure 3. Spatial spill-over. Mean + SE (a) abundance and (b) visitation rate of 710 

the honeybee and other bee species inside (grey), adjacent (black) and distant 711 

(bold) to Hedysarum MFCs. Different letters above bars represent significant 712 

differences within pollinator groups. 713 
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Table 1. Location, area and flower density of each study shrubland or Hedysarum MFC. The land uses of the 500 m radius 714 

surrounding landscape of each study shrubland are also given. Landscape characterization was based on the land-use cover map 715 

(Carreras et al., 2007). 716 

Site Treatment Year Latitude Longitude 
Area       
(m

2
) 

Flower 
density 

(flowers/m
2
) 

  % Land-uses 500 m landscape 

  MFC 
Other 
crops 

Natural 
areas 

Non-natural 
areas* 

Binicalaf 
adjacent 

2009 
 39°52'14.81"N   4°10'2.49"E 2940.30 54.65 

 
0.49 34.82 55.17 9.14 

MFC  39°52'16.99"N   4°10'1.25"E 3844.45 208.75 
                 

Binixabó 
adjacent 

2009 
 39°56'12.04"N   4° 6'57.23"E 873.54 11.43 

 
0.43 47.03 47.95 4.48 

MFC  39°56'12.82"N   4° 6'56.60"E 3379.52 216.88 
                 

Mila1 
adjacent 

2009 
 39°55'29.35"N   4°15'12.05"E 151.53 283.78 

 
4.47 58.60 34.46 2.45 

MFC  39°55'28.61"N   4°15'15.34"E 15542.47 1038.37 
                 

Mila2 
adjacent 

2009 
 39°55'40.88"N   4°15'21.39"E 15837.37 145.05 

 
4.59 55.36 35.89 2.14 

MFC  39°55'39.50"N   4°15'16.90"E 20522.74 1295.31 
                 Albufera distant 2010  39°56'27.50"N   4°15'21.11"E 29742.80 215.63 
 

0.00 4.37 82.03 9.81 

            
Binigurdó 

adjacent 
2010 

 39°59'56.09"N   4° 6'2.40"E 2707.70 24.28 
 

0.29 60.54 36.48 2.35 

MFC  39°59'54.93"N   4° 6'0.63"E 2240.15 494.51 
                 Favaraix distant 2010  39°58'26.19"N   4°13'39.69"E 13745.07 110.86 
 

0.00 61.86 34.14 2.25 

            
Molí 

adjacent 
2010 

 39°59'50.42"N   4° 5'34.13"E 455.82 38.45 
 

1.46 79.30 13.65 5.52 

MFC  39°59'48.71"N   4° 5'35.22"E 11487.12 308.52 
                 

Mongofre 
adjacent 

2010 
 39°59'3.85"N   4°13'18.29"E 3090.83 42.43 

 
2.68 63.94 32.98 0.00 

MFC  39°59'3.14"N   4°13'17.40"E 21065.59 589.37 
                 

Palafanguer 
adjacent 

2010 
 39°55'35.74"N   4°14'15.21"E 132.95 323.35 

 
0.78 44.23 54.09 0.88 

MFC  39°55'34.61"N   4°14'15.38"E 6110.35 307.50 
     * Human settlements and infrastructures717 
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Table 2. Bee pollinator species observed during 2009 and 2010 with indication 

of whether they were observed inside Hedysarum MFCs and/or in adjacent or 

distant shrublands. 

Species Family MFC 
Shrublands 

Adjacent Distant 

Andrena flavipes Andrenidae  X 
 Andrena nigroolivacea Andrenidae  X X 

Andrena ovatula Andrenidae X X 
 Andrena parviceps Andrenidae  X 
 Andrena tenuistriata Andrenidae  X 
 Anthophora plumipes Apidae  X 
 Apis mellifera Apidae X X X 

Bombus terrestris Apidae X 

  Ceratina cucurbitina Anthophoridae  X X 

Ceratina dallatorreana Anthophoridae  X 
 Chalicodoma sicula Megachilidae X 

 
X 

Eucera numida Apidae X 

  Eucera oraniensis Apidae X X X 

Halictus gemmeus Halictidae  X X 

Halictus scabiosae Halictidae  X X 

Hoplitis praestans Megachilidae  
 

X 

Hoplosmia ligurica Megachilidae  
 

X 

Hylaeus clypearis Megachilidae  X 
 Hymenoptera sp.1 -  

 
X 

Lasioglossum sp.1 Halictidae  X X 

Lasioglossum sp.2 Halictidae  
 

X 

Megachile pilidens Megachilidae X X 
 Osmia caerulescens Megachilidae X X X 

Osmia niveata Megachilidae  X 
 Rhodanthidium septemdentatum Megachilidae X X X 

Scoliidae sp.1 Scoliidae   X   
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Table 3. Effect of Hedysarum mass flowering time (i.e. during vs. after) on bee 

pollinator species richness and abundance in shrublands adjacent to 

Hedysarum MFCs. The effect on abundance is explored for the honeybee and 

other bee species separately. 

Response 
variable 

N Group Contrast Estimate SE Z p-value 

Richness 18 - After vs. During 0.366 0.402 0.911 0.362 

        Abundance 36 Honeybee After vs. During -0.225 0.459 -0.491 0.858 

Other bees After vs. During 0.105 0.205 0.509 0.848 
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Table 4. Effect of distance to Hedysarum MFCs (i.e. inside, adjacent and distant) on bee pollinator species richness, abundance, 

visitation rate and on plant-bee pollination interactions richness. The effect on abundance is explored for the honeybee and other 

bee species separately and for other bees when excluding from the analysis the wild bee Eucera oraniensis. Significance levels: * p 

< 0.05, ** p < 0.01, *** p < 0.001. 

Response variable N Pollinator group Contrast Estimate SE Z p-value 

Richness 10 - Distant vs. Adjacent 0.152 0.326 0.467 0.887 
 Inside vs. Adjacent -0.080 0.353 -0.227 0.972 
 Inside vs. Distant -0.233 0.368 -0.631 0.803 
          Abundance 20 Honeybee Distant vs. Adjacent 1.000 0.336 2.976 0.015 * 

Inside vs. Adjacent 3.887 0.167 23.301 <0.001 *** 

Inside vs. Distant 2.887 0.294 9.808 <0.001 *** 
       Other bees Distant vs. Adjacent 0.635 0.299 2.122 0.148 

 Inside vs. Adjacent -0.339 0.170 -1.995 0.194 
 Inside vs. Distant -3.861 0.196 -19.708 <0.001 *** 

        10 Other bees 
excluding 
 E. oraniensis 

Distant vs. Adjacent -0.254 0.386 -0.659 0.778 
 Inside vs. Adjacent 0.107 0.184 0.580 0.824 
 Inside vs. Distant 0.361 0.390 0.925 0.612 
          Visitation rate 20 Honeybee Distant vs. Adjacent 0.913 0.267 3.425 0.003 ** 

Inside vs. Adjacent 3.315 0.088 37.656 <0.001 *** 

Inside vs. Distant 2.401 0.253 9.487 <0.001 *** 
       Other bees Distant vs. Adjacent 1.050 0.259 4.056 <0.001 *** 

Inside vs. Adjacent -0.052 0.109 -0.479 0.982 
 Inside vs. Distant -3.503 0.115 -30.375 <0.001 *** 

 


