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Abstract 24 

Explosive cyclones are intense extra-tropical low pressure systems featuring large deepening rates. In the Euro-25 

Atlantic sector, they are a major source of life-threatening weather impacts due to their associated strong wind 26 

gusts, heavy precipitation and storm surges. The wintertime variability of the North Atlantic cyclonic activity is 27 

primarily modulated by the North Atlantic Oscillation (NAO). In this study, we investigate the interannual and 28 

multi-decadal variability of explosive North Atlantic cyclones using track density data from two reanalysis 29 

datasets (NCEP and ERA-40) and a control simulation of an atmosphere/ocean coupled General Circulation 30 

Model (GCM - ECHAM5/MPIOM1). The leading interannual and multi-decadal modes of variability of 31 

explosive cyclone track density are characterized by a strengthening/weakening pattern between Newfoundland 32 

and Iceland, which is mainly modulated by the NAO at both timescales. However, the NAO control of 33 

interannual cyclone variability is not stationary in time and abruptly fluctuates during periods of 20-25 years 34 

long both in NCEP and ECHAM5/MPIOM1. These transitions are accompanied by structural changes in the 35 

leading mode of explosive cyclone variability, and by decreased/enhanced baroclinicity over the sub-polar/sub-36 

tropical North Atlantic. The influence of the ocean is apparently important for both the occurrence and 37 

persistence of such anomalous periods. In the GCM, the Atlantic Meridional Overturning Circulation (AMOC) 38 

appears to influence the large-scale baroclinicity and explosive cyclone development over the North Atlantic. 39 

These results permit a better understanding of explosive cyclogenesis variability at different climatic timescales 40 

and might help to improve predictions of these hazardous events. 41 

 42 

Keywords: extra-tropical cyclones; explosive cyclogenesis; NAO; jet stream; ocean variability; AMOC. 43 

 44 
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1. Introduction 45 

The wintertime variability in the mid-latitudes of both hemispheres is dominated by the occurrence of sub-46 

weekly baroclinic disturbances (Blackmon et al. 1977; Lau 1978). Such disturbances typically grow in the 47 

vicinity of the planetary stationary troughs, where the gradients of temperature and humidity are maximum 48 

(Hoskins and Valdes 1990), and terminate near the regions of stationary ridges (Lau 1988). In the northern 49 

hemisphere, these areas (so called ‘storm tracks’) extend from the Eastern Asian and North American coast lines 50 

towards Western North America and Europe, respectively (Hoskins and Valdes 1990). In both oceanic basins, 51 

the storm track maximum lies northeast of the upper-level polar jet stream core, which is semi-permanently 52 

located over Japan and eastern North America, respectively (Chang and Orlanski 1993; Woollings et al. 2010). 53 

Such a configuration is consistent with surface baroclinic disturbances crossing the jet core from the right-54 

entrance toward the left-exit regions, where strong upward motion of air fosters further cyclone amplification 55 

(Uccellini 1990; Rivière and Joly 2006). Additionally, upper-level mobile troughs (Bosart and Lin 1984; 56 

Sanders 1986; Reader and Moore 1995; Gyakum and Danielson 2000), and surface sensible and latent heat 57 

fluxes (Fosdick and Smith 1991; Davis and Emanuel 1988) also contribute to extra-tropical cyclone 58 

intensification. The characteristics of these dynamical precursors and their relative vertical position (Hoskins et 59 

al. 1985) typically determine the deepening rate (Pettersen and Smebye 1971; Fink et al. 2012) and life cycle of 60 

cyclones (Bjerknes and Solberg 1922; Shapiro and Keyser 1990). In the literature, surface cyclones featuring 61 

strong intensification rates (equal or above 24 hPa day-1 at 60˚N, or equivalent) are denominated ‘explosive 62 

cyclones’ or ‘bombs’ (Sanders and Gyakum 1980). These explosive cyclones are associated with strong impacts 63 

like wind gusts, heavy precipitation and storm surge events (Bosart and Lin 1984; Wernli et al. 2002). 64 

Over the North Atlantic, the most prominent pattern of climate variability is the North Atlantic Oscillation 65 

(hereafter NAO; cf. Wanner et al. 2001). It represents a redistribution of air masses between sub-tropical and 66 

sub-polar latitudes, and modulates the strength and latitudinal location of the westerly flow (Marshall et al. 67 

2001). Under its positive phase, the polar jet stream is accelerated and shifted to the northeast compared with its 68 

‘average’ position. Under the negative phase, the jet stream is decelerated, constrained upstream in the North 69 

Atlantic and shifted to the south. The changed mean flow induces a latitudinal displacement of storm trajectories 70 

(Hurrell et al. 2003; Trigo 2006; Santos et al. 2013), and modulates their intensification rates (Gómara et al. 71 

2014b). In this regard, the positive NAO phase is associated with stronger and more extensive baroclinicity over 72 

the North Atlantic than the negative phase. As a result, the number of intense cyclones over the North Atlantic 73 

increases (decreases) under NAO+ (NAO-) (Pinto et al. 2009). 74 
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The synoptic temporal evolution of the NAO seems to be dominated by stochastic processes (Feldstein 75 

2003), such as Rossby Wave-Breaking (RWB; Benedict et al. 2004; Woollings et al. 2008; Strong and 76 

Magnusdottir 2008). RWB appears to control explosive cyclogenesis (Hanley and Caballero 2012; Gómara et al. 77 

2014a; Messori and Caballero 2015) and cyclone families over Western Europe (Pinto et al. 2014) at synoptic 78 

timescales, by constraining and accelerating the jet. It has been debated in the literature whether the lower-79 

frequency NAO variability (e.g., interannual, multi-decadal; James and James 1989; Wunsch 1999; Schneider et 80 

al. 2003; Raible et al. 2005) arises from pure climate noise (Stephenson et al. 2000), or is forced by external 81 

factors such as: (i) the interannual and lower frequency ocean variability in the North Atlantic (Raible et al. 82 

2001; Visbeck et al. 2003; Rodríguez-Fonseca et al. 2006; Chen et al. 2015; Sun et al. 2015), tropical Pacific 83 

(Trenberth et al. 1998; Müller et al. 2008; Zhang et al. 2015) and the Indian ocean (Hoerling et al. 2001; 2004); 84 

(ii) the stratosphere (Baldwin and Dunkerton 2001; Reichler et al. 2012); (iii) solar variability (Shindell et al. 85 

2001); and (iv) the mid-latitude westerly flow from the North Pacific (Honda et al. 2001; Pinto et al. 2011; 86 

Drouard et al. 2015), among others. Additionally, the role of anthropogenic climate change is another factor to 87 

consider. For example, there is some evidence of an intensification and eastward shift of the NAO dipole over 88 

the last decades of the 20th century (Hurrell et al. 2003; Jung et al. 2003). However, it is still unclear whether 89 

such evolution is primarily due to global warming (Ulbrich and Christoph 1999; Osborn et al. 1999; Bader et al. 90 

2011), internal decadal variability of the NAO (Wang et al. 2012; Raible et al. 2014; Woollings et al. 2015) or to 91 

the storm track itself (Rogers 1997; Lu and Greatbach 2002).  92 

Previous studies have characterized multi-decadal changes in the dominant teleconnection patterns, such as 93 

NAO, and their associated impacts, e.g., on European precipitation (Raible et al. 2004; Vicente-Serrano and 94 

López-Moreno 2008), on the North Atlantic storm track (Luksch et al. 2005, Pinto et al. 2011), etc. Such low-95 

frequency changes often lead to active/inactive teleconnections between remote regions (e.g., between ENSO 96 

and European precipitation; López-Parages and Rodríguez-Fonseca 2012), thus providing enhanced forecast 97 

skill of relevant phenomena during specific periods of time (cf. Rodríguez-Fonseca et al. 2009; Losada et al. 98 

2012). 99 

This work primarily investigates the interannual variability of explosive cyclogenesis in the North Atlantic 100 

and its main potential drivers. Our focus is on the impact of the dominant modes of large-scale atmospheric 101 

variability (fundamentally NAO) and on the possible existence of different regimes of behavior as these modes 102 

and their associated teleconnections evolve in multi-decadal timescales. In addition, the multi-decadal 103 

variability of explosive cyclone tracks is also assessed. To address these questions, we use cyclone track density 104 
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fields obtained from reanalyses and a long coupled model simulation with an objective cyclone tracking 105 

algorithm.  106 

The article is organized as follows. Sections 2 and 3 present the data and methods used in this study. 107 

Section 4 describes the explosive cyclone variability and its large-scale driving in the reanalysis data sets, and 108 

section 5 extends this analysis using a long control simulation from a coupled model. The article concludes with 109 

a short summary of the main results. 110 

 111 

2. Data 112 

Both reanalysis and GCM data are considered for this study. The first reanalysis dataset is provided by the 113 

National Centers for Environmental Prediction (NCEP; Kalnay et al. 1996). The data used has a 6-hr resolution 114 

and extends from January 1948 to February 2012. The spectral spatial resolution is T62 (approximately 115 

2.5°x2.5°) and extends from the surface up to 3 hPa (28 vertical levels). Additionally, data from the European 116 

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 (Uppala et al. 2005) is considered. The data 117 

starts in September 1957, ends in March 2002, and is available 6-hourly with a spectral spatial resolution of 118 

T159 (~1.125°x1.125°). The 60 vertical levels reach 0.1 hPa.  119 

The sea surface temperature (SST) and sea ice data from the Met Office Hadley Centre (HadISST) are used. 120 

This monthly global dataset starts in 1870 and has a 1°x1° resolution (Rayner et al. 2003). The ocean heat 121 

content is estimated from the integrated temperature from 0 to 300 m from the Simple Ocean Data Assimilation 122 

(SODA) reanalysis (Carton and Giese 2008). The monthly fields have a horizontal resolution of 0.5˚x0.5˚ and 123 

span 1950-2009. 124 

We consider a coupled 505-yr control simulation with pre-industrial external forcing conditions (from year 125 

1860) performed with the ECHAM5/MPIOM1 GCM (hereafter ECHAM5; Roeckner et al. 2003; Jungclaus et 126 

al. 2006). The atmospheric (oceanic) model has a spatial resolution of T63 (T31), with 31 (40) vertical levels 127 

from the surface up (down) to 10 hPa (5720 m). Oceanic and atmospheric models are coupled without further 128 

flux adjustments. The tropical SST variability is found realistic (Jungclaus et al. 2006). The storm track and 129 

NAO variability have also been evaluated in previous studies (e.g., Bengtsson et al. 2006; Pinto et al. 2011). 130 

 131 

3. Methods 132 

Climate indices 133 
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Climate indices are based on winter seasonal averages (DJF) using anomalies from the long term mean. 134 

When not mentioned explicitly, a 31-point Lanczos filter with 11-yr. cut-off frequency is applied to the 135 

ECHAM5 data to separate interannual and multi-decadal timescales of variability. Filtering is not applied to 136 

reanalysis data due to the constraints posed by the short time series. Still, most of the spectral power density is 137 

concentrated within the band of 1 to 11-yr (cf. Section 4). The following indices are considered: 138 

 The NAO index (Figs. S1a-c), defined as the leading EOF of 500-hPa geopotential height (z500) winter 139 

seasonal anomalies over the area (20-80˚N, 80˚W-40˚E; Barnston and Livezey 1987).  140 

 The Arctic Oscillation (AO, Figs. S1d-f) and Pacific North American Pattern (PNA, Figs. S1g-i), defined as 141 

the two leading EOFs of z500 winter hemispheric anomalies north of 20ºN (NOAA CPC definition). 142 

 The Niño-34 index (Figs. S2a-c), based on winter averaged high-pass filtered (1-13 yr.) SST anomalies over 143 

the area (5ºS-5ºN, 170º-120ºW; Trenberth 1997). 144 

 The Atlantic Multi-decadal Oscillation (AMO, Figs. S2d-e) index, defined as the leading EOF of SST 145 

winter seasonal low-pass filtered anomalies (>13-yr; detrended) over the area (0-70˚N, 95˚W-30˚E; Mohino 146 

et al. 2011). For the GCM, the AMO index is calculated as the winter seasonal low-pass filtered SST 147 

anomalies over the same area (Fig. S2f; Knight et al. 2005), due to the difficulty of the model in 148 

reproducing a realistic EOF1 pattern. 149 

 The Interdecadal Pacific Oscillation (IPO, Figs. S2g-i) index, defined as the leading EOF of SST winter 150 

seasonal low-pass filtered anomalies (>13-yr; detrended) over the area (45˚S-80˚N, 120˚E-95˚W; 151 

Villamayor and Mohino 2015). 152 

 The Atlantic Meridional Overturning Circulation (AMOC, Fig. S2j) index, defined as the maximum 153 

streamfunction of the zonally integrated meridional overturning in the Atlantic Ocean (30˚S-60˚N, 85˚W-154 

20˚E; 500 - 5700 m depth). A low pass filter is applied to the meridional velocity data (>13-yr) to retain the 155 

long term variability. Velocity data above 500 m depth are disregarded to avoid wind driven effects on the 156 

circulation (Zhang and Wang 2013). 157 

All indices are normalized - divided by their standard deviation. Additionally, the upper-level (500-300 hPa) and 158 

lower-level (850-700 hPa) maximum Eady Growth Rate (bi; Hoskins and Valdes 1990) is used as indicator of 159 

the large-scale baroclinicity and potential wave growth (1): 160 

 161 

𝑏𝑖 = 0.31 (
𝑓

𝑁
) |

dv

dz
|,                                                                         (1) 162 

 163 
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where f is the Coriolis parameter, N the static stability, z the vertical coordinate and v the horizontal wind vector. 164 

 165 

Cyclone Statistics 166 

A cyclone identification and tracking scheme (Murray and Simmonds 1991), adapted and validated for the 167 

Northern Hemisphere storm track (Pinto et al. 2005), is applied to 6-hourly winter (DJF) MSLP data. Cyclones 168 

are identified using the Laplacian of MSLP, an indicator of their geostrophic relative vorticity. Derived cyclone 169 

statistics compare well with other tracking schemes (Raible et al. 2008). Systems are selected based on the 170 

following criteria (Pinto et al. 2009): (i) cyclone lifetime ≥ 24 h; (ii) minimum MSLP (p) < 1000 hPa; (iii) Max. 171 

(∇2p) > 0.6 hPa deg.lat.-2; and (iv) Max.  d/dt ∇2p ≥ 0.3 hPa deg.lat.-2 day-1. The maximum normalized deepening 172 

rate (NDR) is used as a measure of cyclone’s intensity (2): 173 

 174 

𝑁𝐷𝑅 =  
∆𝑃

24

sin 60°

sin ∅
,                                                                               (2) 175 

 176 

where ΔP is the pressure fall (hPa) and Ф the mean latitude of the cyclone’s surface centre over a period of 24 177 

hours. Depending on their maximum NDR, cyclones are separated into two 2 different subsets: (i) explosive 178 

cyclones (EC; NDR ≥ 1 Bergeron); and (ii) non explosive cyclones (NoEC; NDR < 1 Bergeron). Cyclone track-179 

densities are constructed by counting the number of cyclones intercepting a circle of radius 7.5 deg.lat. for each 180 

grid point over time, providing combined information of cyclone numbers and track lengths.  181 

 182 

Statistics Tests 183 

Different methods are applied for statistical hypothesis testing (von Storch and Zwiers 1999): (i) a two tailed 184 

t test that accounts for autocorrelation of the series (Bretherton et al. 1999); (ii) a t test for a difference in mean; 185 

(iii) a Mann-Whitney U test; and (iv) a Fisher’s test for a difference in variance. The confidence intervals chosen 186 

are 95% or 99%. 187 

 188 

4. Explosive cyclone variability in the reanalysis data sets 189 

A) Interannual variability of explosive cyclone tracks 190 

In this section an analysis of explosive cyclone variability is presented for both reanalysis datasets. We focus 191 

on NCEP reanalysis because it spans a longer time period, but ERA-40 results are also discussed where 192 

appropriate. The mean track densities of explosive (EC) and non-explosive (NoEC) cyclones are shown in Fig. 193 
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1a (NCEP 1948-2011). For EC, a maximum extending from Newfoundland to Iceland is identified. This 194 

maximum is consistent with cyclogenesis over the region of strongest baroclinicity near the Gulf Stream 195 

(Sanders and Gyakum 1980; Hoskins and Valdes 1990) and subsequent intensification of the storms as they 196 

cross the jet (Uccellini 1990; Gilet et al. 2009; Rivière et al. 2013). For NoEC, the area of maximum density is 197 

shifted northeastward, extending between southeast Greenland, northwest of the British Isles and Scandinavia. 198 

In order to characterize the variability of winter cyclone activity, the leading Empirical Orthogonal Function 199 

(EOF) of cyclone track density anomalies is determined for the entire North Atlantic [20º-80ºN; 90ºW-40ºE] 200 

using NCEP reanalysis (Fig. 1b). This analysis includes all cyclones, i.e., explosive and non-explosive systems. 201 

The EOF pattern is hereafter labeled with the subscript T (total). The leading pattern (All1T) represents a 202 

latitudinal shift of cyclone trajectories between Iceland and Western Europe. The leading EOF of 250-hPa zonal 203 

wind anomalies (Jet1T) and the climatological jet are also overlaid in Fig. 1b. The Jet1T pattern is consistent with 204 

the NAO variability, i.e., with a northward (southward) latitudinal displacement and intensification (weakening) 205 

of the extra-tropical jet during the positive (negative) phase. The spatial correspondence between All1T and Jet1T 206 

latitudinal nodes is evident in Fig. 1b, and is consistent with the steering of cyclone trajectories by the NAO 207 

(e.g., Hurrell et al. 2003; Pinto and Raible 2012). The stronger track density center of action over Iceland (Fig. 208 

1b) suggests increased cyclone activity over the sub-polar region in agreement with a positive NAO phase 209 

(Pinto et al. 2009).  210 

The leading EOF of explosive cyclone tracks (EC1T) is compared to Jet1T and the jet core in Fig. 1c. The 211 

EC1T pattern looks also related to the Jet1T anomalies, but in this case the jet and NAO variability appear to 212 

intensify/weaken explosive cyclone activity along their climatological trajectories rather than change the 213 

cyclone pathways. This pattern is consistent with the NAO-induced changes in North Atlantic baroclinicity, 214 

which is stronger and broader under the NAO positive phase (Pinto et al. 2009). In addition, EC forming over 215 

Eastern North America typically cross the upper-level jet from the right-entrance to the left-exit regions, and 216 

explosively amplify (Uccellini 1990; Rivière et al. 2013). In contrast, a weaker, less extended and southerly 217 

displaced jet is obviously less efficient for explosive intensification. 218 

For completeness, the second leading EOFs of all cyclones (All2T) and explosive cyclones (EC2T) are 219 

provided as supplementary material in Figs. S3a-b. All2T represents a north to south dipole of cyclone 220 

trajectories between northern Europe and the Mediterranean (Fig. S3a). EC2T reveals a different pattern, with an 221 

intensification/extension of the explosive tracks between the east coast of the US and the British Isles, and a 222 

weakening northeast of Iceland (Fig. S3b). EC2T is consistent with Jet2T (250-hpa zonal wind EOF2), a large-223 
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scale configuration known to foster the occurrence of explosive cyclogenesis and storm families over Western 224 

and Central Europe (Fig. S3b; Hanley and Caballero 2012; Pinto et al. 2014). 225 

All1T/EC1T are significantly (95% confidence interval) correlated with Jet1T (0.92/0.72), the NAO 226 

(0.91/0.78) and the AO (0.78/0.63) for NCEP (Table 1). Likewise, All2T and EC2T also significantly correlate 227 

with Jet2T. Most of the spectral power for these modes is concentrated within the range of periods 1-11 yr. (Fig. 228 

S3c for EC1, not shown for the others). All the modes are well separated (Fig. S2d; North et al. 1982). 229 

For comparison, the mean track density pattern and corresponding EOF modes of ALL1T/ALL2T, 230 

EC1T/EC2T, and Jet1T/Jet2T are also calculated for 1957-2001 using ERA-40 (Fig. S4). The ERA-40 track 231 

density pattern (Fig. S4a) is very similar to NCEP, but with a greater total number of cyclone counts. This may 232 

be due to the higher horizontal resolution of ERA-40 (Pinto et al. 2005). The EOFs are also similar to NCEP 233 

(Fig. S4b-e) and represent the same variability (Table 1). The modes are well separated (Fig. S3d). In general 234 

terms, the linear correlation results between EC1T and Jet1T agree well in both reanalysis (Table 1), with slightly 235 

lower values for NCEP (ERA-40: 0.85; NCEP: 0.72). However, if the same time period is considered, the values 236 

are almost identical (NCEP: 0.83). Thus, in the next section this apparent time-evolving correlation is analyzed 237 

in more detail. 238 

 239 

B) Analysis of stationarity 240 

In order to assess the stationarity of the relation between the NAO and explosive cyclogenesis, 21-year 241 

running correlations between the leading Principal Components (PCs) of EC1T and NAOT/Jet1T are shown in 242 

Fig. 1d for NCEP and ERA-40. The analysis suggests a non-stationary link between the NAOT/Jet1T variability 243 

and EC1T in NCEP. Specifically, the NAOT/Jet1T influence on EC1T is particularly weak at the beginning of the 244 

period, increases abruptly in the 60s and remains large to the late 90s (solid blue/red curves in Fig. 1d). In ERA-245 

40 (Fig. 1d; dashed blue/red curves), the time series are too short to detect any change in the correlation. 246 

Nevertheless, the ERA-40 results are consistent with NCEP between the 60s and 90s.  247 

In order to analyze possible dynamical differences between the two NCEP periods, EOFs are calculated 248 

independently for winters 1948-1962 (labeled as 50s; e.g. EC150s/Jet150s) and 1963-1997 (labeled as 80s). All 249 

EOFs are standardized with respect to the PC for the full period. Figs. 2a-b show that the leading mode of 250 

explosive cyclone track density is sensitive to the choice of period. The 1948-1962 EOF1 for explosive cyclones 251 

(EC150s; Fig. 2a) is constrained over the western North Atlantic, showing a strengthening/weakening of the 252 

cyclone tracks between Eastern North America and southern Greenland. The structure of the associated Jet150s 253 
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depicts a latitudinal jet variability also constrained to the westernmost part of the basin (Fig. 2a). In contrast, the 254 

spatial structure of EC180s is similar to EC1T (Fig. 2b) and explains more variability (40 vs. 36%). The EC180s 255 

pattern is centered over the northeastern North Atlantic, with a maximum over Iceland.  256 

For the jet variability (Jet180s; Fig. 2b), both latitudinal centers of action are stronger than for Jet150s (Fig. 2a) 257 

and span the entire North Atlantic basin, explaining a much larger fraction of variance (56 vs. 32%). The z500 258 

anomalies of each period are regressed on the corresponding EC PCs (Figs. 2c-d, respectively). A pattern 259 

consisting of three centers of action over the North Atlantic is found for the first period (1948-1962), with 260 

positive anomalies over the western sub-tropical North Atlantic and Western Europe, and a negative anomaly 261 

south-west of Greenland. In contrast, the second period (1963-1997) features a very clear NAO/AO hemispheric 262 

structure, with significant seesaw anomalies spanning over the whole North Atlantic.  263 

Differences in the NAO patterns calculated independently for each period (NAO50s vs. NAO80s, Figs. 2e-f) 264 

are consistent with differences in the regressed z500 patterns (Moore et al. 2013). In particular, the sub-tropical 265 

NAO center of action appears weaker over the central North Atlantic in the first period, and two separated 266 

maxima are found over Eastern North America and Europe (Fig. 2e). The positive maximum over Europe may 267 

hinder the extension of cyclone tracks over the eastern North Atlantic in EC150s (Fig. 2a). The spatial correlation 268 

between NAO50s and NAOT is only 0.50. These results are consistent with Raible et al. (2014), who provided 269 

evidence based on the 20CR reanalysis that the z500 teleconnectivity between Baffin Island and the western 270 

North Atlantic is dominant for the period 1940-1969 (cf. their Fig. 5b). For the second period, a very strong, 271 

extensive, zonally symmetric and eastward displaced NAO is observed (Fig. 2f), which is consistent with 272 

enhanced cyclone activity over the eastern sub-polar North Atlantic (Fig. 2b). This NAO80s pattern shows a 273 

much higher spatial correlation with the total period NAOT (0.86). 274 

The winter SST anomalies of each period are also regressed on the EC PCs (Figs. 2g-h). A significant 275 

cooling over the sub-tropical and sub-polar North Atlantic is associated with the positive phase of EC180s (Fig. 276 

2h), and with warming in the central part of the basin. This Atlantic SST tripole pattern is typical of the positive 277 

phase of the NAO, whose subtropical part is found to have predictive skill (Czaja and Frankignoul 1999; 278 

Rodríguez-Fonseca et al. 2006; Losada et al. 2007). The regressed SST pattern has the same sign over the winter 279 

equatorial Pacific and sub-tropical north Atlantic, as is well described in the literature (Fig. 2h; Wang 2002; 280 

Sung et al. 2013). During the 50’s period, a stronger connection with the North Pacific SSTs is evident (Fig. 2g), 281 

which is consistent with previous analyses (Raible et al. 2001; 2004). Although based on few SST observations, 282 
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it is striking that the positive relationship between the equatorial Pacific and the sub-tropical North Atlantic 283 

anomalies disappears during the 50's period (Fig. 2g), coinciding with the decoupling between NAO and EC150s. 284 

 285 

C)  Impact of multi-decadal variability 286 

The possible influence of the lower-frequency multi-decadal variability on the connection between explosive 287 

cyclogenesis and the NAO is investigated based on the inter-decadal evolution of the jet and maximum Eady 288 

Growth Rate. The latter is an indicator of baroclinicity and potential cyclone growth (Hoskins and Valdes 1990). 289 

The climatological values of the jet intensity (u250) and Maximum Eady Growth Rate in the upper (500-300 290 

hPa; bi400) and lower (850-700 hPa; bi775) troposphere are presented in Figs. 3a and S5a (NCEP). Both bi400 291 

and bi775 overlap well with u250 (particularly bi400). The three variables are thus good estimators of the 292 

vertical environmental wind shear and potential growth of cyclones (e.g., Pinto et al. 2009). Differences 293 

between the two periods (1948-1962 vs. 1963-1997) are shown in Fig. 3b. The early period is characterized by a 294 

weaker jet and decreased baroclinicity (bi400) over large parts of the sub-polar North Atlantic compared with 295 

the second period, with more suitable conditions for cyclone formation over the sub-tropical North Atlantic. For 296 

the lower level baroclinicity (bi775; Fig. S5b), large differences are observed over western Greenland. The 297 

strong low level baroclinicity over Western Greenland during the first period might explain the deflected EC 298 

trajectories toward this region in the EC150s pattern (cf. Fig. 2a). In addition, no significant change in bi775 is 299 

observed over the sub-tropical North Atlantic between the two periods, in contrast with the bi400 results (cf. 300 

Figs. 3b and S5b). The bi400 changes might be related to the modified intensity of the sub-tropical jet, which is 301 

confined to the upper troposphere.  302 

To analyze the decadal jet and NAO variability for the NCEP period, a Hovmöller diagram of low-pass 303 

filtered (>33 yr.) u250 anomalies averaged between 100°W-20°W, an index of the latitudinal location of the 304 

maximum positive jet anomalies and a multi-decadal NAO index are presented in Fig. 3c. The latter is shifted 305 

and rescaled to have the same mean and standard deviation as the latitude index. The period of low correlation 306 

between EC1T and Jet1T/NAOT (1948-1962) is characterized by minimum values in the jet latitude index and in 307 

the decadal NAO, and by negative u250 anomalies spanning over the latitude band 40˚-60˚N (Fig. 3c). In 308 

contrast, a more intense and poleward shifted jet is observed during the latter period, together with a more 309 

positive decadal NAO. 310 

The influence of inter-decadal changes in the ocean is analyzed through the winter SSTs and integrated (0-311 

300 m) ocean temperature. Climatologies of these variables are shown in Fig. S5c. Fig. 3d shows the winter SST 312 
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difference between the two periods: a positive anomaly pattern apparently reminiscent of the Atlantic Multi-313 

decadal Oscillation (AMO; Knight et al. 2005) is found over the North Atlantic. This is consistent with the 314 

observed out-of-phase relation between the EC-NAO/Jet running-correlations and the AMO index (Fig. 1d). 315 

Thus, the strengthening and eastward propagation of EC track density during the second period (Fig. 2b) could 316 

be associated with a more negative AMO phase. Both changes could be driven by the AMOC (Sun et al. 2015), 317 

greenhouse gas forcing, or both (Woollings et al. 2012). 318 

The difference in winter integrated temperature (0-300 m, T300) is shown in Fig. S5d as an indicator of 319 

changes in the ocean heat content above the thermocline. The emerging pattern seems consistent with the 320 

impacts of AMO and AMOC, with significant cooling in the tropics (Wang and Zhang 2013, cf. their Fig. 1). 321 

The inter-decadal changes between the 50s and 80s in terms of the meridional T300 gradient (δyT300) are also 322 

depicted in Fig. S5d. Significant changes in δyT300 are found over the tropical North Atlantic, but not over 323 

extratropical areas. 324 

We hypothesize that decadal variations of the jet and the ocean may contribute to modulate inter-decadal 325 

changes in the interannual variability of explosive North Atlantic cyclones. However, the robustness of these 326 

results is difficult to establish given the short time series. In particular, it is not clear if the variability changes in 327 

EC activity are triggered by natural decadal variability of the climate system, anthropogenic climate change 328 

(e.g., the eastern NAO shift during the late 20th century, a slowdown of the AMOC, etc.) or are just fortuitous. 329 

These facts put forward the necessity of using long control simulations in order to better infer a robust 330 

hypothesis about the mechanisms involved and characterize EC variability at longer timescales. 331 

 332 

5. Explosive cyclone variability in ECHAM5/MPIOM1 333 

A) Multi-decadal variability of explosive cyclone tracks 334 

We next describe the variability of explosive cyclones in a 505-yr long control simulation with the 335 

ECHAM5/MPIOM1 coupled model. First, a broad overview of the multi-decadal cyclone variability is 336 

provided, which could not be analyzed with the shorter reanalysis data sets. 337 

Cyclone track density GCM climatologies for EC and NoEC are shown in Fig. 4a. Just like NCEP (Fig. 1a), 338 

the maximum in EC activity is located between Newfoundland and Iceland. For NoEC, the shape and counts are 339 

also similar to NCEP over the North Atlantic. The main difference between ECHAM5 and NCEP for EC 340 

densities (Fig. 4b) is that ECHAM5 produces too zonal tracks - a systematic bias in GCMs (e.g., Zappa et al. 341 

2014; Seiler and Zwiers 2015). The same is found for NoEC (not shown). 342 
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The leading EOFs of low-pass filtered (>11-yr) EC track density data are calculated. The leading modes of 343 

variability at multi-decadal timescales are very similar to the unfiltered modes found for reanalysis (cf. section 344 

4). In particular, EC1LF (Fig. 4c; LF stands for low frequency) also represents a strengthening/weakening of EC 345 

tracks between Newfoundland and Iceland. EC2LF (Fig. S6a) depicts a similar pattern southerly shifted between 346 

eastern North America and Western Europe. The leading EOFs of low pass filtered (>11-yr) u250 winter 347 

anomalies reveal again very similar structures to the interannual modes. Please note the different scales used in 348 

Figs. 4 and S6 due to the different amplitude of this variability. 349 

Linear correlations between the PCs of these modes and dominant low-frequency teleconnection patterns 350 

(e.g., decadal NAO, AMO, IPO etc.) are provided in Table 2. Correlations show that EC1LF is tightly connected 351 

with decadal variability of the NAO (NAOLF; 0.75) and the jet (Jet1LF; 0.68). EC2LF is significantly anti-352 

correlated (correlated) with Jet1LF (Jet2LF). These results suggest that multi-decadal fluctuations of EC tracks 353 

and frequencies are primarily controlled by the decadal variability of the NAO and the jet.  354 

 355 

B) Interannual variability of explosive cyclone tracks 356 

In order to test the robustness of the results from section 4, the interannual (1-11 yr.) variability of EC 357 

density tracks is also analyzed in ECHAM5/MPIOM1. The leading interannual EOF of explosive cyclones for 358 

the whole period (EC1T) represents a strengthening/weakening of the climatological pattern between 359 

Newfoundland and Iceland (Fig. 4d), also consistent with EOF1 of u250 (Jet1T). 360 

The winter anomalies of z500 for the total ECHAM5 period are regressed on the EC1T-PC (Fig. 4e), 361 

revealing again a very clear AO/NAO pattern (cf. Table 1). This pattern is very similar to that obtained for the 362 

second NCEP period (Fig. 2d). The winter SST anomalies are also regressed on EC1T-PC (Fig. 4f), resulting in a 363 

pattern very similar to the second NCEP period (Fig. 2h). In particular, both the North Atlantic tripole pattern 364 

and ENSO appear to be significantly correlated and anti-correlated, respectively, with the leading mode of 365 

variability of explosive cyclone tracks. These results contrast with the non-significant ENSO-EC1 connection 366 

found in NCEP (Fig. 2h). However, as already mentioned, results from observations should be considered with 367 

caution due to the short time series of available data. 368 

Finally, the remaining EOFs (All1T, All2T, EC2T) are provided in Figs. S6b-d. These are again in good 369 

agreement with NCEP and ERA-40. 370 

 371 

C) Analysis of stationarity 372 
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To investigate whether the non-stationary behavior found in NCEP is also present in the GCM and to what 373 

extent these results are caused by natural variability of the climate system, the time-dependent relation between 374 

EC1T and the Jet1T/NAOT variability is analyzed. We focus on the interannual (1-11 yr.) variability, as the 375 

spectral density of the reanalysis is mainly concentrated within the band 1-11 yr (cf. Fig. S3c). Fig. 5a shows the 376 

21-yr running correlations between the principal components (PCs) of EC1T and the NAOT/Jet1T. EC1T and 377 

NAOT are highly correlated most of the time, but appear to be less correlated or ‘decoupled’ in specific periods. 378 

The same is found for EC1T vs. Jet1T PCs. Hereupon we refer to the periods of low correlation as ‘decoupling 379 

periods’ (51 years in total, model years 182-209 and 305-327; Fig. 5a). Although smoothed, the ‘decoupling 380 

periods’ can still be detected in the running correlations if the window length is increased to 41-yr. 381 

We analyze the change of the leading patterns of variability during the simulation with running EOFs. If the 382 

EC or NAO variability changes during specific periods, the EOFs for those periods are expected to look 383 

differently. With this aim, we compute the EOFs in 21-yr sliding windows (485 patterns for 505 years) with a 384 

consistent polarity for all calculations.  385 

On the one hand, the spatial correlation between each of the 485 NAO patterns and the total period NAOT is 386 

shown in Fig. 5b. There are no abrupt changes in the correlations during the decoupling periods, suggesting that 387 

the NAO spatial structure could remain largely unchanged. However, visual inspection of the spatial NAO 388 

pattern calculated only for the decoupling dates (Fig. 5c; hereafter NAOD) reveals a noticeable strengthening of 389 

its southern node compared with NAOT (Fig. S1c). This is suggestive that the NAO spatial correlation values in 390 

Fig. 5b could be more sensitive to the location of the NAO centers of action than to their relative strength. As 391 

will be described later on, the relative intensity of the NAO nodes and their projection onto the mean flow seems 392 

to be determinant for explosive cyclone development over the North Atlantic. 393 

On the other hand, the spatial correlation between the time-varying and total-period explosive cyclone 394 

modes is non-stationary in time and changes abruptly during the decoupling periods (Fig. 5b). This suggests that 395 

the occurrence of the decoupling periods is due to a clearly different spatial structure of the leading EC 396 

variability. A zonal average (90˚W-40˚E) of each of the 485 EC1 regression patterns is performed to characterize 397 

these changes. An index with the latitudinal location of the maximum positive center of action for each EC1 398 

pattern is displayed in Fig. 5b, and shows an abrupt southward shift of this center of action (from ~60˚N to 399 

45˚N) during the decoupling periods. This is confirmed when the specific EOF1 of explosive cyclone track 400 

density anomalies is calculated solely for the decoupling dates (EC1D; Fig. 5d). Here, EC1D represents a 401 

strengthening/weakening of the explosive cyclone tracks between Eastern North America and Western Europe, a 402 
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pattern shifted south relative to the total period EC1T (compare Figs. 4d and 5d). Finally, the corresponding 403 

second leading EOF (EC2D) depicts an intensifying/weakening pattern more constrained over the Icelandic area 404 

(Fig. S6e). This suggests that the two leading EOFs change order during the decoupling periods. 405 

Although the leading variability of EC track density is normally explained by a pattern confined over the 406 

northern sub-polar regions, the variability shifts south during specific periods and cannot be explained by the 407 

EOFs computed for the full period (EC1T and NAOT). Unlike NCEP, these changes do not appear to be 408 

associated with a pure longitudinal shift of the NAO nodes, but with modifications in their relative strength. The 409 

potential changes in the interannual forcing during the decoupling periods are investigated through the 410 

regression of z500 and SST winter anomalies on EC1D-PC (Figs. 5e-f). During these periods, the z500 pattern 411 

associated with the variability of EC is characterized by a belt of low pressure anomalies extending from 412 

Newfoundland to Western Europe between 40°-60°N (Fig. 5e). This anomaly is accompanied by positive 413 

anomalies of z500 between Greenland and Scandinavia and over the eastern sub-tropical North Atlantic 414 

(~30˚N). The sign and shape of the z500 anomalies do resemble the NAO- pattern. Indeed, the correlation 415 

between EC1D and Jet1D/NAOD is -0.62/-0.49 (99% confidence interval). Therefore, explosive cyclones appear 416 

to be favored by NAO- during the decoupling periods, in contrast with the normal situation. It will be shown in 417 

section 5E that the baroclinicity associated with the negative NAO years during the decoupling periods is 418 

stronger and more extensive over the North Atlantic than that for the positive NAO years (unlike the 419 

climatology; cf. Pinto et al. 2009). Regarding the SST anomalies, no significant regression pattern is found (Fig. 420 

5f), nor there is an indication of the North Atlantic SST tripole during the decoupling periods. 421 

 422 

D) Impact of multi-decadal variability  423 

The potential role of multi-decadal variability as modulator of interannual EC variability is analyzed in the 424 

following. During the decoupling periods, EC is anomalously frequent in the corridor between the eastern US 425 

and Western Europe, while their numbers are reduced from southern Greenland to Western Scandinavia (Fig. 426 

6a). A similar structure is observed in the variance, with an increase of variability to the south and a decrease to 427 

the north. This is consistent with greater variability in the areas where EC are more frequent. In contrast, no 428 

significant differences are observed in the mean or in the variance of the North Pacific storm track (not shown). 429 

This suggests that the westerly flow from the North Pacific does not play an important role in the occurrence of 430 

the decoupling periods. 431 
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This raises again the question of why EC tracks shift south during long and persistent periods of time (~20-432 

25 years each). The long term anomalies of the jet intensity and the upper-level maximum Eady Growth Rate 433 

are calculated for the decoupling periods. The climatological means for ECHAM5 are provided in Fig. 6b for 434 

comparison. The overlapping between both variables is evident, although with a much more zonal structure than 435 

for NCEP. During the decoupling periods both the jet and bi400 significantly shift south (Fig. 6c), with positive 436 

anomalies over the sub-tropical North Atlantic and negative values over the Newfoundland-Iceland area. The 437 

same is observed for bi775 (not shown). Thus, the long-term upper-level conditions become more efficient for 438 

cyclone growth between the eastern US and Western Europe at the expense of the sub-polar North Atlantic.  439 

The low-pass filtered (>33-yr) u250 anomalies averaged between 100˚-20˚W are used to highlight the 440 

latitude of the maximum positive jet anomalies in Fig. 6d. The decadal NAO index is also shown. The polar jet 441 

exhibits strong multi-decadal variability, with multiple oscillations in the latitude range 30˚-65˚N. 442 

It is noticeable that both decoupling periods feature a persistent and remarkably equatorward shifted jet. 443 

Moreover, weakened upper-level winds are identified around 45˚-60˚N (consistent with Fig. 6c). Although the 444 

low-frequency variability of the NAO and the jet appear similar in Fig. 6d, it is noteworthy that the decadal 445 

NAO index has lower amplitude during the decoupling periods. Therefore, additional potential forcings for the 446 

southward shift of the jet are investigated. 447 

Eddy-driven jets tend to be located over areas with maximum meridional SST and ocean heat content (OHC; 448 

total heat content above the oceanic thermocline) gradients (cf. Figs. 7a and S7a; Minobe et al. 2008; Nakamura 449 

et al. 2008). Therefore, we hypothesize that if the North Atlantic SST/OHC meridional gradient shifts in latitude 450 

during specific periods, then the extra-tropical jet and baroclinicity fields might also respond to this forcing 451 

(Dong et al. 2013). This is observed for the SST and OHC anomaly during the decoupling periods (Fig. 7b). 452 

During these periods, an extensive cold SST anomaly is present across the sub-tropical North Atlantic. Such 453 

anomaly extends over the full mixed layer depth (Fig. 7b) and below the thermocline (Fig. S7b). As a 454 

consequence, a significant attenuation of the meridional OHC gradient is observed over the Gulf Stream area 455 

during the decoupling periods, together with an increase over the sub-tropical North Atlantic (Fig. 7c). Such a 456 

SST/OHC anomaly pattern is thought to: (i) force positive jet and baroclinicity anomalies over the sub-tropical 457 

North Atlantic; and (ii) support the persistence of these anomalies through a positive feedback process. A 458 

southerly shifted storm track cools the waters beneath, which acts to reinforce the pre-existing SST anomaly 459 

(Dong et al. 2013). As a note of caution, it must be noted that these gradient anomalies (Fig. 7c) are particularly 460 

weaker than in Nakamura et al. (2008). To evaluate the potential forcing of these oceanic anomalies, several 461 
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indices of temperature anomaly in the mixed layer are constructed for the North Atlantic area (30˚-40˚N, 60˚-462 

30˚W; dashed rectangle in Fig. 7b). Fig. 7d shows the low pass filtered (>33-yr) indices of ocean temperature 463 

anomaly in depth. As expected, they reveal exceptional negative anomalies over the focus area during the 464 

decoupling periods. The AMOC index calculated for the MPIOM1 data is also provided in Fig. 7d (cf. AMOC 465 

pattern in Fig. S2j) and significantly correlates with the indices of ocean temperature anomaly: AMOC vs. SST 466 

= 0.35; AMOC vs. T123m = 0.60 (99% confidence interval). However, the overlapping is not so evident for all 467 

the periods (e.g., second decoupling period). We speculate that the AMOC could play a role for the occurrence 468 

of the decoupling periods in agreement with an equatorward shift of the extra-tropical jet and baroclinicity, but 469 

the degree of this influence is uncertain. In this line, a deficient representation of the AMOC strength in climate 470 

models appears to lead to important SST biases over the North Atlantic (Wang et al. 2014). Despite the obtained 471 

AMOC pattern in ECHAM5/MPIOM1 looks strong enough (cf. Fig. S2j), the model bias could exert as well 472 

some undesired influence in the dynamics observed during the decoupling periods. 473 

In the next section, we discuss possible atmospheric mechanisms explaining the changes in the NAO-EC 474 

relation during the decoupling periods based on these ingredients. 475 

 476 

E) Potential mechanisms leading to the Decoupling Periods 477 

In this section, we propose two different mechanisms to explain the abrupt transitions in the EC leading 478 

variability and its connection with the NAO. 479 

 The cross-jet mechanism: Under normal conditions, the interannual jet alternates its position 480 

between the northern, central and southern North Atlantic locations during consecutive years 481 

(Fig. 8a; Woollings et al. 2010). When the jet is situated over its northern position (NAO+), low 482 

pressure systems forming over eastern North America can easily cross the extra-tropical jet and 483 

explosively amplify (Fig. 8a; cf. Uccellini 1990; Gilet et al. 2009; Rivière et al. 2013). Under a 484 

negative NAO phase, the relative position between developing cyclones and the jet is less efficient 485 

for rapid cyclone intensification, and explosive cyclone deepening is thus weaker over the North 486 

Atlantic. This mechanism is consistent with the NAO modulation of explosive cyclone variability 487 

identified for most of the time periods in the GCM. However, when the interannual jet is 488 

persistently (20-25 yr.) located over the central or sub-tropical North Atlantic (i.e. a southerly 489 

shifted multi-decadal jet), the EC variance associated with NAO+ years is absent. This implies that 490 

NAO+ no longer acts as a precursor for explosive cyclone deepening; instead, a different mode of 491 
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EC variability emerges (Fig. 8b). For this mechanism to occur the jet locations must significantly 492 

vary with the NAO phase but the main genesis area of explosive cyclones over Eastern North 493 

America must not, which is the case in our results (cf. Figs. 8ab). Thus, we consider the cross-jet 494 

mechanism as a plausible hypothesis for the occurrence of abrupt transitions in the EC variability 495 

and the decoupling periods. 496 

 The NAO-barolinicity mechanism: Under normal conditions, the North Atlantic baroclinicity 497 

associated with NAO+ is stronger and extends over a broader region than for NAO- (Pinto et al. 498 

2009). Consistent with this, the number of explosive cyclones over the North Atlantic is higher 499 

(lower) under NAO+ (NAO-). However, the opposite is found during the decoupling periods, when 500 

explosive cyclones seem to be favored under NAO-. To check if this might be due to changes in 501 

NAO-mediated baroclinicity, composite maps of total upper-level baroclinicity (bi400) are 502 

computed for NAO values above and below ±1 SU for climatology (NAOT) and decoupling periods 503 

(NAOD). These maps are shown in Figs. 9a-d, with the areas of highest bi400 (>40 day-1) 504 

emphasized with stippling. The baroclinicity associated with NAO+ appears to be more 505 

intense/extensive than for NAO- in climatology (Figs. 9ab). For the decoupling periods the contrary 506 

is observed (Figs. 9cd). For a more quantitative comparison, the total sum of actual values over grid 507 

points with highest bi400 (stippled areas; disregarding the subtropical jet) is determined to estimate 508 

the baroclinicity strength/extent under each situation. In Fig. 10, the total values for each case (in 509 

%, normalized with the climatology/NAO+ case) are provided. As expected, results depict a higher 510 

(lower) baroclinicity under NAO- (NAO+) during the decoupling periods (as opposed to 511 

climatology). The same is observed if a more relaxed criterion of 35 day-1 is used (not shown). 512 

Both the cross-jet and NAO-baroclinity mechanisms are plausible hypotheses which could contribute to the 513 

abrupt transitions in EC variability in ECHAM5/MPIOM1 during the decoupling periods, and it is not obvious 514 

which of the two is more relevant. To answer this question, regional simulations forced to different large-scale 515 

configurations would be useful. Such an approach is outside the scope of the paper and is left for future work. 516 

 517 

6. Summary and conclusions 518 

This study explores the modulating role of the multi-decadal oceanic and atmospheric variability (>11-yr) on 519 

the interannual climate variability (1-11 yr.) of explosive cyclogenesis over the North Atlantic in wintertime. In 520 

addition, the multi-decadal variability of explosive cyclone tracks is assessed. For this purpose, the track density 521 
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of explosive and non-explosive cyclones from two reanalysis datasets and a long control General Circulation 522 

Model (GCM) simulation are analyzed. An Empirical Orthogonal Function (EOF) approach is used to 523 

characterize the preferred modes of variability in the North Atlantic. 524 

Results show that the leading mode of the interannual climate variability for all cyclones (All1T) represents 525 

primarily a latitudinal shift of cyclone trajectories between Iceland and Western Europe (Fig. 1b). This pattern is 526 

consistent with previous studies (e.g., Rogers 1997; Lu and Greatbach 2002). However, the leading interannual 527 

variability mode of explosive cyclone tracks (EC1T) consists of a strengthening/weakening of its climatological 528 

pattern extending from Newfoundland to Iceland (Fig. 1c). Although these two patterns are different, both 529 

modes are significantly correlated with the North Atlantic Oscillation (NAO) during most time periods in all 530 

three datasets (cf. Table 1). This results from the influence of the NAO in modulating cyclone’s trajectories 531 

(All1T; cf. Wanner et al. 2001) and cyclone intensification rates (EC1T; cf. Pinto et al. 2009). However, during 532 

specific decades of NCEP and ECHAM5, the EC1-NAO correlation abruptly drops.  533 

For NCEP, this non-stationary relationship is apparently associated with multi-decadal changes in the NAO 534 

shape and location. In particular, the NAO-EC1 correlation is 0.68 between 1948 and 1962. In this period the 535 

NAO pattern is more confined over the western North Atlantic (Raible et al. 2014). Contrastingly, the period 536 

1963-1997 is characterized by an eastward extension and intensification of the NAO centers of action (Jung et 537 

al. 2003). During this period, the NAO-EC1 correlation increases to 0.89. The changes in the NAO structure are 538 

consistent with the changes in EC1 between periods. Thus, EC1 is more confined west in the basin during the 539 

mid 20th century, whereas for recent decades it appears stronger and more extended towards Northern Europe 540 

(cf. Fig. 2). These decadal changes in NAO and EC1 variability appear to coincide with changes in the Atlantic 541 

Multi-decadal Oscillation phase (AMO; Woollings et al. 2012). 542 

For ECHAM5, the NAO-EC1 correlation is constant and positive during most of the simulation, except for 543 

two periods about 20-25 yr. long (Fig. 5). During these periods (so called ‘decoupling periods’), EC1 abruptly 544 

changes shape and the NAO-EC1 correlation rapidly switches to negative values. In this article two different 545 

potential mechanisms have been proposed to explain such behavior: 546 

 The first is the so called cross-jet mechanism and relies on the relative position between the eddy-547 

driven jet (Woollings et al. 2010) and explosive cyclones growing over eastern North America 548 

(Hoskins and Hodges, 2002) during consecutive years (20-25 yr.). This mechanism appears to be 549 

related to multi-decadal variability of the atmosphere and the ocean. It occurs during periods when 550 

the jet is persistently shifted south, the meridional gradient of ocean heat content over the 551 
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subtropical North Atlantic is enhanced and the Atlantic Meridional Overturning Circulation 552 

(AMOC) is weakened (Figs. 6 to 8). 553 

 The second is the so called NAO-baroclinicity mechanism. This mechanism relies on multi-decadal 554 

variability of the atmosphere, in particular on how multi-decadal changes in the NAO structure and 555 

relative strength of its centers of action project on interannual variability features. As opposed to 556 

climatology (Pinto et al. 2009), the baroclinicity associated with NAO- is stronger and more 557 

extensive than for NAO+ over the North Atlantic during the decoupling periods (Figs. 9 and 10). As 558 

a consequence, explosive cyclones are favored by NAO- instead of NAO+. These changes lead to 559 

abrupt transitions in the EC leading variability mode and the EC1-NAO correlation. 560 

The present results evidence the importance of the low-frequency control for the time-evolving interannual 561 

climate variability of explosive cyclone tracks in the North Atlantic. This modulation leads to a non-stationary 562 

connection between the NAO and EC activity both in reanalysis and GCM data. In this context, a plausible 563 

influence of the ocean circulation on this non-stationary connection is highlighted. Although this influence looks 564 

different between reanalysis and the GCM, this is not surprising as the low NAO-EC1 correlation periods in 565 

both datasets are associated with distinct EOF patterns (compare Figs. 2a and 5d). An interesting question left 566 

for future work concerns the relative role played by the ocean in the longitudinal location and relative intensity 567 

of the NAO centers of action (Wang et al. 2012; Raible et al. 2014). The opposite effect, in which the NAO 568 

triggers multi-decadal changes in the ocean, is also present in the literature (Visbeck et al.1998; Delworth and 569 

Greatbatch 2000; Eden and Jung 2001). The NAO positive phase is thought to strengthen the AMOC via air-sea 570 

fluxes of heat and momentum (Delworth and Zeng 2015), and induce a basin-wide SST warming (AMO 571 

pattern). This pattern subsequently switches phase and behaves as a delayed oscillator, which explains a 60 yr. 572 

quasi-periodic cycle of the NAO (Sun et al. 2015). In this work we suggest that AMOC could in turn alter the 573 

position of the jet stream and maximum baroclinicity over the North Atlantic, thus modifying the preferred 574 

regions explosive cyclone development. The study of the opposite branch of this relation remains as an 575 

interesting path for future research. 576 

The present results can potentially contribute to an improvement of the multi-decadal predictions of extreme 577 

cyclones in the North Atlantic (e.g., Lee et al. 2012; Nissen et al. 2014; Feser et al. 2015). Regarding the 578 

potential role of anthropogenic climate change in the NCEP results, it must be noted that abrupt changes in the 579 

variability of explosive cyclogenesis are also observed in the pre-industrial simulation, so these transitions can 580 

be internally driven. 581 



21 
 

Additionally, an unsteady connection between the EC leading variability and El Niño-Southern Oscillation is 582 

also found in the GCM data (Luksch et al. 2005). Such connection must be checked in additional control 583 

simulations to potentially improve seasonal predictions of explosive North Atlantic cyclones. 584 

At multi-decadal timescales (>11-yr), the main variability mode of explosive cyclones also depicts a 585 

strengthening/weakening pattern of EC tracks between Newfoundland and Iceland (Fig. 4c). Our results suggest 586 

that this variability is predominantly driven by the decadal NAO and jet variability. Further analysis on this 587 

topic is also left for future work.  588 

Finally, as this study is mainly focused on explosive cyclogenesis, an extended analysis for all cyclones and 589 

their time-varying relation with the NAO will be an interesting path for future research through the use of a 590 

larger set of control and forced simulations (e.g., CMIP5 models). 591 
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Tables: 868 

 869 

Table 1: Correlation coefficients between interannual cyclone track EOFs and climate indices in NCEP/ERA-870 

40/ECHAM5 871 

Corr. NAO T AO PNA Niño-34 Jet1T Jet2T 

All1T 0.91/0.90/0.84 0.78/0.79/0.56 -0.23/-0.23/-0.17 -0.15/-0.08/-0.17 0.92/0.90/0.84 -0.06/-0.12/-0.16 

EC1T 0.78/0.88/0.66 0.63/0.74/0.38 -0.16/-0.25/-0.32 -0.11/-0.27/-0.13 0.72/0.85/0.59 0.21/0.19/0.29 

All2T 0.08/0.10/0.21 -0.14/-0.18/0.14 0.04/-0.29/0.17 0.04/0.14/0.04 0.03/0.06/0.15 0.55/0.55/0.36 

EC2T -0.12/-0.04/-0.36 -0.26/-0.21/-0.19 -0.05/-0.44/0.02 0.04/0.20/0.17 -0.22/-0.21/-0.53 0.65/0.78/0.50 

Significant correlations (95%, t test) are shown with bold face. Cells are shaded when the correlation is 872 

significant for all datasets. 873 

 874 

Table 2: Correlation coefficients between multi-decadal explosive cyclone track EOFs and low frequency (>11-875 

yr) climate indices in ECHAM5/MPIOM1. 876 

Corr. NAOLF PNALF AMO IPO AMOC Jet1LF Jet2LF 

EC1LF 0.75 -0.08 0.24 0.16 0.11 0.68 0.15 

EC2LF -0.25 -0.01 -0.12 -0.09 -0.04 -0.42 0.60 

Significant values (95%, t test) are shown with bold face and shaded cells. 877 

878 
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Figures 879 

 880 

Fig. 1: (a) Mean track density plots (in counts per 7.5° radius circle area per DJF season) of explosive 881 

(contours) and non-explosive (shadings) cyclones based on NCEP (base period 1948-2011; all cyclone time 882 

steps included). (b) EOF1 and explained variance (%) of DJF all cyclones (explosive + non-explosive) 883 

anomalous track density fields (ALL1T; shadings in track density units std-1 - 99% significance in stippling) and 884 

u250 (Jet1T; red/blue contours, starting from 2.5 in 0.5 intervals of m s-1 std-1) based on NCEP. The 885 

climatological jet stream core is shown in thick black contours (starting from 30 m s-1 with 5 m s-1 intervals). (c) 886 

Same as (b) but for explosive track density fields only. (d) 21-yr running correlations (centered) of EC1T vs. 887 

NAOT (blue lines) and EC1T vs. Jet1T (red lines) for NCEP (solid lines) and ERA40 (dashed lines). All 888 

correlations are significant (95% confidence interval, two sided t test). The magenta line is the AMO index. 889 

1948-1962 and 1963-1997 periods denoted with black dashed and black solid horizontal lines. 890 

 891 

 892 

Fig. 2: (a) Same as Fig. 1(c) but for the re-calculated EOFs for the base period 1948-1962. (b) Same as (a) but 893 

for 1963-1997. (c) Regression (shadings, in gpm std-1) and correlation (contours, 95% confidence interval) of 894 

z500 winter anomalies on EC150s (period 1948-1962). (d) Same as (c) but for EC180s (base period 1963-1997). 895 

(e) Re-calculated NAO pattern (NAO50s; shadings in gpm std-1, contours every 10 gpm std-1) and explained 896 

variance (in %) for the base period DJF 1948-1962. (f) Same as (e) but for 1963-1997 (NAO80s). (g) Same as (c) 897 

but for SST winter anomalies on EC150s for the period 1948-1962 (in K std-1; based on HadISST). (h) Same as 898 

(g) but for EC180s (base period 1963-1997). 899 

 900 

Fig. 3: (a) Climatological winter zonal wind at 250 hPa (u250, contours in m s-1) and 300-500 hPa maximum 901 

Eady Growth rate (bi400, shadings in day-1) on NCEP. (b) Difference of u250 intensity between 1948-1962 and 902 

1963-1997 in red/blue shadings (m s-1; 95% confidence interval marked with +). Difference of 300-500 hPa 903 

Eady Growth rate (bi400) in contours (day-1; 95% confidence interval marked with x). For the differences the 904 

means of the second period are subtracted to the first one. (c) Low frequency (>33-yr.) u250 anomalies averaged 905 

between 100˚W-20˚W in red/blue shadings (m s-1). The thick black line follows the latitudinal location of the 906 

maximum u250 positive anomalies. The thick dashed line is the decadal NAO index. Both indices are smoothed 907 

(>33-yr low-pass filter), centered in the Y-axis and set to have the same standard deviation (the corresponding of 908 
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the jet latitude index) to allow comparison. (d) Same as (b) but for the winter SST in red/blue shadings (in K, 909 

95% confidence interval in contours). 910 

 911 

Fig. 4: (a) Same as Fig. 1(a) but for ECHAM5 (base period DJF 1-505 model years). (b) Difference in mean of 912 

explosive track densities: ECHAM5 minus NCEP (shadings). Hatched areas depict significant differences (95% 913 

confidence interval, t test for a difference in mean). (c) EOF1 and explained variance (%) of low-frequency 914 

multi-decadal (>11-yr) DJF explosive anomalous track density fields (EC1LF; shadings - 99% significance in 915 

stippling) and u250 (Jet1LF; red/blue contours, starting from 1 in 0.5 m s-1 std-1 intervals) on ECHAM5 (base 916 

period DJF 1-505 years). (d) Same as Fig. 1(c) but for interannual timescales in ECHAM5 (1-11 yr.; 917 

EC1T/Jet1T). (e) Regression (shadings, in gpm std-1) and correlation (contours, 95% confidence interval) of z500 918 

winter anomalies on interannual EC1T (1-11 yr.) for the total period of study on ECHAM5 (years 1-505). (f) 919 

Same as (e) but for winter SST anomalies (K std-1). 920 

 921 

Fig. 5: (a) 21-yr running correlations (centered) of EC1T vs. NAOT PCs (blue line) and EC1T vs. Jet1T PCs (red) 922 

on ECHAM5. Significant values highlighted with thicker red/blue segments (95% confidence interval, two sided 923 

t test). ‘Decoupling periods’ denoted with vertical bars. (b) Magenta line: Spatial correlation of NAOT vs. the 924 

485 running NAO patterns (based on 21-yr. sliding window EOFs). Blue line: Same as the magenta line but for 925 

the 485 EC1 patterns vs. EC1T. Red line: Latitudinal location (deg. N) of the main center of action of the 485 926 

EC1 patterns (averaged over 90˚W-40˚E). (c) Same as Fig. 2(e) but for the decoupling periods on ECHAM5 927 

(model years 182-209 and 305-327). (d) Same as Fig. 2(a) but for the decoupling periods on ECHAM5. (e) 928 

Same as Fig. 2(c) but for the decoupling periods on ECHAM5. (f) Same as Fig. 2(g) but for the decoupling 929 

periods on ECHAM5/MPIOM1. 930 

 931 

Fig. 6: (a) Explosive track density anomaly for the decoupling periods (shadings; 95% confidence interval - 932 

hatched) and standard deviation anomaly (contours; standard units, 95% confidence interval - filled dots). (b) 933 

Climatological winter zonal wind at 250 hPa (u250, contours in m s-1) and 300-500 hPa maximum Eady Growth 934 

rate (bi400, shadings in day-1) on ECHAM5. (c) Winter u250 anomaly (red/blue shadings in m s-1, 95% 935 

confidence interval marked with +) and 300-500 hPa Eady Growth rate anomaly (bi400, contours in day-1, 95% 936 

confidence interval marked with x) during the decoupling periods. (d) Same as Fig. 3(c) but for ECHAM5. 937 

Decoupling periods marked with vertical bars. 938 
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 939 

Fig. 7: (a) Mean oceanic heat content (OHC) from 0 to 123 m (thermocline depth over the sub-tropical North 940 

Atlantic) in MPIOM1 (shadings in 109 J m-2) and its meridional gradient (δyOHC) (contours in 109 J m-2 * 10-3 941 

km). (b) Winter SST anomalies in shadings (K) and significant areas (95% confidence interval) in contours 942 

during the decoupling periods. Winter OHC significant anomalies (109 J m-2) in stippling. (c) Meridional OHC 943 

gradient anomaly (δyOHC) (shadings in 109 J m-2 * 10-3 km) during the decoupling periods. Significant areas 944 

(95% confidence interval) in stippling. (d) Low pass filtered water temperature anomalies (>33 yr.; in SU) 945 

averaged over the area (30˚-40˚N, 60˚-30˚W, dashed rectangle in Fig. 7b) at different ocean depth levels (0, 6, 946 

69 and 123 meters - see legend). Low pass filtered AMOC index (>33 yr.; dashed black curve in SU). 947 

 948 

Fig. 8: (a) Schematic of the leading variability mode (1-11 yr.) of explosive cyclone tracks under normal 949 

conditions in ECHAM5/MPIOM1. EOF1 EC (EC1T) in red shadings. Leading EOFs of u250 (1-11 yr.) in 950 

contours. These are the three preferred positions of the interannual jet (Woollings et al. 2010): (1) red - 951 

Jet1T+/NAO+; (2) blue - Jet1T-/NAO-; and (3) black - Jet2T+. Main genesis area of explosive North Atlantic 952 

cyclones in stippling (values above 0.5 counts per 7.5  radius circle area per DJF). (b) Same as (a) but for the 953 

decoupling periods. 954 

 955 

Fig. 9: (a) Composite of DJF bi400 (shadings in day-1) under NAOT+ (>1 SU; 88 members). Base period: 1-505 956 

yr. The areas of values above 40 day-1 are highlighted in stippling. (b) Same as (a) but under NAOT- (<-1 SU; 88 957 

members). (c) Same as (a) but under NAOD+ (>1 SU; 8 members) during the decoupling periods. (d) Same as 958 

(a) but under NAOD- (<-1 SU; 8 members) during the decoupling periods.  959 

 960 

Fig. 10: Quantification of bi400 extent/strength over the North Atlantic: sum of all values in stippling from Figs. 961 

9a-d associated with the extratropical jet (sub-tropical jet areas removed). The final values are normalized (in %) 962 

with respect to the climatological NAOT+ absolute value (Fig. 9a).  963 
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NCEP and ERA-40 
(a)                     NCEP Track density 

 

(b)            NCEP EOF1 All1T/Jet1T (23/43%) 

 
(c)           NCEP EOF1 EC1T/Jet1T (32/43%) 

 

(d) Running correlations: EC1T vs. NAOT/Jet1T 

 
Fig. 1 964 

  965 
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NCEP 
(a) EOF1 EC150s/Jet150s (36/32%) 1948-1962 

 

(b) EOF1 EC180s/Jet180s (40/56%) 1963-1997 

 
(c)          Regression: z500 - EC150s       

 

(d)         Regression: z500 - EC180s 

 
(e)                     NAO50s (40%)                                 

 

(f)                   NAO80s (52%) 

 
(g)           Regression: SST - EC150s (h)            Regression: SST - EC180s 

  
Fig. 2 966 
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NCEP 
(a)                      Mean u250/bi400 

 

(b)          Difference u250/bi400  50s-80s 

 
 

 (c)                Decadal jet/NAO variability 

 

(d)               Difference SST 50s-80s 
  

 

Fig. 3 968 

 969 

 970 
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ECHAM5/MPIOM1 
(a)                 ECHAM5 Track density 

 

(b)                        EC Tracks Bias 

 
(c)         EOF1 (>11-yr) EC1LF/Jet1LF (31/34%) 

 

(d)       EOF1 (1-11 yr) EC1T/Jet1T (27/31%) 

 
(e)         Regression: z500 - EC1T (1-11 yr)       

 

(f)         Regression: SST - EC1T (1-11 yr)      
 

 

  

Fig. 4 972 
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ECHAM5/MPIOM1 
(a)   Running correlations: EC1T vs. NAOT/Jet1T 

 

(b)              Changes in the EOF patterns 

 
(c)                Re-calculated NAOD (40%)             

 

(d)    EC1D/Jet1D (26/36%): decoupling periods 
 

 
(e)                   Regression: z500 - EC1D 

 

(f)                    Regression: SST - EC1D 
 

 

Fig. 5 974 

 975 
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ECHAM5/MPIOM1: DECOUPLING PERIODS - ATMOSPHERE 
(a)    Track-densities: mean/variance anomaly 

 

(b)                     Mean u250/bi400 

 
(c)                 Anomalous u250/bi400 

 

(d)        Decadal jet/NAO variability (>33 yr.) 

 
Fig. 6 977 
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ECHAM5/MPIOM1: DECOUPLING PERIODS - OCEAN 
(a)                     Mean OHC/δyOHC    

 

(b)                    Anomaly SST/OHC 

 

(c)                      δyOHC anomaly 

 

(d)            SST/T/AMOC anomaly indices 

 
Fig. 7  979 
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POTENTIAL MECHANISM (1): CROSS-JET 
(a)                   Normal conditions 

 

(b)                   Decoupling periods 

 
 

Fig. 8 980 
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POTENTIAL MECHANISM (2): NAO PHASE - BAROCLINICITY 
(a)                    Climatology - NAO+ 

 

(b)                 Climatology - NAO- 

 
(c)                    Decoupling - NAO+ 

 

(d)                  Decoupling - NAO- 

 
Fig. 9 982 
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                                                      NAO phase vs. Baroclinicity extent/strength 984 

 985 

Fig. 10 986 


