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ABSTRACT 

The aim of this work was to formulate Santolina insularis essential oil-loaded nanocarriers, 

namely Penetration Enhancer containing Vesicles (PEVs), evaluate the physico-chemical 

features and stability, and gain insights into their ability to deliver the oil to the skin. 

Santolina insularis essential oil was obtained by steam distillation, and was predominantly 

composed of terpenes, the most abundant being β-phellandrene (22.6%), myrcene (11.4%) 

and curcumenes (12.1%). Vesicles were prepared using phosphatidylcholine, and ethylene or 
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propylene glycol were added to the water phase (10% v/v) to improve vesicle performances as 

delivery systems. Vesicles were deeply characterized by light scattering, cryogenic 

transmission electron microscopy and small/wide-angle X-ray scattering, the results showing 

polyhedral, faceted, unilamellar vesicles of ~115 nm in size. The presence of the glycols 

improved vesicle stability under accelerated ageing conditions, without changes in size or 

migration phenomena (e.g., sedimentation and creaming). Confocal laser scanning 

microscopy images of pig skin treated with Santolina insularis formulations displayed a 

penetration ability of PEVs greater than that of control liposomes. Moreover, all formulations 

showed a marked in vitro biocompatibility in human keratinocytes. 

These findings suggest that the nanoformulation may be of value in enhancing the delivery of 

Santolina insularis essential oil to the skin, where it can exert its biological activities. 

 

Keywords: Santolina insularis essential oil; terpenes; phospholipid vesicles; 

ethylene/propylene glycol; human keratinocytes; pig skin. 
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1. Introduction 

The development of safe and atoxic antibacterial compounds is becoming critical in several 

fields, such as alimentary, cosmetic and pharmaceutical. To this purpose, plant extracts or 

essential oils are being widely proposed as sources of natural antimicrobial compounds [1,2]. 

Essential oils are odorous, volatile products of the secondary metabolism of aromatic plants, 

and many of them have been reported to possess strong antibacterial, antifungal and antiviral 

properties [3–5]. In recent years, essential oils have been studied and used as sources of 

natural antimicrobic agents for the storage stability of foods and industrial products, as well as 

to treat human pathologies as an alternative to synthetic drugs [6–8]. Additionally, essential 

oils are rich in terpenoids, which represent a natural defence against oxidative stress, by 

suppressing nuclear factor-κβ signaling, an important regulator factor of inflammatory 

diseases and cancer [9]. Thanks to these properties, essential oils are widely used in 

pharmaceutical and cosmetic preparations as active ingredients or fragrances. 

Santolina insularis (Gennari ex Fiori) Arrigoni is an endemic species of Sardinia island 

(Italy), belonging to Asteraceae family, mainly distributed on mount Gennargentu (central 

Sardinia) and Marganai-Linas massifs (south-west Sardinia). It is known in Sardinian folk 

medicine for its anthelmintic properties. In previous works, Santolina insularis essential oil 

was isolated and characterized, and its antibacterial and antiviral properties were studied [10–

12]. 

Despite the promising properties, the high volatility and low water solubility can affect the 

efficacy of essential oils. Micro- and nanoencapsulation may represent an ideal approach to 

increase the persistence and efficacy of bioactive essential oils by reducing their volatility and 

degradation, and improving their bioavailability at the target site [13]. In a previous work, the 

antiherpetic activity of Santolina insularis essential oil was enhanced by its nanoentrapment 

in liposomes [12]. Liposomes and liposome-like vesicles play an important role in drug 
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delivery for their properties and versatility [14,15]. In skin delivery, liposomes are considered 

more useful for the local deposition of drugs, while innovative modified phospholipid vesicles 

(e.g., ethosomes, transfersomes, invasomes and PEVs-Penetration Enhancer containing 

Vesicles) have been designed to actively deliver the drug to the deeper skin layers, or even to 

the systemic circulation. 

Taking all these aspects into account, in the present work, Santolina insularis essential oil was 

incorporated in liposomes and PEVs and their physico-chemical properties and skin delivery 

capability were tested. Liposomes were prepared using hydrogenated soy phosphatidylcholine 

(P90H), which has a high transition temperature (~50°C). The PEV formulations were 

obtained by adding propylene glycol (PG-PEVs) or ethylene glycol (EG-PEVs) to the water 

phase (10% v/v). The ability of the glycols to improve vesicle performances and stability has 

been previously probed using synthetic drugs (e.g., diclofenac and tretinoin), natural active 

molecules (e.g., quercetin and phycocyanin), and also a phytocomplex extracted from 

Fraxinus angustifolia [16–21]. 

To better understand the effect of the essential oil on the lamellar structure, all vesicles were 

deeply characterized combining the information obtained with different techniques: cryogenic 

transmission electron microscopy (cryo-TEM), dynamic and electrophoretic light scattering, 

turbiscan optical analyser (TurbiScan Lab®) and Small/Wide-Angle X-ray Scattering (SAXS 

and WAXS). The results allowed us to get a complete picture of Santolina insularis essential 

oil nanocarriers and to predict their feasibility as skin delivery systems. Moreover, the ability 

of PEVs to transport the essential oil through the skin was evaluated by confocal laser 

scanning microscopy (CLSM), using fluorescent vesicles. In addition, vesicle 

biocompatibility was tested in human keratinocytes. 

2. Experimental 

2.1. Materials 
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Hydrogenated soy phosphatidylcholine (Phospholipon® 90H, P90H) and 1,2-dioleolyl-sn-

glycero-3-phosphoethanolamine-N-lissamine-sulfo-rhodamineB (Rho-PE) were purchased 

from Lipoid GmbH (Ludwigshafen, Germany). Phosphate buffer solution (PBS; Na2HPO3 / 

KH3PO3 in water, pH 7) was purchased from Carlo Erba Reagents (Milan, Italy). Cholesterol 

(CHOL), 5(6)-carboxyfluorescein (CF), Hoechst 33258, propylene glycol (PG), ethylene 

glycol (EG) and all other reagents were purchased from Sigma-Aldrich (Milan, Italy). 

2.2. Plant material and essential oil preparation 

Santolina insularis (Gennari ex Fiori) Arrigoni was collected during the flowering period 

(June 2013) in the South of Sardinia (Iglesiente subregion). A voucher specimen (CAG 732) 

has been deposited in the Herbarium of Botany and Botanical Garden Division of the 

University of Cagliari, Italy. 

The aerial parts were air-dried at 40°C for two days, with forced ventilation. Prior to use, the 

matter was ground with a Malavasi mill (Bologna, Italy) and steam distilled (4 h) in a 

circulatory Clevenger-type apparatus according to the European Pharmacopoeia (Council of 

Europe, 1997). 

2.3. GC-FID and GC-MS analyses 

The identification of the components of the essential oil was carried out by gas 

chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). 

GC-MS analysis was carried out using a gas chromatograph (Agilent, Model 6890N, Palo 

Alto, USA) using an Agilent HP5-MS fused silica column (5% phenyl-methylpolysiloxane, 

30 m × 0.25 mm i.d., film thickness 0.25 µm). The GC conditions included programmed 

heating from 60 to 246°C at 3°C/min, followed by 20 min under isothermal conditions. The 

injector was maintained at 250°C. Helium was the carrier gas, at 1.0 ml/min. Samples were 

diluted in hexane (1:100) and injected (1 µl) in the split mode (1:20). The GC was fitted with 

a quadrupole mass spectrometer with an Agilent model 5973 detector. The MS conditions 
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were: ionization energy, 70 eV; electronic impact ion source temperature, 200°C; quadrupole 

temperature, 150°C; scan rate, 3.2 scan/s; mass range, 30-480 u. The software used to handle 

and analyse mass spectra and chromatograms was an Agilent MSD ChemStation E.01.00.237. 

The linear retention indices (RIs) for all the compounds were determined by injection of a 

hexane solution containing the C8-C26 series of n-alkanes and compared with those of 

authenticated samples from our database [22]. The identification of the essential oil 

constituents was accomplished by the comparison of their retention indices and their mass 

spectra from a home-made library or from literature data and mass spectra databases, 

including HPCH2205 [23] and W8N05ST (NIST/EPA/NIH 2005, Mass spectral library; 

National Institute of Standard and Technology, Gaithersburg). 

Analytical GC was carried out in a gas chromatograph (Agilent, Model 7890A, Palo Alto, 

USA), equipped with a flame ionization detector (FID), an autosampler (Agilent, Model 

7683B), Agilent HP5 fused silica column (5% phenyl-methylpolysiloxane, 30 m × 0.25 mm 

i.d., film thickness 0.25 µm), and a Agilent ChemStation software system. Oven temperature 

program: from 60 to 250ºC (3 ºC/min), 250ºC (20 min); injector temperature: 250ºC; carrier 

gas: helium at 1.0 ml/min; splitting ratio 1:10; detectors temperature: 300ºC. Percentages of 

individual components were calculated based on GC peak areas without FID response factor 

corrections. 

2.4. Vesicle preparation 

For the preparation of liposomes, PG- and EG-PEVs, P90H, cholesterol and Santolina 

insularis essential oil were dispersed in PBS or PG/PBS or EG/PBS (10% v/v; Table 2). 

Empty vesicles were also prepared as controls. The dispersions were sonicated (5 s on and 2 s 

off, 30 cycles; 12 microns of probe amplitude) with a high intensity ultrasonic disintegrator 

(Soniprep 150, MSE Crowley, London, UK). The vesicles were separated from the non-

entrapped oil and non-aggregated phospholipid by dialysis. Samples (1 ml) were loaded into 
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dialysis tubing (Spectra/Por® membranes: 12-14 kDa MW cut-off, 3 nm pore size; Spectrum 

Laboratories Inc., DG Breda, The Netherlands) and dialysed against 3 l of PBS (for 

liposomes) or the appropriate glycol/PBS mixture (for PEVs), which was refreshed once 

during 2 h at 25°C. 

Drug entrapment efficiency (EE%), expressed as the percentage of the drug found after 

dialysis versus the amount initially used, was analyzed at 310 nm using a UV-Visible 

spectrometer (Lambda 25, Perkin Elmer, MA, USA). 

The phospholipid content of the vesicle dispersions was determined by the Stewart assay, a 

colorimetric technique that is based on the ability of phospholipids to form a complex with 

ammonium ferrothiocyanate [24]. First, a calibration curve was built: a series of chloroform 

solutions with known concentrations of P90H were treated with an aqueous solution 

containing ferric chloride and ammonium thiocyanate (0.1 N) and used to determine the P90H 

concentration in the vesicle formulations. To this purpose, both non-dialysed and dialysed 

samples were properly diluted in chloroform (1:20000), added to the ammonium 

ferrothiocyanate solution, and the absorbance into the organic phase was measured 

spectrophotometrically at 485 nm. The aggregation efficiency (AE%) represented the amount 

of aggregated phospholipid (after dialysis), expressed as the percentage of the amount initially 

used. 

2.5. Vesicle characterization 

Vesicle formation and morphology were checked by cryogenic transmission electron 

microscopy (cryo-TEM). An EM grid (Agar scientific, UK) with holey carbon film was held 

in tweezers and 4-5 µL of sample was applied on the grid. The tweezers were mounted in an 

automatic plunge freezing apparatus (Vitrobot, FEI, The Netherlands) to control humidity and 

temperature. After blotting, the grid was immersed in a small metal container with liquid 

ethane, which was cooled from outside by liquid nitrogen. The speed of cooling was such that 
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ice crystals did not have time to form. Observation was made at -170°C in a Tecnai F20 

microscope (FEI, Eindhoven, The Netherlands) operating at 200 kV, equipped with a cryo-

specimen holder Gatan 626 (Warrendale, PA, USA). Digital images were recorded with an 

Eagle (FEI) camera, 4098×4098 pixels. Magnification between 20000-30000×, using a 

defocus range of -2 to -3 µm. 

The average diameter and polydispersity index (PI) of vesicles were determined by Dynamic 

Light Scattering (DLS) using a Zetasizer nano-ZS (Malvern Instruments, Worcestershire, 

UK). PI is a number calculated from the Cumulants analysis of the DLS-measured intensity 

autocorrelation function and describes the width of particle size distribution (or relative 

variance). The terms polydispersity (i.e., the standard deviation or width of the Gaussian 

distribution, or absolute polydispersity) and %polydispersity (i.e., the coefficient of variation 

= PI1/2 × 100, or relative polydispersity) are derived from the PI and can all be used to 

describe the homogeneity of a particulate system. 

The zeta potential was estimated using the Zetasizer nano-ZS, which converts the 

electrophoretic mobility by means of the Smoluchowski approximation of the Henry equation. 

Samples (n=6) were diluted (1:100) with PBS, or glycols/PBS (10% v/v) when appropriate, 

and analyzed at 25°C. Three runs in the automatic mode were performed, with the software 

determining automatically the most appropriate duration of each run (a minimum of 10 and a 

maximum of 100 subruns). 

2.6. Stability study 

The stability of the vesicles was evaluated by measuring vesicle average size and PI over 90 

days at room temperature. In addition, the TurbiScan Lab® Expert optical analyser equipped 

with an ageing station (Formulaction, Paris, France), was used to determine the accelerated 

stability of the vesicular dispersions, by monitoring the samples under realistic conditions 

(without mechanical stress or dilution) [25,26]. The instrument scans the entire height of the 
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sample (λ = 880 nm), acquiring transmission and backscattering data every 40 µm, and shows 

the backscattering variation (∆BS) in the three sections (bottom, middle and top) of the cell. 

Sample variations at the bottom and top are linked to migration phenomena (sedimentation 

and creaming); variations in the middle are mainly related to changes in particle size. The 

analyses were performed at 25°C every 3 h for 15 days. 

2.7. Small/Wide-Angle X-ray Scattering (SAXS / WAXS) 

SAXS and WAXS measurements were performed at the BL11-NCD (Non-Crystalline 

Diffraction) beamline at ALBA synchrotron facility (Cerdanyola del Vallès, Barcelona, 

Spain). The X-ray beams had flux of 1012 photons per second at an energy of 10 keV, and 

wavelength of 0.124 nm. q range was 0.09-4.77 nm-1. The samples were loaded in a glass 

capillary mounted on a motorized sample-stage, thermostated at 25°C, which allowed the 

sample to be aligned and oriented in the beam. Two dimensional X-ray scattering patterns 

were acquired using an ADSC Quantum 210r CCD detector. Exposure time per frame was 5 

sec. The images were radially averaged and summed. Two series of diffraction patterns were 

obtained from the same capillary with a separation of 500 µm to check for reproducibility and 

possible radiation damage. 

SAXS patterns were analysed using a home-made fitting procedure based on a Gaussian 

description of the bilayers [27,28] and using a Levenberg-Marquardt minimization scheme 

[29]. Further, we introduced the possibility of dissymmetry in the bilayer by numeric Fourier 

transformation of asymmetric bilayers, as suggested by Kučerka et al [30]. 

The bilayer was constructed using a negative Gaussian concentric with the bilayer 

corresponding to the methyl groups of the hydrocarbon chains (eq. 1): 
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and another negative electron density contribution corresponding to the hydrocarbon chains 

introduced through an error function (eq. 2-3): 
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The mean electron density of the hydrocarbon region was used as a constraint for the depth 

(ρm) and width of the Gaussian (σm) and error functions (ρCH2, σCH2, Zhi). The polar heads were 

represented by two Gaussian functions with electron density above 0 (eq. 4-5): 
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In such fits, the amplitude of the methyl groups tended to zero (σm), and was restricted not to 

go below 3 Å. The position of the error function ZCH2i was also constrained to be below the 

center of the Gaussian representing the polar head by the amplitude of that Gaussian (i.e., 

ZCH2i = Zhi - σhi, and the amplitude of the error function σCH2i was also restricted to the value of 

3 Å. The fitting procedure using the Levenberg-Marquardt minimization scheme was started 

using a symmetric model; in a second step, dissymmetry was allowed and the fit was retained 

if a significant decrease in chi-square χ
2 was obtained. See ref. [29] for further details on the 

fitting procedures. 

The derived parameters were obtained as follows: the length of the bilayer hydrocarbon chain 

(dc) was obtained from the position of the error function describing the hydrophobic chains 

(Figure S1); ZH corresponded to the center of the polar heads’ Gaussian (Figure S1), and σH to 
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the amplitude of those Gaussians; the area per molecule (A) was obtained from the number of 

electrons divided by the integral of the electronic density corresponding to the hydrophobic 

contribution; A was used to further check for the value of hydrophobic thickness by dividing 

the hydrophobic volume by the area per molecule. The total bilayer thickness (dB) was 

calculated as the distance between the extreme positions at which the polar head Gaussians 

reached their half maximum values (Figure S1); the number of water molecules (Nw) was 

obtained from the total volume of the bilayer minus the volume of the phospholipid and 

cholesterol. 

2.8. Confocal Laser Scanning Microscopy (CLSM) 

The vesicular formulations were labelled with a lipophilic fluorescent marker (Rho-PE; 0.035 

mg/ml), loaded with a hydrophilic fluorescent marker (CF; 0.025 mg/ml) and applied on pig 

skin using Franz diffusion cells, as previously reported [31]. At regular time intervals (2, 4, 8, 

24 h), skin specimens were gently washed with distilled water, the diffusion area punched out 

and frozen at -80 °C. Sections of the skin (7 µm thickness) were cut with a cryostat (Leica 

CM1950, Barcelona, Spain) orthogonally (in the z axis) to the surface, and examined under a 

FluoView FV1000 inverted confocal microscope (Olympus, Barcelona, Spain) equipped with 

an Ultraviolet/Visible light laser. Using an UplanSApo 20x objective NA 0.75, images with a 

field size of 1024×1024 µm were generated. CF and Rho-PE were excited at 600 nm and 559 

nm, and detected at 640 nm and 578 nm, respectively. 

2.9. Cell viability studies (MTT assay) 

Human keratinocytes were grown as monolayers at 37°C, 100% humidity and 5% CO2, using 

RPMI1640 medium (Life Technology, Monza, Italy) with high glucose, supplemented with 

10% (v/v) fetal bovine serum, penicillin (100 U/ml), and streptomycin (100 µg/ml) (Life 

Technologies, Monza, Italy) as a growth medium. Cells were seeded into 96-well plates at a 

density of 7.5x103 cells/well. After 24 h of incubation, cells were treated for 8, 24 and 48 h 
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with different concentrations (50, 20, 10, 2, 1 µg/ml) of the Santolina insularis essential oil, 

as obtained by properly diluting the formulations or the oil/PBS blend with the cell culture 

medium. Cell viability was determined by adding MTT [3(4,5-dimethylthiazolyl-2)-2, 5-

diphenyltetrazolium bromide] (200 µl, 0.5 mg/ml) to each well, dissolving (after 2 h) the 

formed formazan crystals with DMSO and measuring the absorbance at 570 nm with a 

microplate reader (Synergy 4, ReaderBioTek Instruments, AHSI S.p.A, Bernareggio, Italy). 

All experiments were repeated at least three times and in triplicate. Results are shown as 

percent of cell viability in comparison with non-treated control cells (100% viability). 

2.10. Statistical analysis of data 

Results are expressed as the mean±standard deviation (SD). Multiple comparison of means 

(Tukey’s test) were used to substantiate statistical differences between groups, while 

Student’s t-test was used to compare two samples. Significance was tested at the 0.05 level of 

probability (p). Data analysis was carried out with the software package R, version 2.10.1. 

3. Results and discussion 

3.1. Essential oil analysis 

The steam distillation of the aerial parts of Santolina insularis gave a light yellow essential 

oil. The yield of the oil, expressed as the percentage by weight of the oil versus the weight of 

the material charged in the extractor, was ~3%. The essential oil was analyzed by GC-MS for 

qualitative and quantitative analysis (Table 1). 38 different compounds were identified, 

representing 93% of the total oil. In Table 1, only the compounds ≥1% are reported. The 

essential oil was predominantly composed of hydrocarbon monoterpenes (51.9%), 

oxygenated monoterpenes (14.6%), hydrocarbon sesquiterpenes (16.1%), oxygenated 

sesquiterpenes (10.0%). The most abundant terpenes were β-phellandrene (22.6%), myrcene 

(11.4%) and curcumenes (12.1%), in agreement with the findings of Gnavi et al [32]. 

3.2. Vesicle characterization 
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In a previous work, Santolina insularis essential oil was incorporated in P90H liposomes, 

which were proved effective in protecting the the essential oil from degradation, and in 

inactivating the herpes simplex virus [12]. In the present work, Santolina insularis essential 

oil was incorporated in liposomes and PEVs, representing a promising system for enhanced 

skin delivery. The composition of the vesicles is reported in Table 2. Previous studies 

demonstrated the capability of propylene and ethylene glycol containing vesicles to increase 

the stability, skin delivery and anti-inflammatory efficacy of different drugs and natural 

products [16,18,19,21]. In this paper, liquid and lipophilic mono and sesquiterpenes from 

Santolina insularis essential oil were incorporated in glycol-PEVs, and their location and 

effect on the vesicle bilayer were investigated. 

Cryo-TEM micrographs showed that both empty and Santolina insularis essential oil-loaded 

liposomes and PEVs were predominantly unilamellar, polyhedral (faceted) vesicles (Figure 

1A, B), whose occurrence was particularly evident in PEVs. The existence of these peculiar 

nanostructures is broadly reported in the literature, although the origin of the faceted 

morphology has not been fully clarified yet. 

The physico-chemical features of empty liposomes and PEVs were very similar (Table 3): the 

mean diameter, estimated by DLS, was around 100 nm with small SD values, indicating that 

the average size of the different replicates (n=6) was highly reproducible and repeatable; PI 

was ~0.32 and zeta potential was ~-12 mV. The incorporation of the essential oil within the 

vesicles led to a slight increase in size (~115 nm), and a decrease in polydispersity (PI~0.15), 

while the effect of the glycols was negligible (p>0.05). Nevertheless, it should be noted that, 

especially for polydisperse systems, DLS can provide only an estimate of the average size. 

This is an intensity-based calculated value, which is weighed according to the scattering 

intensity of each particle fraction. As such, the intensity distribution can be somewhat 

misleading, in that the presence of larger particles can dominate the distribution, hiding the 
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smallest particles. Therefore, a calculation of the vesicle diameter was carried out by cryo-

TEM observations. As expected, the values were smaller and with high SD, revealing the 

actual polydispersity of the samples (Table 3). 

The results of the entrapment efficiency of Santolina insularis essential oil indicate that it can 

be incorporated in good amounts in the prepared vesicular dispersions, especially in 

liposomes (EE% ~70; Table 3). In agreement with previous results, PEVs possessed lower 

EE% (~50; Table 3), due to a high solubilization of the essential oil in the glycol/PBS 

intervesicle medium, which reduced the amount of the essential oil entrapped within the 

PEVs. The aggregation efficiency of P90H was almost similar in all the formulations (AE 

~71%; Table 3), either empty or essential oil-loaded liposomes and PEVs. 

The TurbiScan Lab® was employed to evaluate the accelerated stability behaviour of the 

essential oil-loaded liposomes and PEVs. An evaluation of the destabilization processes 

occurring in the colloidal dispersions was made by measuring the backscattering (BS) in the 

samples [25,26]. Figure 1C depicts the BS profiles for the vesicle dispersions: BS and time 

are shown on the ordinate, while the height of the cell is indicated on the abscissa of the 

graph. The first curve is displayed in pink, the last one in red. When the BS values are within 

the ±2% interval, the stability of the formulations can be considered optimal. The BS of 

liposomes increased slightly in the whole sample (~1.7%), indicating a good stability of the 

formulation and the absence of migration phenomena, such as creaming or sedimentation 

(Figure 1C). The variation of BS can be ascribed to an increase in vesicle size. PG-PEVs 

showed a similar behavior (BS ~2%; Figure 1C). EG-PEVs were the most stable formulation: 

no sign of particle migration was observed, and the increase in vesicle size was minimum 

(Figure 1C). The variation of BS was ~-0.4%. Such negative value is very common in 

samples with BS close to zero, and is due to an error associated with the instrument since, 
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according to Rayleigh diffusion, BS flux increases with the increase in size when the particle 

size is smaller than the wavelength of the light used to measure the samples (880 nm). 

SAXS scattering curves of empty liposomes and PEVs showed the typical shape of 

unilamellar vesicles (Figure 2A, B). However, in the case of PG-PEVs, the use of a small 

percentage (4%) bilamellar vesicles improved the fittings, thus indicating that the presence of 

a minor population of oligolamellar structures better describes the sample. The fits were very 

good up to 2 nm-1, but above this threshold they were unable to capture the fine features of the 

low intensity region. This is reflected in the values of reduced χ2 (for purely statistical noise 

χ
2=1; for nearly perfect fitting χ2<2), which were in the range from 5 to 10 (poor fitting). This 

implies that our model did not capture fine features below 1 nm. 

While empty liposomes and PG-PEVs showed a minimum close to 0 (around 0.4 nm-1), this 

minimum was not so deep for empty EG-PEVs (Figure 2A). Moreover, we found a relatively 

small asymmetry in the electron density profiles corresponding to the best fits of EG-PEVs 

(Figure 2C). The reduction of this dip in the SAXS curves and the increased asymmetry of 

unilamellar vesicles may be caused by different factors: the bending of the membrane in small 

vesicles, however, this effect is significant only when the size is below 50 nm in diameter 

[33]; the bilayer asymmetry [30] or the heterogeneity in bilayer thickness. So far, the latter 

has not been found in the literature. 

The minimum around 0.4 nm-1 was clearly shallower for the Santolina insularis essential oil-

loaded vesicles, as shown in Figure 2B, reflecting the asymmetry of the bilayers. The 

asymmetry was not very strong and may be due to a different partition of the constituents in 

the interior and exterior of the vesicles. There was no sign of multilamellarity in the SAXS 

curves, indicating that the vesicles were truly unilamellar, or if more than one lamella existed, 

there was no correlation between adjacent lamellae. As can be observed in Figure 2B, the fits 

produced asymmetric bilayers, and this asymmetry was larger for EG-PEVs than for PG-
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PEVs and liposomes, as also reflected in the width of the Gaussians corresponding to the 

headgroups of the two leaflets of the bilayers (Figure 2D). The overall effect was an increase 

in the polar head length. The faceting of vesicles observed in cryo-TEM images of Santolina 

insularis essential oil-loaded vesicles might be correlated to the smearing of the first 

minimum in the SAXS spectra and the asymmetric fit, which can be due to three different 

effects: a) the limited domain of flat bilayer pieces, b) the bending of the bilayer between flat 

domains (having an effect when the radius of curvature of the bending is below 25 nm as in 

the curvature of small unilamellar vesicles), and c) because of the asymmetry of the bilayer in 

the bending parts between domains. Since a model for the faceting of vesicles is not available 

yet, we only used the asymmetric bilayers model. Therefore, our results have to be regarded 

as a first approximation. In previous findings, the faceting of otherwise smooth, rounded 

vesicles, seemed to occur when the lipids constituting the bilayer were below the gel (Lβ) to 

fluid (Lα) transition temperature [34–37] and to be produced by the induction of asymmetry in 

rigid bilayer domains with ordering in the plane of the bilayer [38]. From the analysis of the 

WAXS domains of our formulations, the presence of a weak peak at around 1.52 Å-1 was 

noticed, which coincides with the peak attributed to Lβ or Lβ’ (Figure 2E, F) [39]. Because of 

the low concentration of the phospholipid in the samples, this signal could be distinctively 

seen only after the background subtraction. Hence, these findings are in agreement with the 

previous assumptions, allowing us to conclude that the faceting can be due to the coexistence 

of fluid and gel phases. 

The main parameters obtained from the fits are listed in Table 4. The use of PG or EG 

produced an increase in the amplitude of the polar heads (σH), while the addition of Santolina 

insularis essential oil had a significant effect on σH only in the absence of PG or EG. Both the 

use of the cosolvent and the incorporation of the essential oil increased the area per molecule 

(A), with respect to empty liposomes. Conversely, a slight decrease in the length of the bilayer 



 17 

hydrocarbon chain (dc) was observed in the presence of PG and EG, which was mitigated 

after incorporating the essential oil (except for EG-PEVs). The mean distance of the polar 

head to the centre of the bilayer (ZH) displayed a similar behaviour, though the decrease was 

even less marked. Both the cosolvents and the essential oil had also a slight tendency to 

increase the mean polar head amplitude, with a significant effect of the essential oil in 

increasing the dissymmetry of the polar heads. We can conclude that Santolina insularis 

essential oil was embedded within the vesicle bilayers with relatively mild effects, the most 

notable being the introduction of dissymmetry in the bilayers, which can still be considered 

quite symmetric, without affecting the faceted structure of P90H vesicles. 

Altogether, the data from morphology, size distribution, zeta potential, entrapment and 

aggregation efficiency, bilayer structure and vesicle stability studies, disclosed that, due to its 

composite lipophilic nature, Santolina insularis essential oil can be considered as a 

constituent of the vesicle structure, forming a new active assembly. 

3.3. CLSM study of vesicle skin delivery 

The vesicles were labelled with Rho-PE, a fluorescent phospholipid, and a hydrophilic, 

fluorescent probe, CF. Fluorescent vesicles were applied on new born pig skin using Franz 

diffusion cells. At the end of the experiments (at 2, 4, 8 and 24 h), the penetration extent and 

distribution of the markers into the skin strata were evaluated using the confocal microscope 

[31]. Rho-PE appeared in red and CF in green; the presence of both markers gave a yellow 

fluorescence, which is indicative of the simultaneous presence of lipophilic and hydrophilic 

vesicular components and can be predictive of the potential penetration of intact vesicles 

through the skin barrier. Figure 3 illustrates the images of fluorescent liposomes (control), 

EG- and PG-PEVs applied onto the skin at the different exposure times. As can be seen, the 

accumulation of the probes into the different cutaneous strata is time-dependent for all the 

vesicles. Using liposomes, the green fluorescence, mimicking the hydrophilic content of the 
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vesicles, was the predominant signal, mostly detected in the epidermis, indicating the 

penetration of CF alone. After 8 h, both Rho-PE and CF were visible in the epidermis as 

yellow fluorescence, being more evident at 24 h. These findings support the hypothesis that 

liposomes are adsorbed on the skin surface, where they can fuse or mix with the skin lipids, 

thus releasing their content. 

On the contrary, using PEVs, after 4 h the skin exhibited a predominance of red fluorescence, 

with some yellow areas, while after 8-24 h, a widespread yellow fluorescence were observed 

in the epidermis and a diffused red fluorescence in the dermis, suggesting a different 

mechanism of penetration than for liposomes. As previously reported, PEVs are supposed to 

fuse with the lipids of the superficial skin, acting as penetration enhancers and facilitating the 

diffusion of intact vesicles in the viable epidermis, where they form a depot from which the 

loaded drug is slowly released. 

3.4. In vitro cell viability 

Cell viability studies on keratinocytes were performed to ascertain the biocompatibility of the 

Santolina insularis essential oil vesicles. The essential oil is composed of different terpenes, 

which were reported to be toxic. The level of metabolically active mitochondrial 

dehydrogenase enzymes was evaluated in vitro according to the MTT assay. The cell survival 

was assayed after incubation with the essential oil loaded in vesicles at 8, 24 and 48 h. The 

results confirmed the good biocompatibility of all formulations, liposomes and PEVs, as the 

viability was ≥100% up to 48 h (Figure 4). By contrast, cell viability in the presence of the 

free oil was approximately 100% after 8 h, but decreased to 80% after 24 and 48 h, regardless 

of the concentration used. Hence, these findings point to the fact that the prepared vesicles 

were able to reduce the intrinsic toxicity of the essential oil. 

4. Conclusion 
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In this work, Santolina insularis essential oil was incorporated in polyhedral, faceted 

liposomes and PEVs aiming at improving its biological activity. Thanks to their peculiar 

properties, Santolina insularis essential oil-loaded vesicles, especially EG-PEVs, can be 

proposed as a safe delivery system for drugs, or as a topical antibacterial formulation itself. 
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FIGURE CAPTIONS 

 

Fig. 1. Cryo-TEM micrographs of empty (A) and Santolina insularis essential oil-loaded 
liposomes and PEVs (B). Backscattering profiles of Santolina insularis essential oil-loaded 
liposomes and PEVs (C). 
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Fig. 2. SAXS profiles of empty (A) and Santolina insularis essential oil (SI)-loaded 
liposomes and PEVs (B). The data have been scaled multiplying by factors of 10 for clarity. 
The lines corresponds to the best fit of Gaussian bilayer models, see the text for details on the 
fitting. Electron density profiles corresponding to the best fits of empty (C) and Santolina 
insularis essential oil (SI)-loaded liposomes and PEVs (D) are presented. 
WAXS profiles of empty (E) and Santolina insularis essential oil (SI)-loaded liposomes and 
PEVs (F). 
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Fig. 3. CLSM images of pig skin after 2, 4, 8 and 24 h treatment with fluorescent liposomes 
(upper panel), PG-PEVs (middle panel) and EG-PEVs (lower panel) loaded with Santolina 
insularis essential oil. Images show the distribution of red (rhodamine) and green 
(carboxyfluorescein) fluorescence. 
 
 
 

 
 
Fig. 4. Viability of human keratinocytes incubated for 8, 24 and 48 h with different 
concentrations (1, 2, 10, 20, 50 µg/ml) of Santolina insularis essential oil (SI) in liposomes 
and PEVs or dispersed in PBS. 
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Figure S1. Electronic density profile showing some of the S 


