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Abstract 

Cermets based on titanium-tantalum carbonitride were oxidized in static air 

between 800 ºC and 1100 ºC for 48 h. The thermogravimetric and microstructural study 

showed an outstanding reduction in the oxidation of more than 90% when the Ta 

content was increased. In cermets with low Ta content, the formation of a thin 

CoO/Co3O4 outer layer tends to disappear by reacting with the underlying rutile phase, 

which emerges at the surface. However, in cermets with higher Ta content, the 

formation of an external titanate layer, observed even at a low temperature, appears to 

prevent the oxygen diffusion and the oxidation progression. 

Keywords: A. Ceramic matrix composites; A. Cobalt; A. Titanium; B. SEM; B. X-ray 

diffraction;  C. Oxidation. 
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1. Introduction. 

The materials used in various applications, such as cutting tools (rock and earth 

drilling tools), drawing and sheet metal-forming tools and dies, wear parts (nozzles, 

plunges, paper cutters, etc.) and other structural components (mechanical seals, boring 



2 
 

bars, etc.), can encounter extreme conditions (high temperature, pressure, and an 

oxidizing atmosphere, among others) during use. For this reason and because of 

constantly increasing industrial demands, the search for novel materials and designs 

with improved performance remains a challenge. Materials for these applications are 

expected to possess not only high abrasive and impact wear resistance but also excellent 

high temperature corrosion or/and oxidation resistance. Oxidation in non-oxidic 

structural materials is a major disadvantage because it typically controls the operational 

properties. Oxidation can reduce ductility, tensile strength and erosion and corrosion 

resistance, among other properties [1-3]. Oxidation is not always a slow process and can 

progress significantly over a short service time in certain practical applications [4]. 

Hard materials used in the metal working industry for high-speed machining must 

withstand a broad range of thermal, mechanical and chemical stresses. These materials 

are primarily based on tungsten carbide (cemented carbides) or titanium carbonitride 

(cermets). The desired properties can be achieved through complex alloying with other 

transition metals, such as Ta and Nb [5-7]. In this context, (Ti,Ta)(C,N)-based cermets 

have been successfully utilized as heat-resistant structural materials, including wear 

parts and, especially, cutting tools in high-speed finishing and semi-finishing 

applications due to their excellent physical and chemical properties, such as a favorable 

hot hardness, excellent wear resistance, perfect chemical stability, low friction 

coefficient to metals and great thermal deformation resistance [8-15]. However, while in 

service, (Ti,Ta)(C,N)-based cermets are often exposed to elevated temperatures in 

oxidizing environments [16]; therefore, their oxidation behavior plays a key role in 

cutting performance and tool life. 

In a previous study [17], it was determined at a fixed temperature of 900 ºC that 

the oxidation resistance of the (Ti,Ta)(C,N)-based cermets was significantly dependent 

on the Ta content. The goal of the present work is to report a systematic study of the 

outstanding oxidation improvement of TixTa1-xC0.5N0.5-Co cermets over a wide 

temperature range (800 ºC-1100 ºC) to address the lack of available experimental data 

in the literature on this topic. This study also attempts to provide new insights into the 

key role played by Ta in the excellent oxidation resistance of cermets. Note that the 

temperatures studied cover the maximum cutting tool work temperatures for the most 

demanding processes [18]. It must be considered that cutting tool oxidation at these 
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temperatures is more important than the mechanical abrasion in determining the tool life 

in many cases. 

 

2. Experimental. 

Five cermets with nominal compositions of 80 wt% TixTa1-xC0.5N0.5 – 20 wt% Co 

and variable Ta atomic content, x = 1, 0.99, 0.95, 0.90 and 0.80 (labeled as Ti100, 

Ti99Ta1, Ti95Ta5, Ti90Ta10 and Ti80Ta20, respectively), were synthesized by the 

mechanochemical process called the Mechanically Induced Self-Sustaining Reaction 

(MSR) from Ti, Ta and C powder mixtures and N2 gas. A powder mixture containing 

46.5 g elemental Ti (99% purity, <325 mesh, Strem Chemicals), Ta (99.6% purity, <325 

mesh, Alfa-Aesar), C (as graphite, <270 mesh, Fe < 0.4%, Merck) and Co (99.8% 

purity, <100 mesh, Strem Chemicals), together with 13 tempered steel balls (d = 20 

mm, m = 32.6 g), were put into a tempered steel vial (300 ml in volume) and milled 

using a modified planetary ball mill (P4, Fritsch) at a spinning rate of 400 rpm under 6 

atm N2 gas (H2O and O2 < 3 ppm, Air Liquide). The planetary ball mill enabled the 

MSR reactions to be monitored by continuously measuring the pressure inside the vial. 

When the MSR reaction associated with the synthesis of the TixTa1-xC0.5N0.5 carbonitride 

solid solution phase occurs, the temperature increases due to the release of heat from the 

exothermic formation reaction, which consequently increases the total pressure. The 

ignition time, i.e, critical milling time required to induce the MSR process, can then be 

determined from the spike in the recorded time-pressure data. After ignition, the milling 

is continued to ensure full conversion and homogenization. The ignition time was about 

45 min for all cermets and the total milling time was 75 min. 

Subsequently, the powdered cermets were shaped using a uniaxial press (2 tons, 5 

min) and compacted by cold isostatic pressing (200 MPa, 10 min). The green bodies 

were then sintered at temperatures between 1450 ºC and 1550 ºC, optimized for each 

Ta/Ti ratio [19], for 60 min under a flowing Ar (H2O < 3 and O2 < 2 ppm, Linde) 

atmosphere in a horizontal tubular furnace (IGM1360 model No. RTH-180-50-1H, 

AGNI) to obtain cylindrical cermets 13 mm in diameter and 9 mm in height. After 

sintering, the cermets consisted of the mentioned carbonitride phase (TixTa1-xC0.5N0.5) 

and two Ti-Ta-Co intermetallic compounds, namely, TixTa1-xCo2 and TixTa1-xCo, acting 

https://www.researchgate.net/publication/256153571_Effect_of_tantalum_content_on_the_microstructure_and_mechanical_behavior_of_cermets_based_on_TixTa1-xC05N05_solid_solutions?el=1_x_8&enrichId=rgreq-d0989e87-0dd2-42a0-9389-aad4d67b4a00&enrichSource=Y292ZXJQYWdlOzI4MjY1NzMxMjtBUzoyODY2MTU4Nzc1MDUwMjRAMTQ0NTM0NTk1ODIyMA==
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as binder instead of the initial Co. A detailed description of the microstructure and 

properties of cermets can be found in a previously published study [19]. 

To perform the oxidation experiments, parallelepiped specimens of these five 

sintered cylinder cermets with similar dimensions (3±0.1 mm x 4±0.1 mm x 5±0.1 mm) 

and surface area (94±0.5 mm2) were obtained by cutting from the center part of the 

sintered body. The surfaces of cermets were subjected to successive grinding and 

polishing steps (final step with 3 m diamond powder suspension). Finally, the 

specimens were ultrasonically cleaned with ethanol. The oxidation tests were performed 

in static air under isothermal conditions from 800 ºC to 1100 ºC (heating rate of 20 

ºC/min and free cooling) for 48 h. The weight gain due to oxidation was continually 

monitored using a CI Robal electrobalance (C.I. Electronics Ltd.) with a maximum 

weight allowed of 5 g and a sensitivity of 1 μg; the balance was attached to the support 

frame of a high-temperature vertical furnace (Severn Thermal Solutions Ltd.) designed 

for use up to 1500 ºC. The specimens were placed on a platinum wire coil to maximize 

the contact of the surfaces with the surrounding atmosphere. 

X-ray diffraction (XRD) diagrams were collected on the surfaces exposed to 

oxidation to get information about the phases present in the oxide scale of the oxidized 

cermets. XRD patterns were also obtained once the oxidized specimens (bulk + oxide 

scale) were crushed and reduced to powder by hand-grinding to obtain information on 

the extent of oxidation. A PANalytical X’Pert Pro instrument equipped with a θ/θ 

goniometer, a Cu K radiation source (40 kV, 40 mA), a secondary K filter and an 

X’Celerator detector was used. The diffraction patterns were collected from 20º to 80º 

(2θ) in a step-scan mode at a step of 0.02º and a counting time of 275 s/step and were 

compared with those in the PDF-4+ database from the International Centre for 

Diffraction Data (ICDD). Lanthanum hexaboride powder (Standard Reference Material 

for powder diffraction 660b, NIST) was used to calibrate the positions of the diffraction 

lines. Lattice parameters were calculated from the complete set of peaks in the XRD 

pattern using the DICVOL04 software. 

The polished cross sections of the oxidized specimens were examined via 

scanning electron microscopy (SEM) performed on a Hitachi S-4800 SEM-FEG 

microscope coupled with an X-ray energy dispersive spectrometry (XEDS) detector 

https://www.researchgate.net/publication/256153571_Effect_of_tantalum_content_on_the_microstructure_and_mechanical_behavior_of_cermets_based_on_TixTa1-xC05N05_solid_solutions?el=1_x_8&enrichId=rgreq-d0989e87-0dd2-42a0-9389-aad4d67b4a00&enrichSource=Y292ZXJQYWdlOzI4MjY1NzMxMjtBUzoyODY2MTU4Nzc1MDUwMjRAMTQ0NTM0NTk1ODIyMA==
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(Quantax-EDS, Bruker Corporation), which was used for the chemical 

semiquantification of the ceramic, binder and oxidized phases. 

 

3. Results and Discussion. 

3.1. Dependence of oxidation on temperature and tantalum content. 

The weight gain normalized to the surface area of the material (per unit area) after 

48 h of oxidation for all of the temperatures and cermets is shown in figure 1. A 

significant decrease in the extent of oxidation is clearly observed for all of the 

temperatures when the Ta content is increased. Cermet without Ta (Ti100) exhibited a 

non-negligible oxidation (18.6 mg/cm2), even at the lowest oxidation temperature tested 

(800 ºC). However, cermet Ti90Ta10 with a higher Ta content required a substantially 

higher temperature (1100 ºC) to produce a similar oxidation level (19.5 mg/cm2). At 

1100 ºC, cermet Ti80Ta20 showed a low oxidation of 9.5 mg/cm2, which was lower 

than that of cermet Ti100 at 800ºC. At 800 ºC, the oxidation of cermets Ti95Ta5, 

Ti90Ta10 and Ti80Ta20 was practically imperceptible. In contrast, cermets Ti100 and 

Ti99Ta1 were extensively oxidized at 1100 ºC. 

To quantify the improvement in the oxidation resistance of cermets when Ti is 

partially substituted by Ta, the percentage reduction of the weight gain per unit area for 

each cermet at each temperature using the Ti100 cermet as reference is presented in 

table 1. By replacing only 1 at% of Ti with Ta (Ti99Ta1), oxidation was reduced by 

67.2% at 800ºC. This improvement remained high for Ti99Ta1 until 1100 ºC (46.3%). 

At this high temperature, the enhancement of oxidation resistance increases with 

increasing Ta content, reaching a remarkable 92.8% for Ti80Ta20. An improvement of 

at least 90% is also achieved in cermets Ti95Ta5 and Ti90Ta10 but at lower 

temperatures of 900 ºC and 1000 ºC, respectively. 

To corroborate the thermogravimetric results and to analyze the phases formed 

during the oxidation tests, XRD patterns of oxidized cermets reduced to powder are 

compared in figure 2. The XRD pattern corresponding to oxidized Ti100 cermet at a 

low temperature (800 ºC) clearly shows the presence of rutile TiO2 (tetragonal structure, 

P42/mnm, 136) due to the cermet oxidation. The intensity of the TiO2 reflections 

increases with the oxidation temperature as the oxidation progresses. Moreover, new 
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reflections that can be assigned to cobalt methatitanate (CoTiO3, rhombohedral 

structure, R-3, 148) are detected from 900 ºC. The existence of this Co-containing phase 

is due to the presence of Co in the binder phase, which is also oxidized. Simultaneously, 

the intensity of the original ceramic and binder phases is considerably reduced. At 1000 

ºC, the unoxidized phases are only slightly detected in the XRD patterns, suggesting a 

high degree of oxidation, in accordance with the thermogravimetric results. At 1100 ºC, 

the XRD pattern is practically dominated by the TiO2 rutile reflections. Note that as 

described in the literature [19], the binder phase in cermets developed by MSR was 

composed of a mixture of TiCo (cubic structure, Pm-3m, 221) and TiCo2 (cubic 

structure, Fd-3m, 227) intermetallic phases. Therefore, the presence in the oxidized 

specimen XRD patterns of reflections corresponding to a α-Co alloy (cubic structure, 

Fm-3m, 225) implies the preferential oxidation of Ti vs Co in the binder phase. 

The XRD patterns of oxidized Ti99Ta1 cermet (figure 2) show a similar trend to 

that of Ti100 cermet as the oxidation progresses with temperature. However, the 

improvement in the oxidation resistance by substituting only 1 at% of Ti with Ta is 

evidenced by the delay in the evolution of oxidized phases, corroborating the 

thermogravimetric results in figure 1. A comparison of the XRD patterns of the 

oxidized cermets reveals that the patterns are similar but shifted by 100 ºC, e.g., XRD 

patterns at 900 ºC, 1000 ºC and 1100 ºC for Ti99Ta1 cermet are equivalent to those at 

800 ºC, 900 ºC and 1000 ºC for Ti100 cermet, respectively. This result indicates that 

oxidation was deferred by approximately 100 ºC. 

For Ti95Ta5 cermet, the XRD patterns in figure 2 indicate that the oxidation 

remained at a low level until 1100 ºC in which the reflections of the original unoxidized 

phases were still clearly visible. The XRD pattern of Ti95Ta5 cermet at 1100 ºC was 

similar to that of Ti99Ta1 and Ti100 cermets at 900 ºC and 800 ºC, respectively, 

showing again the positive effect of Ta substitution on oxidation resistance. In this case, 

when Ti was replaced with 5 at% of Ta, the oxidation was delayed by approximately 

300 ºC compared with cermets without Ta. 

For Ti90Ta10 and Ti80Ta20 cermets, with the highest Ta contents of 10 and 20 

at%, respectively, the XRD patterns in figure 2 show an even greater oxidation 

resistance. The XRD patterns of Ti80Ta20 cermet are dominated by the unoxidized 

https://www.researchgate.net/publication/256153571_Effect_of_tantalum_content_on_the_microstructure_and_mechanical_behavior_of_cermets_based_on_TixTa1-xC05N05_solid_solutions?el=1_x_8&enrichId=rgreq-d0989e87-0dd2-42a0-9389-aad4d67b4a00&enrichSource=Y292ZXJQYWdlOzI4MjY1NzMxMjtBUzoyODY2MTU4Nzc1MDUwMjRAMTQ0NTM0NTk1ODIyMA==
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phases over the entire temperature range studied. Only at 1000 ºC, the most intense 

reflections of the rutile structure begin to emerge from the background signal. 

Note that single tantalum oxides, such as Ta2O5 or TaO2, were not detected in the 

XRD patterns of oxidized cermets (figure 2). However, displacements toward the lower 

2θ angles were observed in the reflections corresponding to the rutile structure when the 

Ta amount was increased. This effect is illustrated in figure 3 in which the XRD 

patterns over the range of the (110) and (211) reflections for TiO2 and TaO2 are shown 

for the five different cermets oxidized at 1100 ºC. The observed shift is equivalent to an 

increase in the unit cell parameters as shown in table 2 and suggests that Ta is 

introduced into the TiO2 lattice, resulting in the formation of a TixTa1-xO2 solid solution 

with rutile-type structure (tetragonal structure, P42/mnm, 136). 

3.2. Surface characterization of the oxidized cermets. 

To obtain precise information on the nature of the oxide scale formed in oxidized 

cermets, XRD patterns of the surfaces exposed to oxidation were recorded and are 

shown in figure 4. In the XRD pattern of Ti100 cermet oxidized at 800 ºC, CoO (cubic 

structure, Fm-3m, 225) and Co3O4 (cubic structure, Fd-3m, 227) are the only phases 

observed. However, these oxides were not detected at this temperature in the XRD 

pattern of figure 2 in which only unoxidized phases and low intensity peaks 

corresponding to TiO2 were identified. These differences are due to the penetration 

depth of the X-ray and the fact that both of the cobalt oxides must be located precisely 

at the outermost layer of the oxide scale, preventing the detection of other inwardly 

located phases. At 900 ºC, CoO appears as the major phase because of the instability of 

Co3O4, according to reaction (1), although the marked (200) preferred orientation 

observed (2 ≈ 42.4º) could also be at the origin of this predominance in the XRD 

pattern. 

243 OCoO6OCo2      (1) 

Note that the presence of external CoO and Co3O4 implies the migration of cobalt 

through the TiO2 oxide layer, which is supposed to be the main product of oxidation, 

towards the surface of cermets and its subsequent oxidation. The formation of an 

outermost region of nearly pure cobalt oxide has been frequently observed during the 

oxidation of Co-base alloys [20, 21]. 

https://www.researchgate.net/publication/251554073_High_temperature_oxidation_of_gg'-strengthened_Co-base_superalloys?el=1_x_8&enrichId=rgreq-d0989e87-0dd2-42a0-9389-aad4d67b4a00&enrichSource=Y292ZXJQYWdlOzI4MjY1NzMxMjtBUzoyODY2MTU4Nzc1MDUwMjRAMTQ0NTM0NTk1ODIyMA==
https://www.researchgate.net/publication/248208299_The_corrosion_of_two_Co-Nb_alloys_under_1_ATM_O-2_at_600-800_degrees_C?el=1_x_8&enrichId=rgreq-d0989e87-0dd2-42a0-9389-aad4d67b4a00&enrichSource=Y292ZXJQYWdlOzI4MjY1NzMxMjtBUzoyODY2MTU4Nzc1MDUwMjRAMTQ0NTM0NTk1ODIyMA==
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At higher temperatures (1000 ºC and 1100 ºC) (figure 4), when the oxidation has 

significantly progressed, TiO2 emerges at the surface of the cermet, while cobalt oxides 

disappear by reacting with TiO2 rutile to form cobalt methatitanate (CoTiO3) or cobalt 

orthotitanate (Co2TiO4, cubic structure, Fd-3m, 227), according to reactions (2-5), as 

follows [22, 23]: 

32 CoTiOTiOCoO      (2) 

23243 OCoTiO6TiO6OCo2    (3) 

422 TiOCoTiOCoO2     (4) 

242243 OTiOCo3TiO3OCo2    (5) 

It is possible to consider the formation of Co2TiO4 from CoTiO3, according to the 

following reaction (6): 

423 TiOCoCoTiOCoO     (6) 

The XRD patterns of oxidized surfaces of Ti99Ta1 cermet (figure 4) are generally 

similar to those corresponding to Ti100 cermet (with the same shift in temperature as 

previously observed in figure 2), although certain differences are also noticed. The first 

difference is the presence of rutile and small reflections of cobalt titanates (CoTiO3 and 

Co2TiO4) at 800 ºC. For Ti99Ta1 cermet, cobalt oxides dominate the XRD pattern of 

the surface at higher temperatures, over the 900-1000 ºC temperature range. Second, the 

XRD pattern of the oxidized surface at 1100 ºC shows the presence of intense 

reflections of Co2TiO4 and CoTi2O5 (orthorhombic structure, Cmcm, 63). This result is 

in contrast to the pattern for Ti100 cermet at this temperature in which only TiO2 was 

detected. According to the binary CoO/Co3O4-TiO2 phase diagram [22], cobalt 

dititanate (CoTi2O5) is stable at temperatures above ~1140 ºC, and its formation at these 

temperatures can occur by reactions (7-10), as follows: 

5223 OCoTiTiOCoTiO     (7) 

2522 OOCoTiTiO2CoO     (8) 

CoOOCoTiCoTiO2 523     (9) 

https://www.researchgate.net/publication/231337162_Role_of_entropy_in_the_stability_of_cobalt_titanates?el=1_x_8&enrichId=rgreq-d0989e87-0dd2-42a0-9389-aad4d67b4a00&enrichSource=Y292ZXJQYWdlOzI4MjY1NzMxMjtBUzoyODY2MTU4Nzc1MDUwMjRAMTQ0NTM0NTk1ODIyMA==
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52422 OCoTi2TiOCoTiO3     (10) 

The existence of a higher proportion of cobalt titanates, especially Co2TiO4, at 

lower temperatures becomes more apparent with increasing Ta content (Ti95Ta5, 

Ti90Ta10 and Ti80Ta20 in figure 4). These observations suggest that the substitution 

of Ti4+ by Ta5+ in the rutile phase and the formation of Ti3+ in the structure for charge 

compensation [24] must increase the reactivity of this phase and promote the formation 

of cobalt titanates at lower temperatures through reactions (2-5). Moreover, note that 

cobalt oxides (CoO and Co3O4) were not observed in the oxidized surfaces of Ti90Ta10 

and Ti80Ta20 cermets over the entire temperature range studied. For both of the 

cermets, only the rutile, Co2TiO4 and CoTiO3 phases are observed. It is then possible to 

propose for these cermets the direct reaction between cobalt and rutile to produce cobalt 

titanates at the surface through reactions (11 and 12) instead of reactions (2-5). The 

stoichiometries proposed in reactions (11 and 12) are based on the XEDS results by 

SEM (shown later), showing that cobalt titanates do not contain Ta and revealing the 

existence in the same specimen of a TixTa1-xO2 solid solution with different Ti/Ta ratios. 

213221 OTaTiCoTiOO21OTaTiCo yyxx    (11) 

2142221 OTaTiTiOCoOOTaTi2Co yyxx       (12) 

The XRD pattern in figure 4 for the Ti80Ta20 cermet at 1100 ºC only shows the 

presence of Co2TiO4 and CoTiO3. Maintaining these cobalt titanates as an outermost 

layer in the oxide scale at higher temperatures should be related to the improvement in 

oxidation resistance of cermets and would indicate a more protective effect than that 

provided by the rutile layer only. Furthermore, it has been shown that Ta5+ doping in the 

rutile phase decreases the oxygen vacancy concentration, hindering the oxygen mass 

transport [25] through the oxide scale, which should also decelerate the oxidation of 

cermets [26]. 

Finally, note that except for Ti80Ta20 oxidized at 800 ºC, the XRD patterns of 

oxidized surfaces for Ti90Ta10 and Ti80Ta20 cermets do not show the presence of 

unoxidized phases, although TG measurements evidenced a low degree of oxidation. 

This fact is related again to the penetration depth of the X-rays that as confirmed by 

https://www.researchgate.net/publication/235479355_Screened_hybrid_density_functional_study_on_Nb-and_Ta-doped_TiO_2?el=1_x_8&enrichId=rgreq-d0989e87-0dd2-42a0-9389-aad4d67b4a00&enrichSource=Y292ZXJQYWdlOzI4MjY1NzMxMjtBUzoyODY2MTU4Nzc1MDUwMjRAMTQ0NTM0NTk1ODIyMA==
https://www.researchgate.net/publication/231631720_Effect_of_Dopants_on_Grain_Coalescence_and_Oxygen_Mobility_in_Nanostructured_Titania_Anatase_and_Rutile?el=1_x_8&enrichId=rgreq-d0989e87-0dd2-42a0-9389-aad4d67b4a00&enrichSource=Y292ZXJQYWdlOzI4MjY1NzMxMjtBUzoyODY2MTU4Nzc1MDUwMjRAMTQ0NTM0NTk1ODIyMA==
https://www.researchgate.net/publication/249509695_On_the_effect_of_Ta_on_improved_oxidation_resistance_of_Ti-Al-Ta-N_coatings?el=1_x_8&enrichId=rgreq-d0989e87-0dd2-42a0-9389-aad4d67b4a00&enrichSource=Y292ZXJQYWdlOzI4MjY1NzMxMjtBUzoyODY2MTU4Nzc1MDUwMjRAMTQ0NTM0NTk1ODIyMA==
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SEM observations (figure 5) was about 10 m in the present case; thus, the phases 

present below this depth are unlikely to be detected. 

3.3. Characterization of oxides and subsurfaces in cross-sections by SEM. 

To study how oxygen penetrates cermets and to study the distribution and 

composition of phases from the external surface of the oxide scale to the inner part of 

the different specimens, polished cross-sections of oxidized cermets were analyzed by 

SEM. Considering the large number of samples and the wide range of oxidation 

temperatures studied, only the more representative results are presented in this section. 

Figure 5 shows an example of the cross-sectional SEM images of the different 

cermets oxidized at 800 ºC, clearly showing the drastic reduction in oxidation depth as 

the Ta content is increased from 220 μm for Ti100 to 6 μm for Ti80Ta20 (note the 

different magnification in the SEM images). This result confirms the outstanding 

improvement of oxidation resistance when Ta is introduced into the structure of the 

carbonitride phase. The same trend was observed with increasing temperature, although 

for the same Ta content, the volume affected by oxidation also increases with 

temperature (figure 6). 

The SEM images in figures 5 and 6 show that the volume affected by oxidation 

can be divided into two primary regions, which is more clearly visible in specimens 

with a higher oxidation. For example, in Ti100 cermet oxidized at 800ºC, a large 

external zone, approximately 147 m wide, only composed of oxidized phases (as 

confirmed by XEDS-SEM mapping) is observed (figure 7). The large pores observed in 

this region were presumably generated by coalescence of smaller pores formed because 

of the volatile species arising from the oxidation of the carbonitride phase. Immediately 

below this region, there is a partially oxidized internal degradation zone with lower 

porosity. The width of this layer (~ 73 m) and its depth imply an important diffusion of 

oxygen into the cermet, which suggests a limited protection of the formed oxide scale. 

When Ta is introduced into cermets, both of the regions experienced a significant 

reduction in thickness, especially the internal degradation zone in cermets with a higher 

Ta content. Simultaneously, the porosity of the fully oxidized external layer was 

drastically reduced with the Ta content, which may contribute to increased oxidation 

protection. 
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Analytical measurements using XEDS-SEM performed at different locations 

(marked with numbers in figures 8-10) were obtained to gain additional information for 

the identification of the different phases present in the oxide scale and the internal 

degradation zone of oxidized specimens. Representative semi-quantitative compositions 

obtained from XEDS-SEM spectra (some characteristic ones are displayed in figure 11) 

are shown in table 3 and the calculated Ti/Ta/Co/O atomic ratios were used to assign the 

different phases previously detected by XRD to the different areas analyzed. So, the 

formation at low temperatures of a thin external layer composed of CoO and Co3O4 was 

confirmed for the Ti100 cermet (numbers 1 and 2, respectively, in figure 8a, 

corresponding to the outermost zone of Ti100 cermet oxidized at 800 ºC). Immediately 

below this layer, the TiO2 phase was detected (number 3 in figure 8a), along with 

CoTiO3 (number 4 in the same figure 8a). The irregular morphology present in this 

phase and the location of CoTiO3 between cobalt and titanium oxides support its 

formation according to reactions (2) and (3). Subsequently, a Co-depleted zone was 

detected, and further from the surface, CoTiO3 was again detected (figure 8a). In this 

case, this phase could have been directly formed through reaction (11). 

At a higher temperature (1000 ºC), when the oxidation has significantly 

progressed, the SEM image of the external oxidation zone of Ti100 cermet reveals the 

absence of cobalt oxides at the surface and the emergence of TiO2 (number 3 in figure 

8b). The existence of CoTiO3 is also observed in figure 8b (number 4) because of 

reactions (2) and (3) that would have consumed cobalt oxides formed in an earlier 

oxidation stage. Note that although Co2TiO4 was assigned in the superficial XRD 

pattern (figure 3), it could not be detected by XEDS-SEM. The presumably low amount 

of this phase, the fine scale of the microstructure and the interference from neighboring 

phases can cause difficulty in distinguishing between the CoTiO3 and Co2TiO4 phases. 

For Ti99Ta1 cermet, a similar phase distribution to that for Ti100 was found in 

the superficial oxidation zone. The formation of the external cobalt oxide layer 

(numbers 1 and 2 in figure 8c) was confirmed at 800 ºC and was still observed at 1000 

ºC (figure 8d); this layer only disappeared at 1100 ºC (figure 8e). At this temperature, 

the rutile phase (number 3) emerges at the surface of the oxidized cermet. CoTiO3 was 

also detected near the cobalt oxide layer at the lower oxidation temperature, and 

Co2TiO4 and CoTi2O5 were evidenced at a high temperature (1100 ºC) (numbers 5 and 

6, respectively, in figure 8e). 
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The trend to form cobalt titanates instead of cobalt oxides at low oxidation 

temperatures when Ti is increasingly substituted by Ta is illustrated for Ti95Ta5 cermet 

in figure 9a. The chemical compositions determined by XEDS-SEM in the outermost 

layer of the oxide scale formed at 900 ºC (numbers 4 and 5 in figure 9a) were in 

agreement with the XRD results (figure 4), in which the CoTiO3 and Co2TiO4 phases 

were detected in the surface of oxidized Ti95Ta5 cermet. At the highest oxidation 

temperature, 1100 ºC, the cobalt titanate layer (CoTiO3 and Co2TiO4) remained at the 

surface (figure 9b). At this temperature, a small external layer of CoO was observed 

(number 1 in figure 9b) in some specific areas. The cobalt titanate layer was only 10 

microns thick, and it was continuous and dense; the emergence of the rutile phase at the 

external surface of the cermet was never demonstrated. 

For Ti90Ta10 and Ti80Ta20 cermets, it was confirmed that a cobalt titanate layer 

was always formed and was retained at the surface over the entire oxidation temperature 

range studied (800-1100 ºC), as exemplified in figures 9c and 9d for Ti90Ta10 cermet 

oxidized at 800 ºC and Ti80Ta20 cermet at 1000 ºC, respectively. This cobalt titanate 

layer in the Ti90Ta10 and Ti80Ta20 cermets appears to be composed of the 

superposition of two continuous oxides. Co2TiO4 was observed in the outermost zone, 

and CoTiO3 appeared immediately below it (numbers 5 and 4, respectively, in figure 

9d). The complete absence of cobalt oxides (CoO and Co3O4) at each oxidation 

temperature confirms that titanates were formed directly between Co and TixTa1-xO2 

according to reactions (11) and (12). However, the thickness of this titanate layer 

increased with the oxidation temperature because of the oxidation progress but only 

slightly, as shown in figures 9c and 9e for Ti90Ta10 cermet oxidized at 800 ºC and 

1000 ºC, respectively. Under this titanate top layer, a TixTa1-xO2 sublayer was observed 

(number 3 in figure 9). This layer was thin due to the small degree of oxidation, thus 

preventing the accumulation of compressive stresses and avoid the cracking of the 

protective titanate layer, which maintains its integrity by remaining dense and 

continuous. 

Note that the presence of Ta in the rutile phase was ascertained by XEDS-SEM, 

confirming the formation of a TixTa1-xO2 solid solution, whereas Ta was never observed 

in any of the titanate phases. This result appears to indicate that it is impossible to form 

a solid solution for these mixed oxides, probably due to the different structures and 
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compositions of cobalt tantalates (CoTa2O6 and Co4Ta2O9, according to the PFD-ICDD 

database) compared with cobalt titanates.  

Moreover, note that XEDS-SEM measurements revealed the existence of a 

chemical gradient in the TixTa1-xO2 solid solution, which becomes more apparent with 

increasing Ta content. A composition virtually without Ta was observed near the 

surface, while moving inwards, the amount of Ta increased in the solid solution. As an 

example, in figure 9b corresponding to the Ti80Ta20 cermet oxidized at 800 ºC, the 

numbers 3a, 3b and 3c represent the TixTa1-xO2 solid solution but with three different 

Ti/Ta atomic ratios of ~ 16, 5.3 and 2.4, respectively, determined from the Ti and Ta 

atomic percentages obtained from XEDS-SEM analysis. Note that this last ratio is even 

lower than the starting nominal ratio of 4 in the carbonitride phase (Ti0.8Ta0.2C0.5N0.5). 

These results account for a faster diffusion of Ti toward the external surface to be 

oxidized compared with Ta, which could also explain the absence of Ta in cobalt 

titanates. 

The chemical characterization of the internal degradation zone of the different 

oxidized cermets confirmed that it was always composed of a continuous rutile matrix 

in which isolated rounded packets of a Co alloy are embedded. As previously 

mentioned, this area was dramatically reduced as the Ta content increased and was 

extremely small and difficult to observe for cermets with the highest Ta content at any 

of the oxidation temperatures studied. Figures 10a, 10b and 10c show this zone for 

cermets Ti100 oxidized at 1000 ºC, Ti99Ta1 at 1000 ºC and Ti95Ta5 at 1100 ºC, 

respectively. 

Semiquantitative analysis by XEDS-SEM performed in the Co alloy pockets 

(number 7 in figures 10a, 10b and 10c) always revealed a Co content higher than 90 at% 

(Ti and Ta were the other metallic elements detected in the alloy). Because the original 

binder phases had a markedly higher Ti and Ta content (see ref. [19]), these XEDS-

SEM analyses confirm that a preferential oxidation of Ti and Ta occurred in the binder 

phase. 

Finally, after the internal degradation zone and immediately before reaching the 

unoxidized phases, a new narrow layer that corresponds to the oxidation front was 

observed. In this region, the incipient oxidation of the cermet occurs, and phases in the 

Ti-Ta-Co-O system were detected with chemical compositions close to the ceramic and 
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binder phases but with a non-negligible amount of oxygen. As an example, in figure 

10d, the oxidation front in the Ti100 cermet oxidized at 900 ºC is shown. In figures 5-7 

the oxidation front in oxidized cermets can also be observed. 

Figure 10e shows details of the oxidation front of the Ti80Ta20 cermet oxidized 

at 1100 ºC. This image and XEDS-SEM analyses performed at different points of the 

reaction front allowed the conclusion that the onset and advancement of the oxidation 

reaction occurs at the level of the binder phase by the preferential oxidation of Ti and 

Ta. Subsequently, oxidation proceeds towards the ceramic particles, leading to the 

characteristic microstructure of the internal degradation zone, with Co as the last 

element to be oxidized in cermets. 

 

4. Conclusions. 

1. The substitution of Ti by Ta in titanium carbonitride-based cermets results in an 

extraordinary improvement of the oxidation resistance. This improvement was observed 

over the entire temperature range studied (800 ºC-1100 ºC). The improvement was 

especially remarkable in Ti80Ta20 cermet, for which oxidation was reduced by more 

than 90%. 

2. The oxidized zone can be divided in three regions, as follows: a) an external oxide 

scale in which fully oxidized phases coexist, such as cobalt oxides (CoO and Co3O4), 

titanium-tantalum oxide with the rutile-type structure (TixTa1-xO2) and cobalt titanates 

(CoTiO3, Co2TiO4 and CoTi2O5), depending on the temperature and Ta content; b) a 

partially oxidized internal degradation zone in which TixTa1-xO2 and -Co coexist; and 

c) the oxidation front in which the incipient oxidation of the ceramic and binder phases 

occurs. The oxide scale and the internal degradation zones are significantly reduced 

when the Ta content is increased in cermets. 

3. For the cermets with zero or low Ta content, Ti100 and Ti99Ta1, the degree of 

oxidation is important, even at low temperatures, and the formation in the oxide scale of 

a thin CoO/Co3O4 external layer is observed. When the oxidation temperature is 

increased, these cobalt oxides react with the underlying rutile phase to form cobalt 

titanates. The cracking of the CoO/Co3O4 external layer induces the emergence of the 

rutile phase at the surface of the oxide scale. 
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4. For the cermets with higher Ta content, Ti95Ta5, Ti90Ta10 and Ti80Ta20, the 

formation of a cobalt titanate external layer instead of the CoO/Co3O4 layer is observed, 

even at the lowest oxidation temperature studied. This external layer remains stable at 

increasing oxidation temperatures. 

5. The improved oxidation resistance observed with Ta substitution arises from a 

synergic effect that includes the lower tendency of Ta to oxidize, the formation of a 

continuous and compact protective layer of cobalt titanate at the surface of the oxide 

scale and the formation of a TixTa1-xO2 solid solution with rutile-type structure in which 

some Ti4+ are replaced by Ta5+, which reduces oxygen vacancies and then the oxygen 

diffusion into cermets. 
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FIGURE CAPTIONS. 

Figure 1. Weight gain per unit area after 48 h of oxidation for all of the cermets and 

oxidation temperatures. 

Figure 2. XRD patterns of oxidized cermets reduced to powder after the 48 h oxidation 

tests. (a) 800 ºC; (b) 900 ºC; (c) 1000 ºC; (d) 1100 ºC. Phases: () Unoxidized ceramic 

phase: TixTa1-xC0.5N0.5; () Unoxidized binder phase: TixTa1-xCo; (▼) Unoxidized 

binder phase: TixTa1-xCo2; () TixTa1-xO2 with rutile structure; () CoTiO3; () -Co. 

Figure 3. XRD patterns of oxidized cermets reduced to powder after the 48 h oxidation 

tests at 1100 ºC over the range of (110) and (211) reflections for TiO2 and TaO2 with 

the rutile structure. a) Ti100; b) Ti99Ta1; c) Ti95Ta5; d) Ti90Ta10; and e) Ti80Ta20. 

Figure 4. XRD patterns of the surface of the oxidized cermets after the 48 h oxidation 

tests. (a) 800 ºC; (b) 900 ºC; (c) 1000 ºC; (d) 1100 ºC. Phases: () Unoxidized ceramic 

phase TixTa1-xC0.5N0.5; (o) Co3O4; (Δ) CoO; () TixTa1-xO2 with rutile structure; () 

CoTiO3; (+) Co2TiO4; () CoTi2O5. 

Figure 5. Cross-sectional SEM images of the different cermets oxidized at 800 ºC, 

showing the approximate measurements of the oxidation penetration depth. The dotted 

lines separate the completed oxidation zones, the internal degradation zones and the 

unoxidized cermet areas. 

Figure 6. Cross-sectional SEM images of the cermet Ti95Ta5 oxidized at 800 ºC, 900 

ºC, 1000 ºC and 1100 ºC, showing the approximate measurements of the oxidation 

penetration depth. The dotted lines separate the completed oxidation zones, the internal 

degradation zones and the unoxidized cermet areas. 

Figure 7. A characteristic XEDS-SEM mapping of Ti100 cermet oxidized at 800ºC, 

corroborating the clear differentiation between the oxidized / unoxidized phases and 

used to measure the oxidation penetration depth showed in figures 5 and 6. 

Figure 8. Representative cross-sectional SEM images of cermets Ti100 and Ti99Ta1 

showing the oxidized phases in the completed oxidation zone as determined by XEDS-

SEM. a) Ti100 at 800 ºC; b) Ti100 at 1000 ºC; c) Ti99Ta1 at 800 ºC; d) Ti99Ta1 at 
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1000 ºC; e) Ti99Ta1 at 1100 ºC. (1) CoO; (2) Co3O4; (3) TiO2; (4) CoTiO3; (5) 

Co2TiO4; (6) CoTi2O5. 

Figure 9. Representative cross-sectional SEM images of cermets Ti95Ta5, Ti90Ta10 

and Ti80Ta20 showing the phases in the completed oxidation zone as determined by 

XEDS-SEM. a) Ti95Ta5 at 900 ºC; b) Ti99Ta5 at 1100 ºC; c) Ti90Ta10 at 800 ºC; d) 

Ti80Ta20 at 1000 ºC; e) Ti90Ta10 at 1000 ºC. (1) CoO; (3a), (3b) and (3c) TixTa1-xO2; 

(4) CoTiO3; (5) Co2TiO4. 

Figure10. Representative cross-sectional SEM images of the internal degradation zone 

[a) Ti100 at 1000 ºC; b) Ti99Ta1 at 1000 ºC; c) Ti95Ta5 at 1100 ºC] and the oxidation 

front [d) Ti100 at 900 ºC; e) Ti80Ta20 at 1100 ºC] for the different oxidized cermets, 

showing the phases in these regions as determined by XEDS-SEM. (3) TixTa1-xO2 (7) -

Co. 

Figure 11. Representative semi-quantitative XEDS-SEM spectra of oxidized phases 

found in the different areas analyzed and previously detected by XRD. 

  



19 
 

TABLES. 

Table 1. Percentage reduction of the weight gain per unit area for each cermet at each 

oxidation temperature compared to the weight gain per unit area of the Ti100 cermet 

(reference material) after the 48h oxidation tests. 

Cermet  800ºC 900ºC 1000ºC 1100ºC 

Ti100 - - - - 

Ti99Ta1 67.2 67.2 48.0 46.3 

Ti95Ta5 89.2 90.7 84.9 72.8 

Ti90Ta10 94.1 94.2 89.3 85.6 

Ti80Ta20 95.6 96.3 94.0 92.8 
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Table 2. Lattice parameters for the TixTa1-xO2 solid solution with rutile-type structure 

determined from the X-ray diffractograms of cermets oxidized at 1100ºC. 

Cermet a=b (Å) c (Å) 

Ti100 4.5933 2.9592 

Ti99Ta1 4.5935 2.9608 

Ti95Ta5 4.6025 2.9666 

Ti90Ta10 4.6139 2.9761 

Ti80Ta20 4.6314 2.9823 
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Table 3. Punctual semi-quantitave compositions calculated from XEDS-SEM spectra 

performed in different zones of the oxide scale and internal oxidation region of the 

oxidized cermets. The numbers in figures 8-10 mark the analyzed zones. The nature of 

phases that best suits the results of the analyses is also shown. 

Zone Ti (at%) Ta (at%) Co (at%)  O (at%) 
Approximate phase 

stoichiometry 

1 - - 50.4  49.6 CoO 

2 - - 58.4 41.6 Co3O4 

3 34.3 - - 65.7 TiO2 

3a 28.1 1.7 - 70.2 

TixTa1-xO2 3b 25.5 4.8 - 69.7 

3c 20.8 8.8 - 70.4 

4 24.7 - 22.7 52.6 CoTiO3 

5 15.8 - 29.6 54.6 Co2TiO4 

6 25.4 - 13.1 61.5 CoTi2O5 

7 3.9 1.3 94.8 - α-Co 
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