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Abstract 22 

In patchy forest areas, the size of the forest patch where birds breed has a strong 23 

influence on their breeding success. However, the proximate effects contributing to 24 

lowering the breeding success in small forest patches remain unclear; and a shortage of 25 

crucial resources in those forest patches has been suggested to account in some degree for 26 

this failure. With the aim to further investigate this issue, we have monitored the breeding 27 

cycle of blue and great tits in three ‘large’ forest patches (ranging between 26.5-29.6 ha) 28 

and twelve ‘small’ forest patches (ranging between 1.1-2.1 ha) in a Mediterranean area in 29 

central Spain, during three years (2011-2013). We also recorded the nestling diet inside the 30 

nest-boxes with the aid of handy-cams. Only males significantly differed between forest 31 

patch size categories; being on average younger and with better body condition in small 32 

patches for great and blue tits respectively. Reproductive traits did not vary between forest 33 

patch size categories, but the body condition of blue tit nestlings and the size of great tit 34 

nestlings did, being significantly better and larger respectively in large forest patches. The 35 

recruitment rate of blue tit nestlings was also higher in large patches. Regarding nestling 36 

diet, blue tits did not differ but great tits did, delivering a larger amount of caterpillars in 37 

large forest patches. Most variation in the reproductive traits occurred between years, 38 

probably due to annual differences in environmental conditions. This study suggests that 39 

food supply could be limiting the breeding success of birds above all in small patches, but 40 

also in large patches under particular environmental conditions.  41 

Additional keywords: Forest patch; feeding behavior; recruitment; nestling diet; body 42 

condition. 43 
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1. Introduction 44 

 Habitat fragmentation is one of the major threats that forest biodiversity faces 45 

(Laurance, 2010; Amos et al., 2013; Bregman et al., 2014), and its effects have been widely 46 

studied in forest birds (Fahrig, 2003). The ultimate effect of habitat fragmentation is the 47 

decline of bird species richness and population abundances (Moller, 1987; Debinski and 48 

Holt, 2000; Boulinier et al., 2001). These numerical responses may stem, at least in part, in 49 

demographic changes, i.e. proximate effects given at a regional-scale (Lampila et al., 2005). 50 

However, the mechanisms underlying these proximate effects remain unclear, and it is of 51 

vital importance to light them in the sake of conservation biology (Boulinier et al., 2001; Le 52 

Tortorec et al., 2012). One feature that affects the breeding success of birds, is the size of 53 

the forest patch where they breed (Paton, 1995; Hinsley et al., 1999, 2009; Shochat et al., 54 

2001; Loman, 2003; Zitsque et al., 2011, but see Nour et al., 1998), and a reduction of 55 

crucial resources in small forest patches has been suggested to be a responsible cause 56 

(Kuitunen and Makinen, 1993; Tremblay et al., 2005; Hinam and Clair, 2008). 57 

In this regard, food supply could be a crucial resource limiting the breeding success 58 

of birds in small forest patches, as it is one of the most important limiting factors affecting 59 

life-history in birds (Lack, 1968; Martin, 1987; but see Martin, 1995). Food supply could 60 

be compromised in small forest patches just because their small surface area (Moller, 61 

1991); but also because in small forest patches the proportion of forest edges increases 62 

(Helzer and Jelinski, 1999), which harsh the environmental conditions (Zanette et al., 2000) 63 

and may drive to a decrease in the amount of invertebrates (Didham et al., 1996; Burke and 64 

Nol, 1998). Furthermore, the process of habitat fragmentation typically implies 65 
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degradation, which changes the structure of the remaining habitat (Hinsley et al., 1999; 66 

Fahrig, 2003). These changes in the vegetation structure usually involve microclimate 67 

alterations too; which apart from its direct effects on the abundance of invertebrates, it 68 

could promote a change in the composition of the vegetation which could also alter the 69 

composition of invertebrates (Cramp and Perrins, 1993; Laurance et al., 2002). In addition, 70 

for altricial bird species, breed in a small forest patch could be challenging due to they are 71 

‘central-place foragers’, as they are attached to a fixed point when they breed, their nests 72 

(Tremblay et al., 2005). If they are not able to cope with the food demand of their broods 73 

within the patch, they will be forced to travel longer distances to reach other foraging 74 

patches, crossing unsuitable foraging habitats, which will limit their feeding rate (Bruun 75 

and Smith, 2003). In other cases, in landscapes containing little habitat, the distance 76 

between forest patches may exceed a species gap-crossing tolerance, constraining the size 77 

of the home ranges and limiting the availability of resources (Desrochers and Hannon, 78 

1997). The ultimate effect of both scenarios is a reduction of the breeding success (Frey-79 

Roos et al., 1995; Hinsley, 2000).  80 

The aim of the present study was to test whether there is an effect of the forest patch 81 

size on the breeding performance of two populations of blue (Cyanistes caeruleus) and 82 

great tits (Parus major). To do this, we studied the breeding performance of these two 83 

species of tits in a fragmented landscape in central Spain during three years. Both species 84 

are ideal to study this topic as they need an enormous supply of food when they breed. For 85 

example great tits while feeding their chicks made up to 700 feeding visits per day, and 86 

blue tits even more (Perrins, 1991). Because of this, it is crucial for tits to match the 87 

maximum food demand period of their chicks with the food peak in the forest (Naef-88 
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Daenzer and Keller, 1999; Matthysen et al., 2011); when they do not achieve this match, 89 

their reproductive success can decrease (Svensson and Nilsson, 1995; Naef-Daenzer et al., 90 

2001; Tremblay et al., 2003). We hypothesized that in small patches the breeding 91 

performance will be worse (Moller, 1991; Riddington and Gosler, 1995), and predict that 92 

the lack of resources in small patches will be an important responsible factor, concretely 93 

food supply (Burke and Nol, 1998; Zanette et al., 2000; Razeng and Watson, 2014).   94 

 95 

2. Material and Methods 96 

2.1. Study area 97 

 The present study was conducted in the locality of San Pablo de los Montes situated 98 

in Montes de Toledo (39°32′44″N, 4°19′41″W; Toledo, central Spain). This region presents 99 

continental Mediterranean climate, characterized by pronounced summer droughts and a 100 

high daily thermal oscillation, with mean annual rainfall of 700-800 mm. The landscape of 101 

this area has suffered an intense fragmentation due to human activities, mainly agriculture 102 

and deforestation for raising cattle, as occurs in other regions of the Mediterranean basin 103 

(Blondel and Aronson, 1999). As a consequence, deciduous woodlands, considered the 104 

most suitable breeding habitat for tits in this region (Atiénzar et al., 2012), are scattered and 105 

patched in a matrix of less suitable habitat, mainly Mediterranean scrubland with low tree 106 

cover and pastureland. Our study area consisted of fifteen oak (Quercus pyrenaica) forest 107 

patches: three ‘large’ patches ranging between 26.5 and 29.6 ha, and twelve ‘small’ patches 108 

ranging between 1.1 and 2.1 ha, separated from each other by a mean distance of 4.23 km 109 

(range 0.53 - 9.84 km). Both oak forest patch size categories present a similar habitat 110 
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structure, with the oak as dominant plant accompanied by its typical shrub courtship: 111 

common hawthorn (Crataegus monogyna), elmleaf blackberry (Rubus ulmifolius), terebinth 112 

(Pistacia terebinthus), and common broom (Cytisus scoparius). Large patches were 113 

provided with 80 wood nest-boxes (internal dimensions: 12 x 11.5 x 16.5 cm.) and small 114 

ones with 5 wood nest-boxes; separated from each other by at least 30 m. All nestboxes 115 

were hung on the branches of oak trees at a height of 2.5-3 metres and oriented towards the 116 

south. They were protected from predators (mustelids, woodpeckers) with wire mesh and a 117 

polyvinyl chloride (PVC) pipe (length: 50–70 mm, diameter: 40 mm) fixed to the hole-118 

entrance. Because of this protection, the main predator in our study area was the ladder 119 

snake (Rhinechis scalaris), a very common species in the area (Salvador and Pleguezuelos, 120 

2002).   121 

 122 

2.2. Field work 123 

 During the 2011-2013 breeding seasons (day 1= April 1), nest-boxes were 124 

frequently inspected to obtain the basic reproductive parameters of our tit population, such 125 

as laying date (the day of laying the first egg of the clutch), clutch size, hatching date and 126 

brood size. Body condition, size and age of parents were compared between patch size 127 

categories because these variables are indicators of status and thus of dominance over 128 

resources (Gosler, 1997; Stahl et al., 2001). To do this, parents were trapped and ringed 129 

while feeding their nestlings (8-9 days old). The tarsus length of birds was measured with a 130 

digital calliper to the nearest 0.01 mm; the body weight was measured with an electronic 131 

balance (0.01 g) and the age of parents (yearling or older) was noted according to plumage 132 

characteristics. Due to technical difficulties, adult great tits in 2011 were not trapped. 133 
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Nestlings were ringed, measured and weighted when they were 13 days old, and mean 134 

values per brood were taken in the analyses. Tarsus length was employed as a surrogate of 135 

body size, and the weight analyses were corrected by the tarsus length (added as a 136 

covariate) to consider the body condition of birds. Nest-boxes were also visited on day 22 137 

to assess the number of chicks fledged. We assumed that all chicks have fledged when we 138 

did not find any chick dead inside the nest-boxes. Hatching success was calculated as the 139 

ratio between the number of nestlings hatched and the clutch size; and fledgling success 140 

was calculated as the ratio between nestlings fledged and hatched. To assess the breeding 141 

performance of each tit pair, seven variables were used (laying date, clutch size, hatching 142 

success, fledgling success, nestling body condition, nestling size and fledgling recruitment). 143 

Fledgling recruitment was estimated by noting, for each yearling that we recaptured (i.e. 144 

that was born in the study area); the forest patch ID where it was breeding and the forest 145 

patch ID where it was born. Through this way, we could estimate the percentage of 146 

recruitments that were born in large or small patches and the percentage of them that 147 

achieved to breed in large or small patches the next year. Apart from the seven breeding 148 

variables mentioned above, we also estimated the nest-box occupation rate and the breeding 149 

density to increase the comprehensive approach of this study. Nest-box occupation rate was 150 

obtained for each species and year as the ratio between occupied nest-boxes and total 151 

availability of them in each forest patch. We also calculated the density of great and blue 152 

tits in each breeding territory as the number of tit breeding pairs in a radius of 75 m around 153 

each occupied nest-box with the aid of Quantum GIS 2.0.1, as it is an important trait 154 

influencing breeding performance and recruitment rate (Both, 1998; Both et al., 1999).  155 

 156 
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 2.3. Feeding rate and Nestling diet 157 

To evaluate potential differences in the breeding performance between patch size 158 

categories, nestling diet was filmed by placing an infrared handy-cam (Sony DCR-SR290E-159 

like) in an adapted nest box when nestlings were 11 days old (see García-Navas and Sanz, 160 

2011, for details); that is, when nestling food requirements are maximum (Naef-Daenzer 161 

and Keller, 1999). All filming sessions were carried out during the first hours of the day 162 

and in similar weather conditions. First hour of video of each recording was discarded to 163 

allow parents to habituate to the disturbance that the video camera installation entails. The 164 

second hour of recording was analysed frame by frame using the software package Adobe 165 

Premiere Elements 7.0. In a previous study performed in a nearby area, it was confirmed 166 

that an hour is representative of the feeding behaviour in these species (García-Navas and 167 

Sanz, 2012). A total of 247 film recordings were analysed, 186 belonged to blue tits (131 in 168 

large patches and 55 in small ones. Table S2) and 61 from great tits (29 in large patches and 169 

32 in small patches. Table S2). For each recording, we combined the number of feeding 170 

events of each adult. Thus, the number of feeding events per hour was considered as a 171 

surrogate of parental provisioning effort (hereafter ‘feeding rate’). Diet of nestlings was 172 

estimated from identified preys of 6,017 feeding trips: 5,037 belonging to blue tits and 980 173 

to great tits. Food items were firstly classified in two main trophic categories: Lepidoptera 174 

larvae (caterpillars) and “others”. We further distinguish between caterpillars of the three 175 

major Lepidoptera families presented in the study area: Tortricidae, Noctuidae and 176 

Geometridae. The second group “others” include: ‘spiders’ (Aranea), ‘imago’ (belonging to 177 

the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera and Orthoptera), 178 

‘Chrysalides’ and ‘Miscellaneous’ (heterogeneous group including plant tissues, fungus, 179 
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eggshell, snails and lichen). Size of preys was assessed using a scale bar attached above the 180 

entrance of the nest box as a reference. Within each taxonomic category, items of prey were 181 

classified to three ordinal categories of body size [1 = small (length <1.5 cm for 182 

caterpillars; <1.5 cm for imagos and abdomen diameter <0.2 cm for spiders); 2 = medium 183 

(length 1.5–2.5 cm, 1.5–2 cm and diameter 0.2–0.6 cm, respectively); 3 = large (length 184 

>2.5 cm for both caterpillars and imagos and diameter >0.6 cm for spiders)] to make 185 

individual prey volumes comparable among taxa (see García-Navas and Sanz, 2010). 186 

Shannon index H’ was calculated for each nest.   187 

 188 

 2.4. Statistical analysis  189 

Only first clutches were used. A set of General Linear Mixed Models (GLMM) 190 

were performed in all cases with year and patch size category as fixed factors and laying 191 

date as a covariate. As mentioned above, body condition of birds was estimated by adding 192 

the tarsus length as another covariate, as advised by Darlington and Smulders (2001) and 193 

García-Berthou (2001). In all models, nest ID nested in forest patch ID was included as the 194 

random term. Normal distribution was assumed in all models, with the exceptions of 195 

proportions (occupation rate, hatching success, fledgling success and proportions of the 196 

main prey). For these analyses, GLMMs with a binomial distribution and a binary response 197 

variable were employed. In the occupation rate model the numerator of the binary response 198 

variable was the number of occupied nest-boxes and the denominator was the total number 199 

of available nest-boxes in each forest patch. In hatching and fledgling success models, the 200 

numerator was the number of hatchlings and fledglings respectively, and the denominator 201 

was the clutch size and the number of hatchlings respectively. For proportions of the main 202 
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prey types, the numerator was the number of preys belonging to a specific prey type and the 203 

denominator was the total number of prey. Age of parents and probability to recruit next 204 

year were also analysed fitting the GLMMs with a binomial distribution. In age models the 205 

response variable was 0 for yearlings and 1 for adults; and in recruitment models the 206 

response variable was 0 for nestlings non-recruited and 1 for nestlings recruited. Nestling 207 

mass and nestling tarsus length were included as explanatory variables in the models of 208 

recruitment. Because in a fragmented landscape an increase of nest predation in small forest 209 

patches due to edge effects may also drive a worsening in the breeding success (Robinson 210 

et al., 1995; Chalfoun et al., 2002), we also tested the effect of the forest patch size on the 211 

predation rate by the ladder snake in both tit populations. The former analysis was also 212 

carried out fitting a GLMM with a binomial distribution, in which the dependent variable 213 

was 0 for non-predated nests and 1 for predated nests. When the interaction between the 214 

factor ‘Year’ and ‘Patch size’ was significant, the main effects of both factors on the 215 

response variable were not considered (even when P< 005), in a similar way as MacDonald 216 

et al. (2014). From the 329 blue tit nests used in this study, 28 females and 32 males were 217 

duplicated among years; and from the 161 great tit nests used, the number of duplicated 218 

adults was 11 females and 6 males. We performed the analysis with and without these 219 

duplicate adults and found no difference in the results. Thus, we decided to treat each adult 220 

as independent in the analyses, in the same way as Camfield and Martin (2013).    221 

Assumptions of homogeneity, normality and independence were visually verified 222 

plotting the residuals against fixed values, doing a histogram of the residuals and plotting 223 

the residuals against each explanatory variable respectively (Zuur et al., 2009). All models 224 

were firstly constructed with all explanatory terms fitted including interactions, and final 225 
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models were selected following a backward procedure, by progressively eliminating non-226 

significant terms starting with the interactions. Therefore, final models were those that 227 

explained the maximum variance with the least number of explanatory variables. All 228 

analyses were performed in R (R Core Team 2014) with the package lme4 (Bates et al., 229 

2014). For non-parametric distributions Wald chi-square statistic (χ2) is given. Mean ± SE 230 

(n) is given in the results.       231 

 232 

3. Results 233 

3.1. Occupation rate and breeding density 234 

 Nest-box occupation rate was higher in blue tits than in great tits [GLMM: Estimate 235 

± SE= -0.98 ± 0.12, χ2
1, 70= 71.58, P< 0.001. Blue tits= 47.53 % ± 3.24 (41) and great tits= 236 

38.39 % ± 4.19 (35)]. Regarding yearly variation, great tits increased their nest-box 237 

occupation rate in 2012, while years 2011 and 2013 did not differ (GLMM: χ2
2, 30= 36.75, 238 

P< 0.001. See Table 1). In contrast, nest-box occupation rate of blue tits did not change 239 

among years (GLMM: χ2
2, 36= 0.03, P= 0.99. See Table 2). In both species, the nest-box 240 

occupation rate was higher in small patches (Great tits, GLMM: Estimate ± SE= 1.75 ± 241 

0.27, χ2
1, 30= 42.37, P< 0.001; large patches= 13.75 % ± 3.29 (9) and small patches= 46.92 242 

% ± 4.43 (26). Blue tits, GLMM: Estimate ± SE= 0.71 ± 0.27, χ2
1, 38= 6.92, P= 0.008; large 243 

patches= 34.31 % ± 3.36 (9) and small patches= 51.25 % ± 3.80 (32). See Table 1 and 2 244 

respectively).  245 

 Regarding the density of breeding pairs, there was not difference between species 246 

[GLMM: Estimate ± SE= 0.05 ± 0.18, F1, 482= 0.08, P= 0.78. Blue tits= 5.40 % ± 0.14 (329) 247 
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and great tits= 5.52 % ± 0.21 (161)]; and both species increased their breeding density in 248 

2012, whereas the breeding density between the years 2011 and 2013 did not differ (Great 249 

tits, GLMM: F2, 153= 9.97, P< 0.001. Blue tits, GLMM: F2, 322= 32.97, P< 0.001; Table 1 250 

and 2 respectively). Breeding density of great tits was also positively affected by the laying 251 

date (GLMM: Estimate ± SE= 0.03 ± 0.01, F1, 153= 6.87, P= 0.01). As regards the forest 252 

patch size effect, both tit species presented a higher breeding density in large forest patches 253 

than in small ones (Great tits, GLMM: Estimate ± SE= -3.43 ± 0.35, F1, 153= 98.61, P< 254 

0.001; large patches= 6.89 % ± 0.24 (99) and small patches= 3.34 % ± 0.14 (62). Blue tits, 255 

GLMM: Estimate ± SE= -3.30 ± 0.44, F1, 322= 55.71, P< 0.001. Table 1 and 2 respectively). 256 
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Table 1. Summary of the occupation, density, predation, morphometric characteristics of adults and nestlings and reproductive 257 

parameters in a population of great tits (Parus major) breeding in large and small oak forest patches in San Pablo de los Montes 258 

(central Spain). Values given are Mean ± SE (n). Sample sizes vary accordingly to nest failures and missing adults. 259 

Great tits 

 
2011 2012 2013 

 
Large patch Small patch Large patch Small patch Large patch Small patch 

Occupation rate (%) 5.42 ± 2.20 (3) 37.14 ± 6.80 (7) 23.75 ± 6.16 (3) 60.00 ± 8.94 (10) 12.08 ± 1.10 (3) 40.00 ± 3.33 (9) 

Density (No. Pairs x Ha-1) 5.85 ± 0.88 (13) 3.23 ± 0.34 (13) 7.75 ± 0.29 (57) 3.52 ± 0.19 (31) 5.66 ± 0.31 (29) 3.11 ± 0.23 (18) 

Nest predation (%) 0 (13) 0 (13) 42.11 ± 6.59 (57) 16.12 ± 6.72 (31) 17.24 ± 7.13 (29) 5.56 ± 5.56 (18) 

Female age - - 0.41 ± 0.08 (32) 0.52 ± 0.12 (17) 0.77 ± 0.09 (22) 0.57 ± 0.14 (14) 

Male age - - 0.69 ± 0.09 (29) 0.44 ± 0.13 (16) 0.89 ± 0.07 (19) 0.54 ± 0.14 (13) 

Female mass (g) - - 16.18 ± 0.21 (32) 16.66 ± 0.21 (17) 16.94 ± 0.18 (22) 16.84 ± 0.20 (14) 

Male mass (g) - - 17.12 ± 0.19 (29) 17.22 ± 0.25 (16) 17.77 ± 0.14 (19) 17.46 ± 0.22 (13) 

Female tarsus length (mm) - - 19.12 ± 0.10 (32) 19.21 ± 0.09 (17) 19.29 ± 0.13 (22) 19.10 ± 0.13 (14) 

Male tarsus length (mm) - - 19.89 ± 0.11 (29) 19.86 ± 0.15 (16) 20.01 ± 0.16 (19) 19.78 ± 0.11 (13) 

Laying date 16.15 ± 2.87 (13) 13.62 ± 3.25 (13) 27.59 ± 2.00 (57) 23.87 ± 3.01 (31) 22.72 ± 1.32 (29) 21.72 ± 1.45 (18) 

Clutch size 9.46 ± 0.44 (13) 9.62 ± 0.35 (13) 8.84 ± 0.26 (57) 8.19 ± 0.34 (31) 9.62 ± 0.35 (29) 9.11 ± 0.43 (18) 

Hatching success (%) 78.07 ± 5.96 (13) 84.08 ± 7.42 (13) 65.82 ± 4.95 (32) 76.46 ± 6.26 (18) 66.12 ± 7.94 (23) 75.83 ± 6.76 (16) 

Fledgling success (%) 91.88 ± 5.51 (13) 87.71 ± 8.28 (13) 86.67 ± 6.31 (30 86.58 ± 6.63 (17) 96.60 ± 2.29 (18) 77.71 ± 10.50 (15) 

Nestling mass (g) 17.21 ± 0.27 (13) 16.87 ± 0.24 (13) 16.34 ± 0.19 (30) 16.02 ± 0.21 (18) 17.23 ± 0.18 (22) 16.96 ± 0.19 (12) 

Nestling tarsus length (mm) 19.63 ± 0.12 (13) 19.44 ± 0.12 (13) 19.33 ± 0.09 (30) 19.19 ± 0.12 (18) 19.45 ± 0.07 (22) 19.10 ± 0.12 (12) 

Recruitment (%) - - 4.83 ± 1.26 (290) 4.20 ± 1.84 (119) 0.88 ± 0.62 (226) 0 (122) 
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3.2. Parents 260 

 The body condition of blue and great tits decreased in 2012 (GLMM: Estimate ± 261 

SE= 0.49 ± 0.20, F1, 74= 6.12, P= 0.02 and GLMM: Estimate ± SE= 0.51 ± 0.21, F1, 68= 262 

5.97, P= 0.02 for great tit females and males respectively, and GLMM: F2, 255= 4.37, P= 263 

0.01 and GLMM: F2, 211= 8.46, P< 0.001 for blue tit females and males respectively. See 264 

Tables 1 and 2). In 2012, the proportion of yearlings to adults of female great tits increased 265 

(GLMM: Estimate ± SE= 1.09 ± 0.49, χ2
1, 78= 5.09, P= 0.02. Table 1), the same as the 266 

proportion of blue tit male yearlings (GLMM: χ2
1, 227= 8.21, P= 0.02. Table 2). Attending 267 

the forest patch size effect, only males differed between patch size categories, although in a 268 

different way in each species. The proportion of old great tit males was higher in large 269 

patches (GLMM: Estimate ± SE= -1.19 ± 0.52, χ2
1, 69= 5.16, P= 0.02. Table 1), while blue 270 

tit males had a better body condition in small patches (GLMM: Estimate ± SE= 0.29 ± 271 

0.08, F1, 211= 11.91, P< 0.001. Table 2). 272 
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Table 2. Summary of the occupation, density, predation, morphometric characteristics of adults and nestlings and reproductive 273 

parameters in a population of blue tits (Cyanistes caeruleus) breeding in large and small oak forest patches in San Pablo de los Montes 274 

(central Spain). Values given are Mean ± SE (n). Sample sizes vary accordingly to nest failures and missing adults. 275 

Blue tits 

 
2011 2012 2013 

 
Large patch Small patch Large patch Small patch Large patch Small patch 

Occupation rate (%) 32.92 ± 3.97 (3) 56.67 ± 6.89 (12) 34.58 ± 9.02 (3) 52.50 ± 7.50 (8) 35.42 ± 6.05 (3) 45.00 ± 5.57 (12) 

Density (No. Pairs x Ha-1) 5.52 ± 0.26 (79) 2.85 ± 0.21 (34) 7.40 ± 0.24 (83) 2.90 ± 0.21 (21) 5.87 ± 0.20 (85) 2.63 ± 0.22 (27) 

Nest predation (%) 6.32 ± 2.75 (79) 2.94 ± 2.94 (34) 24.09 ± 0.05 (83) 19.05 ± 8.78 (21) 0.12 ± 3.52 (85) 14.81 ± 6.97 (27) 

Female age 0.51 ± 0.06 (73) 0.61 ± 0.09 (31) 0.61 ± 0.07 (57) 0.60 ± 0.13 (15) 0.64 ± 0.05 (73) 0.57 ± 0.11 (23) 

Male age 0.81 ± 0.05 (57) 0.70 ± 0.09 (27) 0.59 ± 0.07 (51) 0.83 ± 0.11 (12) 0.85 ± 0.04 (66) 0.85 ± 0.08 (20) 

Female mass (g) 9.66 ± 0.06 (73) 9.51 ± 0.10 (31) 9.22 ± 0.13 (57) 9.62 ± 0.10 (15) 9.69 ± 0.06 (73) 9.55 ± 0.09 (23) 

Male mass (g) 9.80 ± 0.06 (57) 9.83 ± 0.09 (27) 9.18 ± 0.11 (51) 9.82 ± 0.10 (12) 9.71 ± 0.05 (66) 10.15 ± 0.22 (20) 

Female tarsus length (mm) 15.81 ± 0.06 (73) 15.66 ± 0.11 (31) 15.79 ± 0.06 (57) 16.21 ± 0.16 (15) 15.86 ± 0.05 (73) 16.00 ± 0.11 (23) 

Male tarsus length (mm) 16.29 ± 0.07 (57) 16.23 ± 0.10 (27) 16.30 ± 0.07 (51) 16.34 ± 0.14 (12) 16.32 ± 0.06 (66) 16.30 ± 0.09 (20) 

Laying date 18.63 ± 1.36 (79) 14.59 ± 2.11 (34) 24.82 ± 1.24 (83) 26.95 ± 2.97 (21) 29.13 ± 1.5 (85) 28.44 ± 1.89 (27) 

Clutch size 8.14 ± 0.24 (79) 9.03 ± 0.32 (34) 8.63 ± 0.24 (83) 7.43 ± 0.51 (21) 8.19 ± 0.19 (85) 8.89 ± 0.34 (27) 

Hatching success (%) 82.23 ± 2.34 (73) 74.97 ± 5.05 (33) 69.79 ± 3.84 (62) 75.39 ± 6.30 (13) 79.07 ± 3.35 (72) 85.83 ± 3.47 (22) 

Fledgling success (%) 92.42 ± 3.01 (72) 96.67 ± 3.33 (30) 84.62 ± 4.19 (55) 75.38 ± 10.38 (13) 89.61 ± 2.94 (68) 83.33 ± 7.60 (22) 

Nestling mass (g) 10.10 ± 0.07 (67) 9.85 ± 0.08 (29) 9.34 ± 0.13 (53) 9.36 ± 0.28 (11) 10.24 ± 0.07 (69) 10.03 ± 0.16 (21) 

Nestling tarsus length (mm) 15.90 ± 0.06 (67) 15.82 ± 0.07 (29) 15.67 ± 0.05 (53) 15.75 ± 0.21 (11) 15.88 ± 0.05 (69) 16.03 ± 0.12 (21) 

Recruitment (%) - - 10.18 ± 1.27 (570) 2.61 ± 1.05 (230) 1.97 ± 0.69 (406) 1.41 ± 1.41 (71) 
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3.3. Breeding performance 276 

The greatest differences in the breeding performance of tits were given among years 277 

(Table 3). Blue tit laying date was delayed year after year (Table 2. Tukey HSD test< 0.05), 278 

and their hatching success, nestling condition, nestling size and recruitment decreased in 279 

2012 (Table 2 and 3. Tukey HSD test< 0.05); contrary to nest predation, which increased in 280 

2012 (Table 2 and 3). Great tits showed a similar phenology than blue tits, and their laying 281 

date was also delayed in 2012 and 2013, although there were not differences between these 282 

latter years (Table 1 and 3. Tukey HSD test> 0.05). The clutch size in this species did not 283 

differ among years (Table 3). Rest of the reproductive variables varied among years in a 284 

similar way as blue tits, i.e. decreasing in 2012 (see Table 1. Tukey HSD test< 0.05), 285 

except for the hatching success and nest predation (Table 3).  286 

In both species, the main difference found between forest patch size categories was 287 

at nestling stage. The tarsi of great tit nestlings in large patches was longer than the tarsi of 288 

conspecifics in small patches all years (large patches: 19.43 ± 0.06 (65), small patches: 289 

19.23 ± 0.07 (42). Tables 1 and 3), while the body condition of blue tit nestlings in large 290 

patches was better than conspecifics in small patches (large patches: 9.94 g ± 0.05 (189), 291 

small patches: 9.72 g ± 0.08 (61). Tables 2 and 3). The nestling body condition in both 292 

species was also positively affected by their tarsus length (Table 3). Regarding recruitment, 293 

the probability of a blue tit yearling that was born in the study area to breed the next year, 294 

was higher for those that were born in large patches; whereas in great tits, it was positively 295 

related to their body mass (Table 3). Almost none other trait of breeding performance 296 

differed between patch size categories, although there were some significant interactions 297 
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between year and patch size category in blue tits (Table3). Concretely, the clutch size and 298 

fledgling success differed in 2012, being smaller in small patches (Table 2), in rest of years 299 

these variables did not differ between patch size categories.   300 
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Table 3. Results of the GLMMs showing the effects of year, patch size and laying date on 301 

the breeding performance of blue (Cyanistes caeruleus) and great tits (Parus major) in 302 

Montes de Toledo, central Spain. The ID nest localized in ID forest patch is included in all 303 

models as the random effect. F statistic is used for Laying date, Clutch size and Nestling 304 

condition and size; while χ2 statistic is used for Hatching and Fledgling success, Predation 305 

rate and Recruitment. Statistics of non-significant terms are shown in Table S1. 306 

 
Blue tit 

  
Great tit 

Parameter Effect d.f. test P 
 

Parameter Effect d.f. test P 

Laying date Year 320 32.2 <0.001 
 

Laying date Year 150 8.1 <0.001 

Rejected effects: Patch size and Year * Patch size. 
  

Rejected effects: Patch size and Year * Patch size. 
 

           
Clutch size Laying date 316 164.5 <0.001 

 
Clutch size Laying date 149 13.3 <0.001 

 
Year*Patch size 316 3.3 0.02 

      
Rejected effects: Patch size. 

   
Rejected effects: Year, Patch size and Year * Patch size. 

           
Hatch. success Year 296 6.9 0.03 

 
Hatch. success 

   
Rejected effects: Patch size, Laying date and Year * Patch size. 

 
Rejected effects: All. 

           
Fledg. success Laying date 251 35.2 <0.001 

 
Fledg. success Year 100 11.8 0.003 

 
Year*Patch size 251 13.7 0.003 

      
Rejected effects: Patch size. 

   
Rejected effects: Patch size, Laying date and Year * Patch size. 

           
Nest predation Year 320 15.77 <0.001  Nest predation     

Rejected effects: Patch size, Laying date and Year * Patch size.   Rejected effects: All 

           

Nest. condition Year 224 26.4 <0.001 
 

Nest. condition Year 94 11.5 <0.001 

 
Patch size 224 5.5 0.02 

  
Tarsus length 95 36.1 <0.001 

 
Laying date 224 5.5 <0.001 

      

 
Tarsus length 224 28.6 <0.001 

  
    

Rejected effects: Year * Patch size. 
   

Rejected effects: Patch size, Laying date and Year * Patch size. 

           
Nestling size Year 225 6.9 0.001 

 
Nestling size Year 95 3.5 0.03 

 
Laying date 225 5.3 0.02 

  
Patch size 95 4.9 0.03 

Rejected effects: Patch size and Year * Patch size. 
  

Rejected effects: Laying date and Year * Patch size. 
 

           
Recruitment Year 1274 20.9 <0.001 

 
Recruitment Year 787 6.1 0.01 

 
Patch size 1274 6.3 0.01 

  
Nestling mass 787 5.9 0.02 

Rejected effects: Nestling mass, Tarsus length, Laying date and 

Year * Patch size. 

Rejected effects: Patch size, Tarsus length, Laying date and 

Year * Patch size. 
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3.4. Nestling diet 307 

 Table S2 resumes the nestling diet of each species in each forest patch size category 308 

and year. Regarding the nestling diet of each species, the greatest differences were given 309 

among years. The proportion of caterpillars in blue tit nestling diet increased in 2012 and 310 

2013 in relation to 2011 (Tukey HSD test< 0.05, Table 4), but these increases were 311 

sustained by different caterpillar families in each year. In 2012 the increase in the 312 

proportion of caterpillars delivered by blue tits was above all due to an increase in the 313 

intake of noctuids, while the proportion of tortricids this year decreased (Tukey HSD test< 314 

0.05). This increase in the consumption of noctuids in 2012 was probably the cause of the 315 

increase in the prey size this year (Tukey HSD test <0.05). In 2013 the proportion of 316 

noctuids diminished, but the proportion of tortricids increased with respect to the former 317 

years (Tukey HSD test <0.05, Table 4), resulting in the highest proportion of caterpillar in 318 

nestling diet this year. The proportion of spiders decreased in 2013 (Tukey HSD test 319 

<0.05). In this species, the forest patch size did not affect the nestling diet (Table 4). 320 

However, the proportions of total caterpillars, noctuids, tortricids and prey size were 321 

negatively affected by the date, while proportion of spiders increased with the date; both in 322 

a linear way (Table 4). Feeding rate was only positively affected by the brood size. Finally, 323 

the proportion of noctuids was negatively affected by brood size, whereas the proportion of 324 

tortricids was positively affected (Table 4). Diet diversity (H’) in this species did not vary 325 

between patch sizes or years, but was positively affected by both laying date and brood size 326 

(GLMM: Estimate ± SE: 0.009 ± 0.03, F1, 177= 9.12, P= 0.003 and GLMM: Estimate ± SE: 327 

0.04 ± 0.01, F1, 177= 6.26, P= 0.01). 328 
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Table 4. Results of the GLMMs analyzing the effects of the year, patch size, laying date and brood size on blue tit nestlings diet 329 

(Cyanistes caeruleus) in Montes de Toledo, central Spain. The ID nest nested in ID forest patch is included in all models as the random 330 

term. Wald chi-square (χ2) statistic is given with non-parametric distributions. Significant results are highlighted in bold. 331 

332 
Response variable Explanatory term Estimate ± SE test P Response variable Explanatory term Estimate ± SE test P 

Feeding rate Intercept 8.44 ± 3.04 
 

Tortricidae Intercept -2.00 ± 0.32 
 

 
Year 

 
F2, 175= 1.84 0.16 

 
Year 

 
χ2

 2, 176= 37.57 <0.001 

 
Patch  size -4.02 ± 2.47 F1, 176= 2.64 0.13 

 
Patch  size 0.08 ± 0.20 χ2

 1, 175= 0.17 0.68 

 
Laying date -0.08 ± 0.09 F1, 174= 0.74 0.40 

 
laying date -0.01 ± 0.005 χ2

 1, 176= 5.13 0.02 

 
Brood size 2.50 ± 0.39 F1, 177= 40.31 <0.001 

 
Brood size 0.08 ± 0.03 χ2

 1, 176= 5.52 0.02 

 
Year*Patch  size 

 
F2, 172= 0.09 0.92 

 
Year*Patch  size 

 
χ2

 2, 173= 4.24 0.12 

Caterpillars Intercept 1.48 ± 0.13 
 

Aranea Intercept -1.93 ± 0.10 
  

 
Year 

 
χ2

 2, 177= 11.32 0.003 
 

Year 
 

χ2
 2, 177= 24.33 <0.001 

 
Patch  size -0.11 ± 0.16 χ2

 1, 176= 0.50 0.48 
 

Patch  size -0.07 ± 0.10 χ2
 1, 175= 0.40 0.52 

 
laying date -0.03 ± 0.004 χ2

 1, 177= 38.87 <0.001 
 

laying date 0.009 ± 0.004 χ2
 1, 177= 5.21 0.02 

 
Brood size -0.007 ± 0.03 χ2

 1, 175= 0.08 0.78 
 

Brood size -0.03 ± 0.004 χ2
 1, 176= 1.67 0.20 

 
Year*Patch  size 

 
χ2

2, 173= 3.02 0.22 
 

Year*Patch  size 
 

χ2
 2, 173= 4.22 0.12 

Noctuidae Intercept 0.51 ± 0.23 
 

Prey size Intercept 1.99 ± 0.08 
 

 
Year 

 
χ2

 2, 176= 16.38 <0.001 
 

Year 
 

F2, 176= 18.30 <0.001 

 
Patch size -0.09 ± 0.17 χ2

 1, 175= 0.32 0.57 
 

Patch  size -0.008 ± 0.08 F1, 175= 0.01 0.92 

 
laying date -0.02 ± 0.004 χ2

 1, 176= 12.48 <0.001 
 

laying date -0.007 ± 0.003 F1, 176= 4.52 0.04 

 
Brood size -0.05 ± 0.02 χ2

 1, 176= 4.35 0.03 
 

Brood size -0.002 ± 0.02 F1, 172= 0.02 0.89 

 
Year*Patch  size 

 
χ2

 2, 173= 0.36 0.84 
 

Year*Patch  size 
 

F2, 173= 2.56 0.08 
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Attending great tit nestling diet, they showed a similar yearly pattern than blue tits. 333 

The proportion of caterpillars increased in 2012 and 2013, although it did not differ 334 

between the latter years (Tukey HSD test> 0.05); in the same way as the proportion of 335 

noctuids (Table 5). The proportion of spiders also diminished in 2013 in this species 336 

(Tukey HSD test< 0.05). Opposite to blue tits, proportion of tortricids and prey size were 337 

not affected by any explanatory variable (Table 5). In this species, the forest patch size did 338 

affect the nestling diet. Concretely, the proportions of caterpillars and noctuids were higher 339 

in large patches (Table 5 and S2). These two prey types were also negatively affected by 340 

the date. As in blue tits, feeding rate was positively affected by the brood size, but no prey 341 

type was (Table 5). Diet diversity (H’) in this species was only affected by the patch size, 342 

being higher in large patches (GLMM: Estimate ± SE: 0.32 ± 0.15, F1, 56= 4.37, P= 0.04).  343 

 344 

 345 

 346 

 347 

 348 
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Table 5. Results of the GLMMs analyzing the effects of the year, patch size, laying date and brood size on great tit nestlings diet 349 

(Parus major) in Montes de Toledo, central Spain. The ID nest nested in ID forest patch is included in all models as the random term. 350 

Wald chi-square (χ2) statistic is given with non-parametric distributions. Significant results are highlighted in bold. 351 

Response variable Explanatory term Estimate ± SE test P Response variable Explanatory term Estimate ± SE test P 

Feeding rate Intercept 8.40 ± 3.68 
 

Tortricidae Intercept -2.45 ± 0.19 
 

 
Year 

 
F 2, 49= 0.09 0.91 

 
Year 

 
χ2

 2, 53= 0.97 0.61 

 
Patch size -0.83 ± 5.78 F 1, 49= 0.03 0.87 

 
Patch size -0.32 ± 0.33 χ2

 1, 55= 0.96 0.32 

 
laying date -0.09 ± 0.09 F 1, 54= 1.07 0.30 

 
laying date -0.02 ± 0.01 χ2

 1, 54= 1.63 0.20 

 
Brood size 1.02 ± 0.45 F 1, 55= 5.15 0.03 

 
Brood size -0.01 ± 0.07 χ2

 1, 52= 0.03 0.87 

 
Year*Patch size 

 
F5, 49= 2.71 0.06 

 
Year*Patch size 

 
χ2

 2, 50= 2.00 0.37 

Caterpillars Intercept 2.28 ± 0.52 
 

Aranea Intercept -2.34 ± 0.34 
  

 
Year 

 
χ2

 2, 53= 20.80 <0.001 
 

Year  χ2
 2, 55= 13.10 0.001 

 
Patch size -1.01 ± 0.41 χ2

 1, 53= 5.93 0.01 
 

Patch size 0.14 ± 0.43 χ2
 1, 53= 0.10 0.75 

 
laying date -0.05 ± 0.001 χ2

 1, 53= 10.17 0.001 
 

laying date 0.001 ± 0.02 χ2
 1, 52= 0.005 0.95 

 
Brood size -0.01 ± 0.08 χ2

 1, 52= 0.02 0.89 
 

Brood size -0.03 ± 0.10 χ2
 1, 54= 0.13 0.72 

 
Year*Patch size 

 
χ2

2, 50= 0.95 0.62 
 

Year*Patch size 
 

χ2
 2, 50= 0.51 0.77 

Noctuidae Intercept 0.93 ± 0.41 
 

Prey size Intercept 2.15 ± 0.08 
  

 
Year 

 
χ2

 2, 51= 21.93 <0.001 
 

Year 
 

F2, 54= 1.65 0.21 

 
Patch size -0.60 ± 0.31 χ2

 1, 51= 4.34 0.03 
 

Patch size 0.05 ± 0.15 F1, 51= 0.11 0.75 

 
laying date -0.04 ± 0.01 χ2

 1, 51= 8.82 0.002 
 

laying date -0.007 ± 0.01 F1, 53= 1.71 0.20 

 
Brood size 0.02 ± 0.06 χ2

 1, 50= 0.09 0.76 
 

Brood size -0.02 ± 0.03 F1, 52= 0.83 0.37 

 
Year*Patch size 

 
χ2

 2, 48= 2.17 0.34 
 

Year*Patch size 
 

F2, 49= 0.85 0.44 

 352 
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4. Discussion 353 

 The nest-box occupation rate was higher in small forest patches for both species in 354 

all years, probably because the lower availability of nest-boxes in such forest patches 355 

limited the nest choice of tits (Barrientos et al., 2015). However, contrary to nest-box 356 

occupation rate, the density of tit breeding pairs around each territory was higher in large 357 

forest patches. This forest patch size effect on the breeding density was possibly due to the 358 

greater availability of nest-boxes in the large forest patches. Breeding density is an 359 

important trait that negatively influences the breeding performance and recruitment of birds 360 

because of the competition over resources (Both, 1988; Both et al., 1999). However, the 361 

nestling growth was better and the blue tit recruitment was higher in large patches, despite 362 

the higher breeding density in those patches; which reinforces the idea that large forest 363 

patches offer better conditions for breeding tits than small patches .    364 

As we said before, patch size affected nestling growth in both species (Table 3). 365 

Great tit nestlings in large patches were bigger than those from small patches, which 366 

suggest that nestling growing conditions were better in large patches. Worse feeding 367 

conditions in small patches may be behind the former result, as food is the main limiting 368 

factor of nestling growth (Van Noordwijk et al., 1988). In fact, the analysis of great tit 369 

nestling diet revealed key differences between patch size categories (Table 5). Great tits 370 

delivered more caterpillars to theirs broods in large patches, in particular noctuids (Table 371 

S2), which are the preferred prey of this species in the study area (García-Navas et al., 372 

2013). The possibility to feed with a higher proportion of their preferred prey in large 373 

patches may not go unnoticed for great tits, and males may compete to settle there, as the 374 
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age pattern suggests. This difference in the average age of great tits between large and 375 

small patches has been also shown in other studies with this species (Moller, 1991; 376 

Riddington and Gosler, 1995) and other species (Burke and Nol, 1998); and is related to the 377 

acquisition of a territory (Riddington and Gosler, 1995). In this species, the patch size did 378 

not affect their recruitment; although it was positively affected by the nestling mass; as 379 

other previous studies have shown (Tinbergen and Boerlijst, 1990; Verhulst et al., 1997). 380 

Nonetheless, from all great tit fledglings that achieved to breed in the next year, 82% were 381 

born in large patches (data not shown for brevity); and the 78% of them bred again in large 382 

patches, versus the 50% of the nestlings that were born in small patches.  383 

Blue tit nestlings did not differ in body size between patch size categories (Table 3); 384 

which suggests that blue tit nestlings did not have the limitations in their development that 385 

the great tit nestlings seem to suffer in small patches. The reason of this dissimilarity in the 386 

results could rely in the different feeding habits of both species. Blue and great tits, 387 

although they share a similar trophic ecology predating above all on Lepidoptera 388 

caterpillars (Perrins, 1991), differ in the global amount of caterpillars in their diet and the 389 

composition of them. Great tits are more specialists on caterpillars, being highly selective 390 

for larger ones (Naef-Daenzer et al., 2001); which in our study area are chiefly noctuids. 391 

Blue tits additionally, feed abundantly on tortricids and also incorporate a great amount of 392 

spiders in their diet (García-Navas et al., 2013). The particular feeding behaviour of each 393 

species was also highlighted when an increase in the parental effort was given. Both species 394 

increased their feeding rate with large broods, but in a different way. Blue tits faced this 395 

burden on parental effort through a change in the composition of their diet. This is partly 396 

shown with the reduction in the proportion of caterpillar as broods become larger and also 397 
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with the increase in diet diversity (Table 4). An example of this switch in blue tit diet 398 

according to the degree of parental effort, is what happens with the two most abundant 399 

caterpillar families in our study area, noctuids and tortricids. The first ones, despite they are 400 

a high quality prey, are scarce and more difficult to find. In contrast, tortricids are smaller 401 

but their higher abundance, gregarious behaviour and leaf-roller habits make them easy to 402 

find (Naef-Daenzer and Keller, 1999; García-Navas et al., 2013). With small broods, blue 403 

tits feed their nestlings with a high proportion of noctuids but, as the broods become larger, 404 

they start incorporating a higher proportion of tortricids at the expense of noctuids. This 405 

change in the composition of the diet allows them to increase their feeding rate (Table 4). 406 

This switch in blue tit diet accordingly to the degree of parental effort was experimentally 407 

demonstrated by García-Navas and Sanz (2010). Great tits with larger broods did feed more 408 

frequently but they did not change their nestling’s diet composition (Table 5).  409 

This wider trophic niche of blue tits (Matthysen et al., 2011), may allow them to 410 

face more efficiently the food limitation conditions in small forest patches, and to better 411 

satisfy the energetic demands of their broods in such patches. Indeed, their diet diversity 412 

did not change between patch size categories; which means that they in general find their 413 

food requisites in both patch size categories. This was not the case of great tits, which 414 

increased their diet diversity in small patches, probably because they are not able to achieve 415 

their preferred diet in those patches and are forced to shift to secondary low-quality preys. 416 

Although the elementary feeding requisites of blue tits may be satisfied in small patches, 417 

this does not mean that little differences in composition, even at species level (García-418 

Navas et al., 2013 and references there-in), influence the body condition of their nestlings 419 

due to differences in food quality, as food is the main limiting factor in nestling body 420 
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condition (Naef-Daenzer and Keller, 1999; Kaliński et al., 2014). In fact, for blue tit 421 

nestlings was better to be born in large patches, because the probability to breed next year 422 

was higher in those patches (Table 3). In the same way as great tits, the 81% of the blue tit 423 

yearlings that achieved to breed were born in large patches, and the 97% of them did it in 424 

large patches. Surprisingly, blue tit males were heavier in small patches; which a priori 425 

goes against expectation. However, Riddington and Gosler (1995) found a similar result 426 

with great tit males breeding in good and poor habitats. The former authors discussed that 427 

in poor habitats, due to the scarcity of food, birds increase their fat reserves to face this 428 

uncertainty (McNamara and Houston, 1990; Higginson et al., 2012). This could be 429 

happening in our study area, although we could not confirm this, as we did not measured 430 

the fat score levels (Gosler, 1997). The forest patch size effect on nestling characteristics 431 

found in this study contrasts with the results obtained by Nour et al., (1998), where they did 432 

not find differences in the breeding success, diet or caterpillar abundances among a gradient 433 

of forest patch size categories. In our study area, although both patch size categories present 434 

a similar habitat structure, the small patches support a greater influx of people and the 435 

passage of cattle; which could have contributed for the worse breeding performance of tits 436 

in those forest patches due to annoyances. 437 

Besides food supply, nest predation has been seen an important feature driving the 438 

worse breeding success of forest birds in small forest patches (Robinson et al., 1995; 439 

Chalfoun et al., 2002; Batáry et al., 2014). Nonetheless in this study, the forest patch size 440 

did not affect the predation rate of nests, probably because we protected the nest-boxes 441 

against most predator species; leading the ladder snake as the main predator in our study 442 

area. The snake was present in all forest patches, making the predation rate homogeneous in 443 
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the whole study area. The increase of the predation rate in 2012 could be related with the 444 

increase of the breeding density this year, favouring an increase in the encounter rate of the 445 

snakes with occupied nest-boxes.  446 

Other feature that strongly marked this study was the yearly variation, probably 447 

because of the different environmental conditions in each year; which had a large influence 448 

on the abundance of caterpillars as temperature is the primary factor influencing their 449 

phenology (Visser and Holleman, 2001). In year 2012, the budding of the oaks was 450 

extremely delayed (some patches did not bud until mid-May, J. Bueno-Enciso pers. obs.). 451 

This probably caused caterpillars hatched before this date to starve, as they only can 452 

survive a few days without food (Durant et al., 2007). As a consequence, the abundance of 453 

caterpillars this year likely decreased in comparison with the others; which probably 454 

accounted for the decrease in the body condition and breeding performance of birds in 455 

2012, due to the ‘reproductive stress’ hypothesis (Nagy et al., 2007; Neto and Gosler, 456 

2010). This variation in the breeding performance among years is well documented in bird 457 

population studies (Perrins, 1965, Lack, 1966). Tits also delayed their laying date in each 458 

year, probably in an attempt to synchronize the period of maximum food demand of their 459 

chicks with the peak of food (Van Noordwijk et al., 1995), a feature that enhances their 460 

reproductive success (Visser et al., 2006; Cresswell and McCleery, 2003; Matthysen et al., 461 

2011). Blue tits, but not great tits, had a smaller clutch size and a worse breeding success in 462 

small patches in 2012. This result may suggest that for some species, the effects of habitat 463 

fragmentation only arise in certain years under particular conditions, such as a food 464 

shortage; as other authors have pointed out (Riddington and Gosler, 1995; Nour et al., 465 

1998). In 2012, the proportion of yearlings to adults of blue tit males and great tit females 466 
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increased. This increase in the proportion of yearlings in 2012 was probably due to the 467 

effect of increasing the number of nest sites the former year, joined with the good 468 

environmental conditions prevailing in 2011; which allowed a higher recruitment rate in 469 

2012 (Newton, 1994; Robles et al., 2012). Blue tit nestling diet varied among years 470 

probably in consonance with the prey availability in each year, because of their more 471 

flexible feeding behaviour (Matthysen et al., 2011). This was not the case of great tits, 472 

which actively selected noctuids, the consumption of which increased each year (Table 3). 473 

Consumption of spiders decreased in 2013 in both species, probably due to a sudden 474 

decline of this type of prey in the forest this year (Tables 4 and 5). 475 

4.1. Conclusions 476 

 This study suggests that food supply in small forest patches could be hampering the 477 

growing conditions of tits in such forest patches, and consequently, their recruitment rate. 478 

However, the observational nature of this study does not allow firm conclusions to be 479 

drawn, and experiments of cross-fostering between large and small forest patches would be 480 

necessary to confirm the factors involved in the reduced breeding performance of tits in 481 

small forest patches.    482 
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