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Abstract 

 

The first stages of the transformation process of hides into leather (beamhouse process) 

generate an important waste in the tanning industry, since a considerable fraction of 

solubilised proteins ends up in waste water with the corresponding increase in 

contamination parameters, especially when the process is carried out without hair 

recovery (hair-pulping process). The objective of this work was the valorisation of this 

waste (the separated protein fraction) which conveniently hydrolyzed to amino acid 

level constituted the starting material for the production of biodegradable surfactants. 

The lipoamino acid surfactants were obtained by acylation of the amino acids from the 

protein hydrolisate. These surfactants were characterized and their physico-chemical 

and biological properties evaluated. They exhibit very low cmc values (about 40 mg/L). 

These surfactants are readily biodegradable and present an aquatic toxicity significantly 

lower than many common commercial surfactants derived whether from renewable or 

petrochemical feedstock. The mixtures of surfactants obtained are able to form oil/water 

emulsions that remain stable for at least one year. The results obtained in this work 

confirmed that it is possible the production of biodegradable and efficient lipoamino 

acid surfactant mixtures from the protein fraction present in beamhouse process 

wastewaters. This study constitutes a promising approach for the reduction of the 

pollution load from industrial tannery wastes and its valorisation as raw material for the 

production of surfactants with excellent environmental properties and good technical 

properties.  
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1. Introduction 

 

Any industrial activity generates wastes to a greater o lesser extent and the 

growing demands of environmental respect in the production processes force companies 

to reuse the most of their wastes. Besides the respect for the environment, the reuse of 

wastes is of great importance and interest also from an economical point of view since 

the lower the amount of wastes generated, the lower the management cost in specialized 

plants. Moreover, the reuse of wastes can represent a sustainable solution to the lack of 

raw material to be used for the production of energy, fuel and chemicals than can be 

integrated again in the industry. The production of high added value materials as bio-

products, nanomaterials and bio-polymers starting from wastes underlines, even more, 

the interest for their reutilization [1-5].
 

The leather industry generates a considerable amount of wastes. However, the 

studies dealing with its potential valorization are scarce [6,7]. According to Sykes and 

Corning [8], each tonne of raw hide yields 200 kg of finished leather, 50 m
3
 of 

contaminated wastewater and the rest are solid wastes. Therefore, only 20% is 

transformed into useful material. According to Aloy [9], the main pollution load is 

produced in the beamhouse operation (stages before tanning process): 83% of BOD5 

(five-day biochemical oxygen demand), 73% of COD (chemical oxygen demand) and 

76% of toxicity. In another study, Portavella [10], states that for every 100 kg of dry 

raw sheepskin from Catalonia, 15 kg of solubilised proteins that are more or less 

structured (keratins, albumins, globulins, glycoproteins, etc) and that contain nearly 

18% nitrogen will end up in waste water following beamhouse operations.  Portavella 

[11] found that 70% of COD from the beamhouse operations is due to the skins 

themselves and that only 30% comes from added chemical products. Although the 

values of the parameters may vary as a function of the type of raw material treated, 

there is no doubt that the beamhouse operations produced most contamination, much of 

which is due to the solubilised components (proteins) of hides or skins. Therefore, 

separation of the dissolved protein fraction represent not only a way to significantly 

reduce the contamination of beamhouse wastewaters [12], with the economic savings 

this entails, but also provides a residue, the separated protein fraction, which 

conveniently hydrolyzed to amino acid level, could be used as the raw material for the 

production of surfactants. Protein hydrolysates from different sources have been used 

with the same aim [13, 14]. Other possible applications of the separated protein fraction 



from the beamhouse tannery process could be the production of liquid leaf fertilizer, 

solid fertilizer for soils or retanning agents for tannery. However, these possible 

applications will be the subject of future works. 
 

The use of this liquid waste of the leather industry as starting material for the 

production of surfactants is of great interest for several reasons: i) to reduce water 

pollution load,  ii) to reduce the cost of waste disposal and  iii) to provide an appropriate 

source of renewable raw materials not derived from petrochemical feedstocks. 

Amino acids are a very interesting raw material for the chemical preparation of 

environmentally friendly surfactants [15]. Twenty different α-amino acids are 

commonly present in proteins. Amino acid based surfactants are biodegradable and 

biocompatible compounds that can be prepared using natural compounds as fatty acids 

and amino acids as starting material [16,17]. Also, several commercial firms offer the 

possibility of finding amino acid surfactants on the market (series Amilite® from 

Ajinomoto; series Aminofoam™ from Croda; series Perlastan® from Schill&Seilacher, 

series Lamepon® from Basf; N
α
-Lauroyl ethyl ester (LAE) from Lamirsa S.A [18], etc).  

One interesting strategy to reduce the tannery industrial pollution load as well as 

to obtain environmentally friendly compounds is to synthesize surfactants using the 

amino acids obtained by acid hydrolysis of the protein fraction recovered from the 

wastewater of soaking, unhairing-liming and conditioning operations of a hair-pulping 

(with hair destruction) beamhouse process. In the present work lipoamino acid 

surfactant mixtures using as raw material the protein fraction were obtained and their 

physico-chemical and biological properties were investigated. This study constitutes a 

promising approach to the reduction of the pollution load of industrial wastes and its 

possible reutilisation as starting material for surfactant production. 

 

2. Experimental  

 

2.1 Materials 

Dodecanoyl chloride, decanoyl chloride, dodecanoic acid, decanoic acid, pyreno, 

and squalane were purchase from Fluka. L-lysine, L-serine, L-proline, L-glutamic acid, 

glycine, L-leucine, L-arginine and sodium dodecyl sulfate were purchase from Sigma. 

Acetonitrile was purchase from Fisher Chemical. Acetone, n-hexane and ethanol 

absolute were purchase from Panreac. Trifluoroacetic acid, n- decane and hydrochloric 

acid were purchase from Merck. Sodium hydroxide was purchase from Carlo Erba. 



2.2 Methods 

2.2.1 Preparation of the amino acid mixture from the protein fraction.  

The protein fraction used in this work as starting material was obtained by acid 

precipitation (adding 2 M sulphuric acid solution up to the isoelectric point) [19] of the 

effluents of the unhairing-liming process and subsequent washings in a hair-pulping 

beamhouse process of hides. This protein fraction was subjected to a degreasing process 

with dichloromethane during 5 hours and subsequently hydrolyzed with 6 N HCl during 

24 hours. The amino acid mixture was quantitatively determined in accordance with the 

AccQ-Tag Waters method [20] with previous derivatization with 6-AQC. A Waters 600 

model with a 2487 UV detector was used for HPLC analyses. 

 

2.2.2 Synthesis of surfactants from the amino acid mixture  

Surfactants were obtained by the introduction of a fatty acid residue, as an acid 

chloride, to the amino acids obtained from the protein hydrolisate in a strong alkaline 

aqueous medium. The mixture of amino acids obtained was dissolved in acetone/water 

(34/66) and NaOH was added until a pH of 10. This solution was filtered to remove the 

insoluble residue present in the medium. The residue was analyzed by thin-layer 

chromatography in order to check the absence of amino acids. Next, dodecanoyl 

chloride or decanoyl chloride were added dropwise maintaining the pH at 10 with 

NaOH. After adding the acid chloride, the reaction mixture was kept at -10 ºC for 3 

hours. The progress of the reaction was checked by HPLC. Solvent was eliminated 

using a rotary evaporator and the sample was freeze-dried. Acylation reactions were 

carried out for different amino acid/acid chloride molar ratios. In some cases, salt 

formed in the reaction was removed with dry ethanol and subsequent filtration. In other 

cases, this purification process was not carried out (see Table 2).  

 

2.2.3 Synthesis of pure N
α
-acyl amino acid surfactants  

A series of standard N
α
–acyl amino acid surfactants was prepared for the 

characterization of the surfactants synthesized in this work. The standard surfactants 

were prepared with those amino acids that were present at the highest percentage in the 

starting protein fraction (glycine, leucine, proline, arginine, glutamic acid, lysine and 

serine). Dodecanoyl chloride was selected as the acylating agent. The reaction was 

carried out under the above mentioned conditions. 0.5 g of pure amino acid were taken 

and the reaction was carried out at the 1:1 ratio. Once obtained, the surfactants were 



purified by repetitive washings with n-hexane. For identification purposes, the purified 

standard surfactants prepared for each amino acid were added one by one to the final 

product of the acylation reaction. HPLC calibration curves were prepared for every pure 

N
α
–acyl amino acid surfactant and then, the concentration of the major components in 

the mixture was calculated. 

 

2.2.4 High Performance Liquid Chromatography (HPLC)  

To check the progress of the acylation reaction and for identification purposes, 

HPLC analyses were performed on a VWR- Hitachi ELITE LaChrom system which 

consisted of an injection valve fitted with a 20 µl loop, and pump L-2200 and a UV-Vis 

detector L-2400 at 215 nm wavelength. A Lichrocart 250- 4, lichrospher 100 CN (5μm) 

column was used at room temperature. The flow-rate through the HPLC column was 1.0 

ml/min. Elution was performed in a gradient system of water/acetonitrile. Eluent A was 

0.1% (v/v) trifluoroacetic (TFA) in water, and eluent B was 0.085% TFA in 

water/acetonitrile 1:4. The initial composition A/B of the gradient was 75/25 (v/v), 

changing over 24 min to a final composition of 5/95. 

 

2.2.5 Surface tension measurements  

The critical micelle concentrations (cmc) of the obtained surfactant mixtures 

were determined by surface tension measurements. Surface tension measurements were 

carried out at 25 ºC in accordance with the Wilhelmy plate method [21] using a K12 

Krüss tensiometer. A stock solution of 1 mg/ml in water (pH = 6) was prepared from 

which different solutions were obtained for cmc determination. The cmc of decanoic 

and dodecanoic acids were also determined for the sake of comparison. 

 

2.2.6 Spectrofluorimetry  

Fluorescence measurements were carried out with a Shidmadzu RF 540 

spectrofluorometer. The fluorescence emission spectra of pyrene dissolved in surfactant 

aqueous solutions were recorded from 340 to 450 nm after excitation at 332 nm. Pyrene 

exhibits fine structure in 370–400 nm regions of the steady-state fluorescence emission 

spectra. The nature and the intensity are extremely dependent on the polarity of the 

environment. The ratio of the first to the third vibronic peaks, i.e., I1/I3, shows the 

greatest solvent dependency, and can be used to obtain the cmc of the surfactant 

solutions [21]. A pyrene aqueous solution of 10
-6

 M (pH = 6) was used. The different 



surfactant concentrations were prepared with this pyrene aqueous solution. All 

measurements were carried out at 25 ºC. 

 

2.2.7 Qualitative phase behaviour  

Optical microscopy was used to study the qualitative phase behaviour of binary 

water/L-3 and water/C-2 systems as a function of temperature. Optical observations 

were performed according to the “flooding” (penetration) method of Lawrence [22]. A 

polarising microscope Reichert Polyvar® 2 Leica equipped with a hot stage was 

employed. A videocamera and a PC with Leica IM 500 software were used for the 

image capture. In the flooding experiment, water was allowed to diffuse into anhydrous 

surfactants placed between a slide and a cover slip. After a short time, gradients in 

composition were produced and different separated mesophases developed around the 

crystalline surfactant [23]. 

 

2.2.8 Foaming properties: foaming capacity (FC) and foaming stability (FS)  

Foaming properties were measured using a modified Padmashree’s method [24-26].
 

Different amounts of surfactants (10, 20 and 30 mg) were mixed with 2 ml of distilled 

water (pH = 6) at 25 ºC in a graduated test tube. Purified and unpurified (with salts) 

surfactant samples were tested. Sodium dodecyl sulfate was used as control. Given its 

higher foaming capacity a lower amount (3 and 4 mg) was taken for the test. Solutions 

were continuously shaken by hand during 1 min. After 30 s shaking, the volume was 

measured. The foaming capacity (FC) was expressed as the percentage of volume 

according to the following formula:  

 

FC= ((Volume after stirring – Volume before stirring) /Volume before stirring)) *100            (1) 

 

The foam volume was recorded at 5, 30, 60, 120 and 180 min after shaking. 

Foaming stability (FS) was calculated using the following formula: 

 

FS= (Foam volume after a time “t” / Initial foam volume) *100            (2) 

 

2.2.9 Emulsifying capacity  

To check the emulsifying capacity of the surfactant mixtures, they were 

dissolved in water and then oil was added, thus favouring the formation of Oil in Water 



(O/W) emulsions. Emulsions were prepared by adding dropwise 1 g of oil (decane or 

squalane) to aqueous solutions containing 10 or 20 mg of surfactant at 25 ºC. The 

volume of water was 0.2, 0.4 or 1 ml. During the addition of the oil, the samples were 

stirred with a Heidolph Reax 2000. When the addition of the oil was finished, the 

samples were left to stand.  

 

2.2.10 Biodegradability assessment  

The biodegradability of the surfactants under aerobic conditions was evaluated 

according to the ISO-14593 CO2 headspace test [27]. This method allows the evaluation 

of the ultimate aerobic biodegradation (mineralization to carbon dioxide) of an organic 

compound in aqueous medium by measuring the increase in total inorganic carbon over 

time with respect to a blank without the addition of the test substance. The surfactants 

were tested at a concentration of 20 mg C/L. Samples were inoculated with activated 

sludge (10 mg dry solids/L) collected from a municipal wastewater treatment plant 

(Manresa, Barcelona) and then incubated in the dark at 22 ± 1 ºC in 250 mL sealed 

vessels (air headspace/liquid volume ratio, 1:2). Sodium n-dodecyl sulphate was used as 

reference substance. Three replicates of the surfactants, blank and reference substance 

were measured for each sampling day. The test ran for 28 days. Each sampling day, 

after injecting a sodium hydroxide solution to the vessels, shaking for 1 h and allowing 

settling, appropriate volumes were withdrawn by syringe from the liquid phase of each 

vessel and kept in small beakers carefully filled to the brim and covered with a cap to 

prevent CO2 exchange with the air. The concentration of inorganic carbon was 

determined in a carbon analyzer (Shimadzu TOC-5050). The biodegradation level was 

expressed as a percentage of the theoretical amount of inorganic carbon based on the 

initial amount of the test compound. 

 

2.2.11 Aquatic toxicity assessment 

The aquatic toxicity determination of the obtained surfactants was carried out in 

accordance with the Daphnia magna method where the swimming incapability is the 

end point [28]. The pH of the medium was 8.0 and the total water hardness was 250 

mg/L (expressed as CaCO3), with a Ca/Mg ratio of 4/1. Tests were performed in the 

dark at 20 ºC. Twenty daphnia, divided into four batches of five animals each, were 

used at each test concentration. The concentration range was first established in a 

preliminary test and 10 concentrations in a geometric series were tested for each 



surfactant. The percentage immobility at 48 h was plotted against concentration on a 

logarithmic-probability scale and a linear relationship was obtained. The Probit method 

was employed as statistical procedure to determine the IC50 (the estimated concentration 

to immobilise 50% of the daphnia after 48 h exposure) and the corresponding 95% 

confidence interval (CI). 

3. Results and discussion 

 

3.1 Amino acid composition of the protein fraction  

The amino acid composition obtained after the hydrolysis of the protein fraction 

separated by acid precipitation from the effluents of the unhairing-liming operation in a 

hair-pulping beamhouse process of hides is shown in Table 1. Amino acid percentages 

were determined in accordance with the AccQ-Tag method [20]. As observed, the major 

amino acids in the protein fraction were: glutamic acid + glutamine (14.12%), serine 

(9.46%), arginine (9.00%) and proline (7.08%). Notice that the fraction of neutral amino 

acids was the most abundant (64.21%) in the protein fraction.  

            

3.2 Synthesis of lipoamino acid surfactant mixtures 

The main purpose of this work was the exploration of novel and advanced routes 

for the valorisation of a waste from the leather industry. The chemical procedure used to 

prepare surfactants from the mixture of amino acids was easy and very efficient. It 

consisted of the N-acylation of the amino groups of the amino acids with two different 

acid chlorides, decanoyl chloride and dodecanoyl chloride. This is a traditional synthetic 

method in which the reaction is carried out in a mixture of water/acetone, no organic 

waste is generated and it is not necessary to increase the temperature. 

The N-acylation reaction was carried out with different amino acid/acid chloride 

ratios (Table 2). A pondered molecular weight was calculated for the amino acid 

mixtures taking into account the amino acids and their percentages. Using the 1/0.5 

amino acid/acid chloride ratio it was observed that part of the amino acids remained 

without reacting (Figure 1 B). When the percentage of acid chloride was increased up to 

a 1/0.75 ratio all the amino acids present in the mixture reacted (Figure 1 C). Because of 

that, the proportion of acid chloride was not further increased and the ratio 1/1 was not 

used. This behaviour indicates that the amino acid mixture also contained some salts 

from the hydrolysis process.  



It is important to emphasize that for each amino acid/ acid chloride molar ratio 

three replicates were performed and the chromatograms obtained presented always the 

same profile. Chromatograms for lipoamino acid surfactants with C12 alkyl chains are 

similar to those for lipoamino acid mixtures containing C10 alkyl chains being the 

retention time the only difference. Because of the enhanced hydrophobicity of the 

compounds with C12 alkyl chains regarding compounds containing C10 alkyl chains, 

the HPLC of the mixture obtained with dodecanoyl chloride contained peaks with 

retention times higher than those obtained with decanoyl chloride.  

The retention times of the surfactants obtained ranged from 9 to 22 minutes. 

Given that different amino acids were present in the starting material (Table 1), the 

obtained mixture contained surfactants with different retention times. The retention time 

of the surfactant depends on the hydrophobicity of the amino acids that form the polar 

head. In the case of basic amino acids with two amino groups, such as lysine or 

arginine, it is possible to obtain amphiphilic molecules with two alkyl chains. It is also 

possible that the acyl chloride reacts in some cases with the hydroxyl group present on 

serine and threonine. Because of that, peaks of the HPLC chromatograms at high 

retention times (>18 minutes) are expected to correspond to the surfactants containing 

two alkyl chains. 

The mixtures of lipoamino acid surfactants were not further purified because the 

aim of the work was to obtain surfactants with easy and clean technologies. The 

isolation of pure surfactants from these heterogeneous mixtures would require different 

purification methods with the use of huge quantities of solvents. The only additional 

process carried out in this study after surfactant synthesis was the removal of some 

inorganic salts. The acylation reaction produces salts, most of them can be removed 

with dry ethanol and subsequent filtration. With this objective, the sample was 

dissolved in dried ethanol and filtered through a 0.22 µm porous membranes. As 

expected, the chromatographic peaks of the surfactant mixtures after removing salts 

were sharper than those corresponding to the lipoamino acid surfactants containing 

salts. 

 

3.3 Critical micelle concentration of the surfactant mixtures 

In the lipoamino acid surfactant mixtures, the alkyl chain is linked to the amino 

group of the amino acid through an amide bond. It means that the polar groups of the 

surfactant mixture contain a carboxylic group that can be neutral or negatively charged. 



Therefore, these surfactants can behave as nonionic or anionic depending on the pH.  

The micellization process of these surfactant mixtures was determined by tensiometry 

and spectrofluorimetry.  

Values of surface tension and fluorescence as a function of the surfactant 

concentration are plotted for: i) different amount of acid chloride in the acylation 

reaction (Figure 2), ii) different length of the hydrocarbon chain (Figure 3) and iii) 

presence or absence of salts in the surfactant mixture (Figure 4).  

Table 2 shows the cmc values for the lipoamino acid surfactant mixtures 

obtained from the graphs plotted in Figures 2, 3 and 4. Given that surfactant mixtures 

might contain dodecanoic and decanoic acids from the surfactants synthesis, the cmc 

values of these compounds were also determined by surface tension. Due to its low 

solubility in water, the cmc values of the fatty acids were determined at pH 12. The 

values obtained were 18.9 g/L for dodecanoic acid and 21.1 g/L for decanoic acid. 

In general, the cmc values of the different surfactant mixtures determined by 

surface tension are in good agreement with those obtained from fluorescence 

measurements. 

Compared to conventional anionic or cationic surfactants with similar alkyl 

chain length these surfactants mixtures have very exceptionally low cmc values [29]. 

These low cmc values can be due to the presence of double chain surfactants. It has 

been reported that the cmc of cationic surfactants based on quaternary ammonium polar 

heads with two hydrophobic chains of twelve carbon atoms is 0.04 g/L [30]. On the 

other hand, the presence of non-ionic surfactants could also contribute to these cmc 

values. Notice that the mono acyl lysine and N-acyl arginine derivatives are amphoteric 

surfactants given that they have one negative charge in the carboxylic group and one 

positive charge in the amino or guanidine group. It means that at the pH corresponding 

at the isoelectric point, these surfactants behave as non-ionic. Non-ionic surfactants with 

similar hydrophobic groups also have low cmc values, around 0.1x10
-4

 M [29]. 

Regarding the effect of the amount of acid chloride in the N-acylation reaction, 

the cmc values increased when the ratio amino acid/acid chloride ratios varies from 

1/0.5 to 1/0.75 (Figure 2) .These results suggest that the ratio 1/0.5 is not enough to 

convert all the amino acids of the starting protein hydrolisate in their corresponding 

lipoamino acid derivatives. For this reason the acylation reaction should be carried out 

at 1/0.75 ratio for which the reaction of all the amino acids was confirmed (Figure 1C). 

With regard to the effect of the length of the hydrocarbon chain of the fatty acid 



chloride on the cmc values of the surfactant mixtures obtained, that the cmc values for 

the reaction with dodecanoyl chloride were lower than those obtained with decanoyl 

chloride (Figure 3). As expected, surfactants with longer alkyl chains gave rise to lower 

cmc values due to their superior hydrophobicity. This behaviour is analogous to that 

described for different surfactant families [29,31,32].
 
Finally, analysing the effect of salt 

removal, Table 2 shows that the cmc values decreased in surfactant mixtures without 

salts (Figure 4). It can be attributed to the fact that these mixtures were purified which 

resulted in an increased total surfactant content. 

It is worth to underline that the extremely low cmc values of the surfactant 

mixtures indicated that these surfactants form molecular aggregates at very low 

concentrations. For example, the sodium salt of dodecanoic and decanoic acids form 

micelles at concentrations two order of magnitude higher than the studied mixtures.  

Two additional parameters were also determined from the surface tension plots: 

surface tension at the cmc (γcmc) and the concentration necessary to reduce by 20 mN/m 

the surface tension of pure solvent (C20). These parameters are given in Table 3.                 

The effectiveness of these mixtures (γcmc) is similar to those reported for surfactants 

with comparable hydrophobic groups [29]. However, the C20 is significantly low. This 

means that these lipoamino acid mixtures are efficient in reducing the surface tension of 

water.   

From these results, it can be stated that it is possible to obtain mixtures that 

present excellent surface properties using a tannery waste as starting material. These 

mixtures reduce the surface tension of water and form micelle aggregates at very low 

concentrations. 

  

3.4 Qualitative phase behaviour. Liquid crystals 

Conventional surfactants aggregate in solution to form micelles because of the 

hydrophobic effect. At high concentration, micelles become ordered forming lyotropic 

liquid crystals. Liquid crystals formation can stabilise the emulsions. By accumulating 

at the interface, liquid crystals form a high-viscosity region. Surfactants tend to form 

compact films at interfaces when concentrations are lower than those for which liquid 

crystals form [21].  
 

Liquid crystal formation for the binary systems L-3/water and C-2/water was 

determined by visual observation of the samples through crossed polarised microscopy. 

Qualitative phase behaviour studies by applying the flooding method revealed that 



formation of lamellar liquid crystals took place for both samples.  As expected, it was 

necessary more concentration and higher temperature to obtain lamellar liquid crystal 

structures when the hydrophobicity of the sample decreased. The L-3 surfactant mixture 

formed lamellar structures at room temperature (22ºC) (Figure 5A). This structure was 

stable up to a temperature of 60ºC when the liquid crystal began to melt (Figure 5B). 

Figure 6 shows the formation of lamellar liquid crystals and shapes of Malta cross for 

the C-2 surfactant mixture. This structure was clearly observed when the sample was 

heated at 60º C (Figure 6A) and remained stable until 70 ºC when the liquid crystal 

began to melt (Figure 6B). The presence of lamellar structures in these systems indicate 

the high hydrophobicity of the mixtures and this agree with their low cmc values. 

Usually, N
α
-lauroyl arginine surfactants form hexagonal and cubic structures. The 

formation of lamellar crystal liquids requires longer alkyl chains (14-16 C atoms) or the 

presence of two alkyl chains (gemini or diacyl glycerol arginine surfactants) [23]. 

 

3.5 Foaming properties  

Surfactants can be also used as foaming agents because of their capacity to 

absorb at the air/water interface. In this work, a modified Padmashree’s method [24-26]
 

was applied to evaluate the foaming properties. Sodium dodecyl sulphate (SDS) was 

used as reference foaming substance. Since C10-acylated mixtures provided unstable 

foams, foaming properties were evaluated only for C12-acylated mixtures (L-2 and L-

3).  

In general, the cmc of a surfactant is a good parameter for estimating its 

efficiency as foaming agent. The lower the cmc the more efficient the surfactant as 

foaming agent [29], consequently, the foaming capacity enhances by increasing the 

length of the hydrophobic group of the surfactant. This trend has been also confirmed 

for surfactant mixtures obtained from acylated peptides. Foaming properties of 

surfactants prepared from peptides obtained by the enzymatic hydrolysis of rapeseed 

were found to be better for C12- than for C10-acylated derivatives [33]. Similarly, for 

anionic surfactants obtained from pea protein, the best foaming capacity was also 

reported for the C12-acylated mixture [34]. 

The foam capacity and the foam stability of these samples were determined as a 

function of the surfactant concentration. The initial maximum foam height was 

measured after extensive shaking of the vials. The foaming capacity values are shown in 

Table 4. As expected, foam capacity increased with increasing surfactant concentration 



for both L-2 and L-3 surfactant mixtures as well as for the SDS. It was observed that L-

3 system showed better foaming efficacy than L-2 surfactant mixture. It could be 

attributed to the higher surfactant content in L-3 with respect to L-2 surfactant mixture 

due to the salt removal treatment applied to the former ones. It should be taking into 

account that the presence of salt inhibits the foam formation. As compared to the 

reference substance, the foaming efficacy of these surfactant mixtures was lower than 

that of SDS. Although foaming behaviour is very complex, this difference could be 

partially ascribed to the presence of double chain surfactants. It has been reported that 

double chain amphiphiles form large aggregates in aqueous solutions resulting in lower 

foaming capacity [25]. 

Stability is another important parameter when studying foaming properties. 

Foams are thermodynamically unstable systems. Their stability and their fracture 

depend on a series of complex phenomena that begin with the hydrodynamic drainage 

of the liquid, the dilution of the aqueous film and the coalescence of bubbles [24, 35].
  

Figure 7 shows the change in foam volume (v) as a function of time (t) for aqueous 

solutions of L-2, L-3 and SDS. In general, very stable foams were obtained for all the 

samples. After 180 minutes, the foaming stability was higher than 80% for all the 

systems. 

 

3.6 Emulsifying capacity 

Emulsions are colloidal dispersions of two immiscible liquid phases that consist 

of droplets of one liquid dispersed in another liquid (continuous phase). Emulsions are 

used in many fields (cosmetics, foods, medicines, remediation, etc) and surfactants are 

widely used as emulsifier’s molecules. There are two different types of emulsions: oil-

in-water (continuous phase water) and water-in-oil (continuous phase oil). 

Given the interest of non-toxic and biodegradable surfactants in industrial applications, 

we studied the efficiency of the synthesized surfactants mixtures in forming emulsions.  

The emulsifying capacity was evaluated using decane and squalane as oil phases. The 

composition of the systems investigated is given in Table 5.  

The visual appearance of the emulsions after one hour and one year is shown in 

Figure 8.  

It was observed that the surfactant mixtures formed readily emulsions after 

vigorous shaking and these emulsions were stable for a long time (the emulsion 

remained stable after one year). In this study, the surfactant was first dissolved in water 



and then oil was added, thus favouring the formation of O/W emulsions [36]. 

Differences in the refractive index between dispersed and continuous media confirmed 

that O/W dispersions were formed. These surfactants are water soluble and form 

micelles and liquid crystals in water solutions that can favour the formation O/W 

dispersions. A refinement of Brancroft’s rule states that the preferred type of emulsion 

will be that in which self-aggregation of surfactant takes place [36]. It has been reported 

that single chain amino acid based surfactants from arginine also stabilize O/W 

emulsions [37]. On the other hand, dialkyl arginine based surfactants can form both 

O/W and W/O emulsions. This ability is ascribed to the very low solubility of these 

surfactants in water and oil as well as to their ability to form vesicles [23]. 

Emulsions containing decane were more stable than those containing squalane 

(Figure 8). The solubility of surfactants in no polar phases decreases with increasing 

molecular weight and alkyl chain length of the oils [38]. Hence, the stability of the 

dispersions decreases by reducing the affinity of the surfactant to the oil phase. 

Moreover, it is well known that short-chain oils, such as decane, have a more 

pronounced tendency of penetration into the hydrophilic/lipophilic interface of the 

surfactant [39,40]. For surfactant mixtures with alkyl chains of 10 carbon atoms (C-1 

surfactant mixtures), the emulsion with the lowest water content (E2) exhibited the 

highest stability. Emulsions prepared with L-2 and L-3 surfactant mixtures (alkyl chains 

of 12 carbon atoms) were more stable with respect to coalescence. It is outstanding that, 

in fact, no phase separation was detected in E6 and E8 emulsions after one year. Since 

these surfactants have longer hydrophobic chains, they exhibit greater ability of 

aggregation at low concentration. Because of this, their emulsification ability is 

enhanced with respect to C-1 surfactant mixtures. It was also observed that the stability 

improved by increasing the percentage of water. Moreover, the removal of salts in the 

surfactant mixture (L-3) did not change the appearance or stability (see Figure 8, E6 and 

E8 emulsions). 

The capacity to stabilize O/W emulsions for a very long time could render these 

surfactant mixtures appropriate for their use as green emulsifiers in different industrial 

applications. 

 

3.7 Biodegradation 

The biodegradability of a compound expresses the ability for microorganisms to 

degrade a molecule or a mixture of molecules. It is a data of great importance because it 



is related to the persistence of a compound in the environment. According to REACH 

(Registration, Evaluation and Authorization of Chemicals) legislation, new chemicals 

have to pass ultimate biodegradation test in order to be marketed. Therefore, we have 

investigated the biodegradability of the surfactant mixtures obtained as well as the 

influence of the hydrophobic tail length. Biodegradation curves are plotted in Figure 9.   

Biodegradation curves show that both surfactants mixtures were easy and quickly 

mineralized by the aerobic microorganisms in the first week of the testing period. No 

significant differences in terms of biodegradability were observed between C12 and 

C10 amino acid based surfactants. It can be observed that both amino acid based 

surfactant mixtures passed the threshold of the biodegradation test (60%) and therefore 

can be classified as readily biodegradable. 

 

3.8 Aquatic toxicity 

Acute toxicity tests on freshwater crustacea (Daphnia magna) were carried out 

to assess the aquatic toxicity of the surfactant mixtures obtained.  The results of the 

Daphnia magna immobilisation test
 
[28] for C-2 and L-2 surfactant mixtures are given in 

Table 6. 

The estimated concentration required to immobilise 50% of the crustacea 

population after 48 hours of exposure ranged from 69 to 245 mg/L. Data on Table 6 

indicate that the toxicity to daphnia increased when increasing the alkyl chain length 

attached to the amino acid polar head. Thus, C-2 surfactant mixture with hydrophobic 

tails of 10 carbon atoms exhibited a significantly lower toxicity than L-2 surfactant 

mixture with C12 hydrophobic tails. 

Table 7 shows the ecotoxicity hazard classification category of the surfactant 

mixtures synthesized on the basis of the EC50 values obtained from the short-term 

crustacea test in accordance with the OECD (2001) [41] and the US fish and Wildlife 

services (1994)
 
[42]. As shown in this table, these surfactant mixtures ranged from 

practically non toxic to slightly toxic as a function of the alkyl chain length. On the 

other hand, these amino acid based surfactant mixtures are less toxic to aquatic 

organisms than common anionic [43,44],
 
cationic [45] and non-ionic surfactants [46,47] 

derived from petrochemical feedstocks.
 

 

 

 



4.  Conclusions  

Lipoamino acid surfactant mixtures were obtained by acylation of the amino 

acids obtained from the acid hydrolysis of the protein fraction present in the waste 

waters of the tannery beamhouse processes. The surfactant mixtures from this type of 

waste show very low cmc values indicating that these surfactants form aggregates at 

very low concentrations. Moreover, they are very efficient in reducing the surface 

tension of water. The mixtures obtained form lamellar liquid crystal structure and very 

stable O/W emulsions and foams. In addition, these surfactants are readily 

biodegradable and result to be non-toxic or only slightly toxic to the aquatic 

environment. Consequently, bearing in mind their physical-chemical and environmental 

properties the surfactant mixtures could be used as green solubilizers, green emulsifiers 

or foaming agents in different industrial applications. Our results confirm that it is 

possible the valorisation of a waste of the tanning industry that entails the reduction of 

the pollution load from this sector. This approach also contributes to save fossil 

resources such as crude oil and natural gas. 
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Fig. 1. HPLC chromatogram corresponding to the initial mixture of amino acids (A), lipoamino 

acid mixture L-1 (B) and lipoamino acid mixture L-2 (C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10

20

30

40

50

60

70

80

S
u
rf

a
c
e

 t
e
n

s
io

n
 (

m
N

/m
)

Concentration (g/L)
0,01 0,1 1

 

 

1E-3 0,01 0,1 1

1,0

1,2

1,4

1,6

I 1
 /
 I
3

Concentration (g/L)

 

 

 

 

 

 

 
Fig. 2. Influence of the amount of acid chloride in the acylation reaction on the cmc in water 

(pH 6) at 25ºC of the L-1(▲) and L-2 (■) lipoamino acid surfactant mixtures (A: Surface 

tension; B: Fluorescence). 
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Fig. 3. Influence of the length of the hydrocarbon chain on the cmc in water (pH 6) at 25ºC of 

the L-2 (■) and C-2 (●) lipoamino acid surfactant mixtures (A: Surface tension; B: 

Fluorescence). 
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Fig. 4. Influence of the salt removal on the cmc in water (pH 6) at 25ºC of the L-2 (■) and L-3 

(▲) lipoamino acid surfactant mixtures (A: Surface tension; B: Fluorescence). 
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Fig. 5. Polarised microscopy of lamellar liquid crystals using the Lawrence method for the L-

3/water system. (A at 22ºC and B at 60ºC) 

 



 
  

 

 

 

 

Fig. 6. Polarised microscopy of lamellar liquid crystals using the Lawrence method for the C-

2/water system. (A at 60ºC and B at 70ºC) 
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Fig. 7. Foaming stability of aqueous solutions at 25ºC: L-2 at 5 mg/mL (♦); L-2 at 10 mg/mL 

(■); L-2 at 15 mg/mL (▲); L-3 at 10 mg/mL (x); L-3 at 15 mg/mL (x) and SDS at 1.5 mg/mL 

(●) 



 

 

 

 

 

 

 

 

 

 

 

 

 

                    

 

 
 

 
Fig. 8. Visual appearance of the emulsions investigated (see Table 5). Photographs A and C 

taken after 1 hour of preparation and photographs B, D, E and F taken after 1 year of 

preparation. 

E5 E7 E6 E8 

E1 
E1 E2 

E2 E3 
E3 

E4 
E4 

A B C D 

E F 



 

 

 

 

 

 
Fig. 9. Aerobic  biodegradation curves of the lipoamino acid surfactant mixtures at a 

concentration of 20 mg C/L:  C-2 (◆) and L-2 (■); reference substance: SDS (●)  

 

 



 
Table 1. Amino acid composition of the protein fraction 

              

Acid amino acids Basic amino acids Neutral amino acids 

 % ,w/w  %,w/w  %,w/w 

Asp+Asn 7.07 ± 0.06 Lys 3.86 ± 0.10 Ser 9.46 ± 1.00 

Glu+Gln 14.12 ±0.67 Arg 9.00 ± 0.22 Gly 5.45 ± 0.54 

  His 1.73 ± 0.32 Thr 5.60 ± 0.10 

    Ala 4.43 ± 0.30 

    Pro 7.08 ± 0.22 

    Cys 5.92 ± 0.29 

    Tyr 4.84 ± 0.45 

    Val 5.75 ± 0.05 

    Met 0.85 ± 0.02 

    Ile 3.84 ± 0.07 

    Leu 7.83 ± 0.29 

    Phe 3.17 ± 0.08 

 Σ = 21.29%  Σ = 14,60%  Σ =  64,21% 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2.  Abbreviations used to name the obtained surfactant mixtures, N-acylation reaction conditions 

and  critical micellar concentration (cmc) values of the lipoamino acid surfactant mixtures obtained by 

surface tension and fluorescence measurements 

 

 

 

Lipoamino acid 

surfactant mixture 

abbreviations 

Alkyl chain 

Amino acid/acid 

chloride molar 

ratio 

Salt 

Removal 

cmc  

(surface tension)  

(g/L) 

cmc 

(fluorescence)  

(g/L) 

L-1 C12 1/0.5 No 0.13
 

0.08
 

L-2 C12 1/0.75 No 0.09
 

0,06
 

L-3 C12 1/0.75 Yes 0.03
 

0.04
 

 C-1 C10 1/0.5 No 0.24
 

0.24
 

C-2 C10 1/0.75 No 0.12
 

0.15
 

 

 



 

Table 3. Critical micellar concentration (cmc), surface tension at the cmc (γcmc) and the 

concentration necessary to reduce by 20 mN/m the surface tension of water (C20). Values 

of lipoamino acid surfactant mixtures obtained by surface tension measurements in water at 

25ºC. 

 
Surfactant 

mixture 
 cmc (g/l) γ cmc (mN/m) C 20 (g/l) 

L-1 0.135
 

28.4 0.038 

L-2 0.094
 

29.2 0.015 

L-3 0.034
 

28.1 0.004 

C-1 0.24
 

28.3 0.022 

C-2 0.12
 

32.8 0.021 

 

 

 

 



 
Table 4. Foaming capacity (%) of L-2, L-3 and SDS in water at at 25ºC. 

 

Surfactant mixture 
Concentration 

(mg / ml) 
pH 

Foaming Capacity 

(%) 

L-2 5 7 275 

L-2  10 7 300 

L-2  15 7 325 

L-3 10 7 325 

L-3 15 7 475 

SDS 1,5 7 300 

SDS 2 7 400 

 

 

 

 



 

 

Table 5.  Composition of the emulsions investigated 

 

Emulsion 

Surfactant Mixture Water content 

(ml) 

Oil 

Name Content (mg) Type Content (g) 

E1 C-1 20 1 Decane 1 

E2 C-1 10 0.4 Decane 1 

E3 C-1 10 1 Squalane 1 

E4 C-2                  10 1 Squalane 1 

E5 L-2 10 0.2 Decane 1 

E6 L-2 10 0.4 Decane 1 

E7 L-3 10 0.2 Decane 1 

E8 L-3 10 0.4 Decane 1 

 

 

 



 

 

Table 6. Acute toxicity of lipoamino acid surfactant mixtures on Daphnia magna 

after a 48 h exposure time expressed as the EC50 value and its corresponding 95% 

confidence interval (95 % CI). 

 

Surfactant mixture EC50  

(mg/L) 

95% CI 

(mg/L) 

C-2 245  196-326 

L-2 69  43-99 

 

 

 

 



 

 

Table 7.  Ecotoxicity hazard classification of the surfactant mixture on the basis of the EC50 

values of the Daphnia magna test 

 

Surfactant 

mixture 

Acute toxicity 

EC50 

US fish and Wildlife 

services 

OECD 

C-2
 

>100 mg/L Practically non toxic 
 

--- 

L-2
 

 
10-100 mg/L 

 

Slightly toxic 

 

Acute Toxicity III 

(harmful to aquatic life) 

 

 

 

 

 

 


