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Abstract  

 

This paper reports the results of a study focused on the production of ceramic tiles from 

ilmenite mud (MUD), a waste generated by the industry devoted to the TiO2 pigment 

production. Ceramic tiles were produced from mixtures of a commercial red stoneware mixture 

(RSM) with different concentrations of mud (3, 5, 7, 10, 30 and 50 wt.%). The samples were 

sintered to simulate a fast-firing process. The sintering behaviour of the fired samples was 

evaluated according to ISO methodologies by linear shrinkage, water absorption and porosity 

measurements. Both green powder and fired samples were characterised by means of X-ray 

diffraction (XRD), differential scanning calorimetry (DSC/TG), field emission scanning 

electron microscopy (FESEM) and bending strength measurements. Moreover, since this 

activity is a NORM (Naturally Occurring Radioactive Material) industry, the radionuclides 

activity concentrations were measured by both gamma and alpha spectrometry techniques. 

Finally, the TCLP leaching test (Toxicity Characteristic Leaching Procedure, USEPA) was 

performed to assess the risks of the use of undissolved mud tiles from an environmental 

perspective. The results obtained demonstrated that ilmenite mud can be successfully 

valorisated in the manufacture of red stoneware ceramic bodies, with even better technological 

properties than commercial ones. The addition of mud as additive (from 3% to 10%) had a 

beneficial effect to the sintering processes, improving the bending strength (up to 15%) and 

reducing both apparent porosity and water absorption (up to 50%). 
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1. Introduction  

Because of the depletion of natural resources, increasing greenhouse emissions and 

awareness of the need for sustainable development in terms of safe reuse of wastes, the 

transformation of these wastes into valuable materials (i.e. valorisation) is emerging as a strong 

trend. In this context and taking into account the growing awareness of the need for protection 

of health and environment, the recovery of wastes currently generated in most industrial 

processes is the subject of a thorough investigation [1], [2] and [3]. The valorisation of wastes 

as secondary raw materials in the manufacture of construction materials could allay the 

problems associated with both the depletion of natural resources and the disposal of industrial 

wastes [4], [5], [6] and [7]. In this context the protection of health and environment is of great 

importance, although the economic benefits accruing from waste recycling must not be 

ignored [8] and [9]. 

This work is mainly focused on the recovery of waste generated by the titanium dioxide 

pigment industries. TiO2 production begins with the mixing of ilmenite (Fe2TiO3) with highly 

concentrated sulphuric acid (80–95%) [10]. The liquor generated goes to a clarification tank 

where the un-attacked solid – ilmenite mud (MUD) – is allowed to settle. Then this mud is 

separated from the liquor by a process of decantation and filtration, and finally stored in a safety 

area. The magnitude of this generated waste is around 30,000 tons per year, which until now 

have not had any use, and therefore it is disposed of in an authorised waste repository [11]. 

Moreover, the content of natural radionuclides is high in relation to a typical soil (about 100 

times higher), and so it is classified as a NORM (Naturally Occurring Radioactive Material) 

industry, which presents enhanced levels of radionuclides from the natural uranium and thorium 

series. 

This waste has been classified by the competent authorities as “hazardous waste”, according 

the European legislation (Commission Decision 2000/532/EC as amended three times by the 

Commission Decisions 2001/118/EC, 2001/119/EC and 2001/573/EC). Therefore now this is 

stored in a controlled landfill repository, which implies a cost of about three million euros for its 

final elimination (including transportation costs). Therefore, if this waste could be valorised a 

significant improving in the competitiveness of this industry will be produced. 

In this context, a correct environmental solution to the disposal of a wide range of solid 

wastes could be their incorporation into ceramics [12] and [13]. The prospective benefits of 

using ilmenite mud as an additive in tile manufacture include immobilising some heavy metals 

and radionuclides in the final matrix, oxidising organic matter and destroying any pathogens 
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during the firing process, as well as reducing frost damage, based on the results of several full- 

or bench-scale studies [14], [15] and [16]. In addition, there is no costs in incorporating this  

waste like additive in ceramics production, depending the saving on the fraction of waste added 

to each tile and the costs of the transportation of the waste from into the ceramic plant. 

Therefore, as average we think that no additional costs will be involved in the use of this waste 

for ceramic manufacturing. 

Taking into account the mud’s composition [16], [17] and [18], it is essential to study 

whether the presence of this residue modifies the mechanical properties of the new ceramic tile 

through a physico-chemical analysis (elemental, mineralogical and morphological) of the wastes 

and raw materials used in the generation of the tile tested. In addition, it is essential to check its 

environmental impact in relation to the potential problem of leaching of metals and 

radionuclides included in the ceramic matrix. 

Taking in consideration the previously established problem, the main objective of this work 

was to analyse the option of producing ceramic tiles with different ilmenite mud waste 

proportions and compare it with a standard commercial ceramic, studying its technological 

properties and the environmental implications. 

2. Materials and methods 

2.1. Materials and sample preparation 

The ilmenite mud was previously dried in an oven at 110 °C for at least 48 h until constant 

weight, and then grounded and sieved to a particle size >160 μm. As it will be discussed further, 

the ilmenite mud is characterised by a high content of iron oxide (Fe2O3 = 10%). For that 

reason, its valorisation in ceramic tile has been achieved through its incorporation into a 

composition of red stoneware, which is made from natural clays with high iron oxide content 

(Fe2O3 > 7%). Several mixtures with red stoneware (RSM [code sample 100/0]; supplied by 

Tierra Atomizada, S.A.) and different concentrations of ilmenite mud (3%, 5%, 7%, 10%, 30% 

and 50%, code samples 97/3, 95/5, 93/7, 90/10, 70/30 and 50/50 respectively) were prepared. 

The mixtures moistened by spraying with distilled water (6 wt.%) and then shaped by uniaxial 

pressing (Nannetti S hydraulic press) at 40 MPa in a steel die, to obtain tiles measuring 

50 × 50 × 5 mm. These tiles were fired in an electric furnace at 1150 °C for eight minutes 

following the fast-firing process recommended by the red stoneware supplier (Fig. 1). 
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Fig. 1. Heating cycle used for the fast-firing of ceramic tiles 

2.2. Characterisation techniques 

The identification of the mineral phases was performed by the XRD technique (X-ray 

diffraction) which applied the method of dust lost in a Bruker diffractometer (model D8 

Advance), using Cu Kα radiation excited by a current of 30 mA and a voltage of 40 kV. Data 

were recorded in the 5–70° 2θ range (step size 0.019736° and 0.5 s counting time for each step). 

The measurement of major elements and trace elements was performed by ICP-MS 

(Inductively Coupled Plasma Mass Spectrometry), using an HP branded computer model 

HP4500® and by ICP-OES (Inductively Coupled Plasma Optical Emissions Spectrometer) 

using a Jobin Yvon ULTIMA 2. Both systems were previously calibrated with the appropriate 

standards. 

The microstructure of tiles was examined by field emission scanning electron microscopy 

(FESEM) (HITACHI model S-4800) operating at 20 kV. SEM specimens were polished with 6, 

3 and 1 μm diamond pastes after grinding with silicon carbide paper and water and subsequently 

Au–Pd coated in a Balzers SCD 050 sputter. 

The thermal behaviour of the raw materials (ilmenite mud and RSM) and all the mixtures 

were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis 

(TGA) (SETARAM model Labsys) on powder samples (size particle = 80–100 μm). DSC/TGA 

scans were performed between 25 °C and 1450 °C at 50 °C/min in flowing air, platinum 

crucibles and calcined Al2O3 as reference material. The DSC/TG curves were normalised 

regarding the sample weight. 
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2.3. Technological characterisation 

The sintering behaviour of tiles was evaluated on the basis of water absorption, apparent 

porosity and bulk density. The water absorption was measured according to EN ISO 10545-

3 [19] for ten representative specimens. The water absorption coefficient, E (dry wt.%), was 

calculated by the equation: 

E=[( m 2 - m 1 ) / m 1 ]×100                                                                              (1) 

where m2 (g) is the mass of wet specimen and m1 (g) is the mass of dry specimen. 

The apparent porosity and the bulk density were measured according to ASTM C373-88[20], 

which involves drying the test specimens to constant mass (D). The test was carried out on ten 

representative specimens. After impregnation, the mass (S) of each specimen while suspended 

in water and their saturated mass (M) was determined. The apparent porosity, P (%), expresses 

the relationship of the volume of open pores with the exterior volume of the specimen and is 

calculated as follows: 

P=[(M-D)/ (ρ ·V)]×100                                                                         (2) 

where V (cm
3
) is the exterior volume (V = M − S) and ρ is the density of the water 1 g cm

−3
. 

The bulk density, B (g cm
−3

), of a specimen is the quotient of its dry mass divided by the 

exterior volume, including pores: 

B=D/V                                                                                               (3) 

Linear shrinkage, LS (%), was calculated by the equation: 

 LS=( L i -Lf )×100/ L i                                                                               (4) 

where Li (mm) is the specimen length without firing and Lf (mm) is the specimen length after 

firing. 

Bending strength, BS (MPa), was measured according to EN 843-1 [20] in an electronic 

universal tester (Servosis model ME-402/01) on ten test specimens for each sintered 

temperature by a three-point loading test with a span of 32 mm and a crosshead speed of 

1 mm/min. 

2.4. Radioactive characterisation of materials and mixtures obtained 

The activity concentrations of radionuclides in the ilmenite mud were measured by high-

resolution low-background gamma spectrometry with high-purity germanium detectors (HPGe).  
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In addition, the concentrations of both Th-, U-isotopes and 
210

Po were determined by the 

alpha spectrometry technique with ion-implanted Si detectors (PIPS detectors) [21]. 

On the other hand, the radon potential (Ω) is defined as the 
222

Rn concentration generated 

inside the material from the 
226

Ra contained inside it that can be transported through its pores, 

and it is calculated by multiplying the 
226

Ra concentration (Bq kg
−1

) for the radon emanation 

factor (ε). The method for measuring Ω is described in López-Coto et al. [22], which is 

determined from the growth curves of radon inside a closed chamber it is possible to calculate 

the exhalation rate of the block and, under specific experimental conditions, the radon potential 

of the tested material. 

2.5. Pollutant mobility tests 

To assess the risks of the use of a waste, from an environmental perspective, the TCLP 

leaching test (Toxicity Characteristic Leaching Procedure, U.S. EPA) was carried out [23]. The 

pollutant concentrations in the leaching dissolutions obtained from the mobility tests were 

analysed by ICP-OES and ICP-MS. In addition, the concentrations of different radionuclides 

contained in the leaching dissolutions were analysed by both alpha and gamma spectrometry 

techniques. 

3. Results and discussion 

3.1. Physico-chemical characterisation 

3.1.1. Mineralogy 

In previous works [24], the ilmenite mud has shown to be composed by several major 

mineral species such as ilmenite (FeTiO3), rutile (TiO2) and anatase (TiO2), and containing other 

minor mineral phases: zircon (ZrSiO4), quartz (SiO2) and Fe and Ti oxides (Fe3Ti3O10). On the 

other hand, the RSM showed as main mineral phases kaolinite (Al2Si2O5(OH)4) and illite 

(KAl2Si4O10(OH)2), with traces of quartz (SiO2), anorthite (CaAl2Si2O8), rutile (TiO2) and 

hematite (Fe2O3) [25] and [26]. 

In Fig. 2 can be observed that, after the firing process, the peaks associated with clay 

minerals (kaolinite and illite) disappear because of the destruction of the crystalline structure at 

450–900 °C. Finally, at 1000 °C the feldspars (anorthite) undergo melting and form liquid 

phases [27]. In our case the potassium oxide released by illite favoured the agglomeration of the 

particles [28]. The minerals detected, included ilmenite, rutile and anorthite, increased in the 

ilmenite mud concentration, whereas the peaks of quartz decreased in the ceramic body (Fig. 2).  
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Ilmenite mud has an important content of iron and titanium oxides, which are known as 

nucleating agents that promote the crystallisation of mineral phases like the anorthite [29]. 

 

 

 

Fig. 2. XRD patterns of fired tiles. [1]: quartz (SiO2); [2]: rutile (TiO2); [3]: ilmenite (FeTiO3); [4]: 

anorthite (CaAl2Si2O8) and [5]: Ti and Fe oxides (Fe3Ti3O10). 

 

3.1.2. Chemical analysis 

Ilmenite mud shows a high content of TiO2 (56 wt.%), SiO2 (18 wt.%), Fe2O3 (10 wt.%) and 

Al2O3 (5.1 wt.%) (Table 1) as expected [11]. Moreover we found 2.96 wt.% of SO3, predictable 

because the ilmenite mud is produced by sulphuric acid digestion. It is also observed a high 

concentration in other elements as Zr (2.3 wt.% of ZrO), according to the mineralogical 

composition. 

 

Table 1. Concentrations of majority (wt.%) and trace (mg kg
−1

) elements in the raw materials used in the manufacturing process of the tiles. 

 

RSM/MUD Major Elements Trace Elements 

  Al2O3 CaO Fe2O3 K2O MgO Na2O SO3 SiO2 TiO2 ZrO2 As Ba Cr Mn Pb Sr Zn 

MUDa 5.12 1.11 10.37 1.29 1.33 1.02 2.60 18.43 56.43 2.30 <3 480 901 1910 282 130 177 

0/100 

(MUDb) 5.95 1.54 10.32 1.27 1.38 1.05 0.05 18.23 57.73 2.47 13 785 500 2030 281 135 183 

RSMa 19.94 2.10 7.39 4.20 1.73 0.58 0.06 62.00 1.67 0.32 10 568 69 338 39 108 268 

100/0 (RSMb) 21.30 2.09 9.04 4.25 1.76 0.61 0.06 58.88 1.67 0.32 9 601 71 447 58 116 279 

90/10 20.73 1.98 9.66 4.12 2.73 0.70 0.06 52.94 6.62 0.47 <3 594 129 575 68 113 268 

50/50 13.78 1.68 10.30 2.94 1.66 0.93 0.15 39.01 28.22 1.34 <3 737 319 1300 182 129 234 

a Before firing process. 

                b After firing process. 
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The RSM analysis reported SiO2 (62 wt.%), Al2O3 (20 wt.%), Fe2O3 (7.4 wt.%), K2O 

(4.2 wt.%) and CaO (2.1 wt.%). The trace elements (As, Ba, Cr, Mn, Pb, Sr and Zn) were 

present at concentrations below 0.1%. Comparing the raw materials before and after firing, we 

found that most values were practically identical, with the exception of sulphur in mud samples, 

whose concentration decreased from 2.60% to 0.05% because of volatilisation during the firing 

process, fact expected since S could be released during the firing as sulphur oxide (SOx). 

If for a specific element is supposed a conservative behaviour during the firing, its 

concentration (C) in the final mixture (manufactured by the 1 and 2 components), will be given 

by the equation C = (C1 − C2)·x + C2, where C1 and C2 are the concentrations of the element in 

the respective components. Therefore, if these concentrations have been experimentally 

measured, a very good linear fitting has to be found between “C” and proportion (X) of a 

specific component of the mixture. In general, very high determination coefficients (R
2
 > 0.99), 

were obtained for the majority of the elements analysed, validating internally the measuring 

methods of the chemical and radioactive analysis. For example, the obtained fitting to 
228

Ra was 

the following: C (Bq kg
−1

) = (67 ± 7) + (8.85 ± 0.17) X(R
2
 = 0.9986), X in %. 

The location of tested compositions in the SiO2–Al2O3–TiO2 and SiO2–Al2O3–Fe2O3 ternary 

systems is shown is Fig. 3. As expected, the high TiO2 content in the composition of ilmenite 

mud waste leads to ceramic compositions highly dispersed in the diagram SiO2–Al2O3–TiO2. In 

contrast, the iron oxide contents in both ilmenite mud and RSM composition are quite similar, 

giving rise to ceramic compositions converged in a narrow area of the corresponding diagram, 

around 7.5–9% of Fe2O3. 

 

 

 

 

 

Fig. 3. Location of tested composition in the SiO2–Al2O3–TiO2 and SiO2–Al2O3–Fe2O3 ternary systems. 
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3.1.3. DSC/TGA 

The thermal behaviour of the main materials was studied trough the DSC/TG curves (Fig. 4). 

The losses on ignition (1150 °C) are 9.60 wt.% and 8.25 wt.%, for ilmenite mud and RSM 

respectively. The red stoneware composition shows six areas of weight change. The first one at 

∼100 °C corresponds to the endothermic evaporation of unbound water. The second area 

(between 200 and 500 °C), is associated with the thermal decomposition of non-volatile organic 

compounds, the exothermic combustion of non-volatile organic matter and the endothermic 

volatilisation of lighter organic fragments. The third area at ∼600 °C is related to the thermal 

destabilisation of hydrated minerals and the release of crystallisation water. The fourth area 

∼800 °C is associated with the decomposition of alkaline compounds. The fifth area ∼900 °C is 

associated with the decomposition of alkaline-earth carbonates and the release of carbon 

dioxide. Finally, an endothermic descent at higher temperatures indicates the formation of a 

liquid phase mainly derived from the feldspar component and silica release [30]. 

 

  

Fig. 4. DSC/TG curves (25–1450 °C, 50 °C/min); (a) RSM and (b) tionite. 

 
The thermal behaviour of ilmenite mud shows five primary effects (Fig. 4). The first one is 

related to the endothermic loss of the chemically bound water of FeSO4⋅xH2O at ∼110 °C. The 

next areas can be attributed to Fe2(SO4)3. The second area appears at ∼550–600 °C, the loss 

weight produced by the thermal decomposition of FeSO4, associated with an endothermic 

reaction. The third area ∼700 °C is associated with the decomposition of Fe2(SO4)3 into 

Fe2O3 and the fourth area ∼850 °C corresponds to the loss of weight produced by the 

decomposition of calcium and potassium carbonate that is present at high concentrations in the 

ilmenite mud. Finally, an endothermic descent at higher temperatures indicates the formation of 
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amorphous silica released during decomposition; the impurities contained in the raw materials 

could also contribute to a liquid phase formation [31]. 

According the thermal behaviour of the mixtures given by the TG curves (Fig. 5), the losses 

on ignition (1150 °C) are between 9.75 wt.% and 7.30 wt.% (see Table 2). The samples have 

almost no loss on ignition. The thermal behaviour of each mixtures given by the DSC curves 

(Fig. 6), are quite similar to the red stoneware, especially those that exhibit the greatest 

proportion of RSM (Fig. 6a–c). In samples that contain at least 10% in tionite, this similar 

thermal behaviour changes and appears new areas associated with the thermal behaviour of 

ilmenite mud. Fig. 6d–f shows these new areas where both thermal behaviours converge. The 

first area at ∼100 °C corresponds to the endothermic evaporation of unbound water in RSM, but 

also appear in these cases the area related to the endothermic loss of the chemically bound water 

of iron sulphate (II) and the decomposition of FeSO4⋅xH2O at ∼110 °C in ilmenite mud. 

Moreover, this same fact happens with the other different areas at ∼500–900 °C in which the 

thermal behaviour of both materials appears but less clear than in the previous case. 

 

Fig. 5. TG curves (25–1450 °C, 50 °C/min) of 97/3, 95/5, 93/7, 90/10, 70/30 and 50/50. 

 
Table 2. Loss in ignition (wt.%) of main materials and the different mixtures samples obtained by the 

DSC/TGA curves. 

RSM/MUD Loss in ignition 

100/0 (RSM) 8.25 

97/3 9.75 

95/5 8.12 

93/7 9.25 

90/10 7.30 

70/30 7.45 

50/50 8.25 

0/100 (MUD) 9.60 
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Fig. 6. DSC curves (25–1450 °C, 50 °C/min); (a) 97/3, (b) 95/5, (c) 93/7, (d) 90/10, (e) 70/30 and (f) 50/50. 

3.1.4. Field emission scanning electron microscopy (FESEM) 

In order to analyse how the undissolved mud was incorporated in the final product, a detailed 

study by FESEM (Fig. 7) on polished surfaces of fired samples was made. In all cases, after 

firing the ceramic bodies show good sintering behaviour and a homogeneous grain and bond 

microstructure with coarse quartz particles held together by a finer matrix. Internal defects such 

as cracks or other similar faults were not observed. 

The RSM sample (100/0) shows a porous microstructure formed by closed and open pores. 

Open pores are formed by intercommunicated irregular channels with a size below 5 μm. Their 

origin lies in the loss of volume associated to the dehydroxylation of clay mineral in firing. In 

this sample, closed porosity is mainly due to fine closed porosity consisting of small size pores 

(<10 μm) distributed throughout the ceramic matrix. Moreover, interparticle porosity composed 

of pores with an irregular morphology at quartz and feldspar grain boundaries with the glassy 

matrix are also observed. Larger quartz particles can be clearly distinguishable by showing 

micro-cracks. After their allotropic transformation (573 °C), quartz particles undergo 

pronounced shrinkage, which increases microscopic stresses. As the piece cools, the particles 

begin to debond from the matrix, giving rise to peripheral cracks. The addition of ilmenite mud 

as additive in the RSM paste has a positive effect on the sinterization process. Thus, open 

http://www.sciencedirect.com/science/article/pii/S0950061814010034#f0035
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porosity decreases in 97/3 and 95/5 bodies as the ilmenite mud added increase. However, higher 

additions leads to an opposite effect on the porosity, which begins to increase as the percentage 

of ilmenite mud in the composition increases. This effect is more noticeable in samples 70/30 

and 50/50 in which the volume of irregular intercommunicated channels has increased 

significantly (see Fig. 8). 

 

 

Fig. 7. Secondary electron images (low magnification) on polished surfaces of fired tiles. Q: quartz; OP: open 

porosity; CP: close porosity and IP: interparticle porosity. 

  

Fig. 9 shows FESEM images together with the elemental mappings of Al, Si, Fe, Ti y Zr in the 

samples 100/0, 50/50 and 90/10. The different compounds in the samples are clearly identified 

by colour differences caused by the different concentrations of each ion in the crystalline 

phases. The microstructure of 100/0 composition consists of quartz particles surrounded by a 

matrix enriched in Al2O3. It is clearly observed the increase in Ti concentration in the samples 

as the concentration of ilmenite mud in the composition increases. The sample 100/0, which 

does not present mud added, titanium oxide appears as an isolated impurity. In the micrography 

is also shown a iron oxide particle, which is present in the composition of RSM being 

responsible for its red colour. Therefore, sample 90/10 shows a higher heterogeneity and even 

http://www.sciencedirect.com/science/article/pii/S0950061814010034#f0040
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more in sample 50/50, showing all the components dispersed in the sample. The titanium 

concentration distributed throughout the sample increases in sample 90/10 and especially in 

50/50, because they shown the highest amount of tionite. Besides, samples which added tionite 

shown the presence of Zr and a higher content of Fe that in sample 100/0 without tionite 

addition. On the other hand, the Si and Al concentration decrease in samples according to the 

addition of tionite. 

 

Fig. 8. Secondary electron images (high magnification) on polished surfaces of fired tiles. 

 

3.2. Technological properties of fired tiles 

The results shown in Table 3 indicate that the linear shrinkage increases because of the 

concentration of ilmenite mud also increasing. Lower values are advantageous for traditional 

ceramics manufacturing because they reduce cracking and volume changes during firing. The 

linear shrinkage of samples fired at 1150 °C showed values <7%. 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0950061814010034#t0015
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Fig. 9. FESEM images and elemental mappings on polished surfaces of fired 100/0, 50/50 and 90/10 

samples. 

 

Table 3. Linear shrinkage and technological properties of fired tiles Results show average values of 10 measurements. 

 

RSM/MUD 

Linear shrinkage 

LS (%) 

Apparent 

porosity P (%) 

Water absorption E 

(wt.%) 

Bulk density B  

(g cm
−3

) 

Bending strength BS 

(MPa) 

100/0 (RSM) 3.8 ± 0.1 12.5 ± 0.7 5.30 ± 0.06 2.36 ± 0.02 35.1 ± 0.9 

97/3 5.6 ± 0.1 6.71 ± 0.3 2.82 ± 0.05 2.38 ± 0.04 41.1 ± 0.8 

95/5 6.0 ± 0.1 5.98 ± 0.2 2.48 ± 0.03 2.42 ± 0.05 40.2 ± 0.8 

93/7 6.0 ± 0.1 10.0 ± 0.5 4.18 ± 0.04 2.40 ± 0.03 37.5 ± 0.7 

90/10 6.4 ± 0.2 12.0 ± 0.7 4.72 ± 0.06 2.55 ± 0.03 36.5 ± 0.7 

70/30 6.3 ± 0.1 19.8 ± 0.8 9.02 ± 0.10 2.22 ± 0.02 33.2 ± 0.8 

50/50 6.6 ± 0.1 20.9 ± 0.9 9.18 ± 0.12 2.27 ± 0.05 30.8 ± 0.9 
 

 

The apparent porosity generally increases with the concentration of ilmenite mud. This 

physical property is very important, because it is related to the water absorption of the fired 

products [32]. Therefore the water absorption also follows this trend as the properties are 

directly related. Water absorption is related mostly to open porosity. Thus, the increase in the 

volume fraction of irregular intercommunicated channels in 70/30 and 50/50 fired samples 

produces an increase in the water absorption (Fig. 7 and Fig. 8). In addition, the presence of a 

few rounded and isolated pores indicates the consistent development of the liquid phase during 

sintering [33]. Moreover the water absorption decreases with the addition of 3% and 5% of 

http://www.sciencedirect.com/science/article/pii/S0950061814010034#b0160
http://www.sciencedirect.com/science/article/pii/S0950061814010034#f0035
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ilmenite mud (2.82 and 2.48 wt.%, respectively), facilitating the subsequent sintering and drying 

stages. It confirms the results obtained previously by SEM. In accordance with the European 

Standard EN 14411 [34] ceramic tiles with water absorption coefficient (E) in the interval 

0.5% < E ⩽ 3% belong to the BIb group, tiles with 3% < E ⩽ 6% belong to the BIIa group and 

those with 6% < E ⩽ 10% belong to the BIIb group. The low values of water absorption and 

apparent porosity makes these tiles more resistant to freeze–thaw cycles and stain resistant; and 

in addition they require less drying time. 

The bulk density increases with the concentration of ilmenite mud up to 10% because the 

density of undissolved mud is 3.7 g cm
−3

. When it is higher than 30% of mud it decreases 

radically because of the increase in the porosity. 

The bending strength increases as the ilmenite mud percentage increases from 100/0 to 90/10 

compositions due to the beneficial effect of ilmenite addition on sintering during firing as 

denoted by the decrease in porosity. The addition of mud up to 10% lowers the rupture tension 

because of the porosity increases (Table 3). On the other hand, bending strength values in 70/30 

and 50/50 samples decreases; being even lower than that corresponding to the composition 

100/0 without addition of ilmenite mud. This result is likely due to the increase in the volume 

fraction of interconnecting open pores, which act as large fracture flaws reducing bending 

strength. 

In any case, bending strength values for 97/3 and 95/5 composition are upper the minimum 

value of 30 MPa required in standard EN 14411 for tiles belonging to the BIb group; the 

corresponding values for 100/0, 93/7 and 90/10 samples are greater than 22 MPa, which is the 

minimum value for tiles in the BIIa group and finally, 70/30 and 50/50 composition show 

bending strength values above the minimum value of 18 MPa required for tiles in the 

BIIagroup [34]. 

3.3. Environmental study 

3.3.1. Radiological and radioactive characterisation 

The original mud had a total radionuclide concentration (2.0–3.0 Bq g
−1

) that surpassed the 

1 Bq g
−1

 EU safety threshold for Naturally Occurring Radioactive Material (NORM) 

wastes[35]. The radionuclides with the highest activity concentrations are for 
226

Ra and 
228

Ra, 

being them around 500 and 1200 Bq kg
−1

, respectively [11]. These concentrations are 

significantly higher than the average worldwide values for soils (25 Bq kg
−1

 of 
238

U and
232

Th in 

secular equilibrium with their daughters) [36] and [37]. In the mixtures, the activity 

http://www.sciencedirect.com/science/article/pii/S0950061814010034#b0170
http://www.sciencedirect.com/science/article/pii/S0950061814010034#t0015
http://www.sciencedirect.com/science/article/pii/S0950061814010034#b0170
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concentration of these radionuclides increased with increasing mud content, as did those 

of
228

Ra, 
228

Th, and 
238

U. The activity concentration of 
40

K was constant in all samples. 

On the other hand, 
210

Po was reduced drastically during the firing process (from 300 to 

70 Bq kg
−1

), because of the high volatility of Po above 200 °C [38]. 

The high radioactive content of the mud samples raises the question of whether this waste 

can be valorised as building material. In order to evaluate this problem, the European Union has 

proposed reference values for the natural radionuclide concentrations in building materials [35], 

defining an external risk index (I), also called activity concentration index, according to the 

following equation: 

                                                            (5) 

 

where C
226

Ra, C
232

Th, and C
40

K are the activity concentrations for 
226

Ra, 
232

Th, and
40

K, 

respectively, expressed in Bq kg
−1

. 

This index should not exceed the value of unity (I ⩽ 1) for materials used in bulk amounts, 

e.g. concrete, or I ⩽ 6 for superficial materials and those with restricted use, e.g. tiles, boards, 

etc., to ensure that the additional external dose received by occupants living in buildings 

constructed with these materials does not exceed the reference value of 1 mSv year
−1

 [39]. 

Table 4 shows that index I is significantly lower than six for all analysed materials. This 

renders undissolved mud a suitable material for use in the ceramic industry in comparison with 

other additives [40] and [41]. 

3.3.2. Radon potential and exhalation rate of matrix and blocks 

The radon emanation factor is the fraction of the 
222

Rn produced by the 
226

Ra in a sample that 

reaches the pores of the material. The product of radium concentration per the emanation factor 

gives the radon potential parameter. The radon potential is a characteristic of the material that is 

not influenced by the experimental conditions during its determination, and therefore is a 

suitable parameter for classifying/comparing porous materials in relation to its radon 

radiological risk [42] and [43]. 

http://www.sciencedirect.com/science/article/pii/S0950061814010034#b0190
http://www.sciencedirect.com/science/article/pii/S0950061814010034#b0175
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http://www.sciencedirect.com/science/article/pii/S0950061814010034#t0020
http://www.sciencedirect.com/science/article/pii/S0950061814010034#b0200
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Table 4. Concentration in Bq kg
−1

 of each ceramics tile obtained and external risk rate “I”. 

 

RSM/MUD 
238

U 
226

Ra 
210

Po 
232

Th 
228

Ra 
228

Th 
40

K “I” 

RSMa 39 ± 2 39 ± 3 37 ± 1 58 ± 3 54 ± 6 63 ± 7 832 ± 45 N.M. 

100/0 (RSMb) 35 ± 2 50 ± 1 39 ± 2 60 ± 2 61 ± 2 56 ± 2 1104 ± 16 0.84 

97–3 37 ± 2 55 ± 1 34 ± 2 62 ± 2 97 ± 3 84 ± 2 1154 ± 15 1.05 

95–5 44 ± 2 72 ± 2 40 ± 2 59 ± 2 127 ± 4 108 ± 3 1182 ± 18 1.27 

93–7 40 ± 2 79 ± 2 43 ± 4 59 ± 4 141 ± 5 118 ± 4 1158 ± 23 1.35 

90–10 37 ± 2 75 ± 2 41 ± 2 63 ± 5 139 ± 5 112 ± 4 1124 ± 24 1.32 

0/100 (MUDb) 31 ± 1 457 ± 19 71 ± 4 78 ± 3 1158 ± 48 1112 ± 46 477 ± 30 7.47 

MUDa 34 ± 2 335 ± 15 300 ± 19 72 ± 4 952 ± 43 956 ± 43 428 ± 43 N.M. 

N.M. not measured. 

       a Before firing process. 

       b After firing process. 
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According to the study made, and once the samples were analysed it is possible to affirm that 

the Rn potential (Ω) of the samples are below the limit of detection of the system (<5 Bq kg
−1

), 

being the typical value of the radon potential in a typical material engineered as cement of about 

10 Bq kg
−1

 [35]. Therefore, we can say that the concentration of Rn in air produced by samples 

in a standard room (5 m × 5 m × 2 m) in the worst conditions is , somewhat 

below the limit of 100 Bq m
3
 for new constructions according to the recommendation of the 

Committee on the Environment of the EEC of 21 February 1990[44] and [45]. 

3.3.3. Leaching test 

A TCLP leaching test was applied to evaluate the potential environmental impact generated 

by hazardous metals contained in the ceramics tiles. Table 5 shows that increasing the 

proportion of mud in the mixture decreases the leached metals formed in many cases. Attending 

to these data is concluded that the firing process makes metal less leachable. On the other hand, 

the S increases slightly as the proportion of ilmenite mud increases, because of the sulphate 

breakdown during the firing process. As explained in TGA results, at a certain temperature the 

iron sulphate is decomposed, decreasing significantly the concentration of sulphur due to the 

emission of SO2 gas. 

The leached metals values are clearly lower than the limits imposed by US EPA [46]; these 

data indicate that the metal concentrations are below the ecotoxicity limits, and will not have a 

significant impact when this material is released into the environment. 

On the other hand, the liquids fractions obtained in the TCLP test were also analysed the 

radionuclides contents, in order to gain information in relation with the mobility of them. The 

concentrations of radionuclides are fairly low (Table 6). Transfer factors demonstrate that 

almost radionuclides leached out after the firing process. The concentration in the leaching 

liquid decreases with the proportion of mud, with the exception of 
210

Po. The concentrations of 

U-isotopes are of the same order of magnitude as typical ones in continental waters, and for Th-

isotopes they are one to two orders of magnitude higher, but we can ensure that their potential 

radiological impact is negligible [47]. In relation to the behaviour of the different radioelements 

(U, Th, and Po), it was observed that mobility for U and Th is very similar, whereas for Po it is 

one order of magnitude lower, which can be justified by the high tendency of Po to be bound 

onto the particulate material [48]. 
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Table 5. Leachability concentrations of metals (μg L
−1

) obtained by TCLP test from the raw materials and tiles by ICP-OES. Transfer factor (%) into liquid phase of 

TCLP. 

 

RSM/MUD RSMa 100/0 (RSMb) 97/3 95/5 93/7 90/10 0/100 (Mudb) Muda Liquid 1 U.S. EPA 

  μg L
−1

 % μg L
−1

 % μg L
−1

 μg L
−1

 μg L
−1

 μg L
−1

 % μg L
−1

 % μg L
−1

 % μg L
−1

 μg L
−1

 

Ba 500 1.76 570 1.90 400 280 310 310 1.04 40 0.10 <20 <0.08 <20 1,000,000 

Al 4000 0.10 8600 0.18 2000 1800 2100 2100 0.05 <100 <0.01 <100 <0.01 <100 – 

K 18,3 1.33 10,8 0.73 6900 6600 8600 8800 0.63 4600 0.93 15,9 3.21 2400 – 

Mg 1400 0.34 21 4.72 3600 5500 8200 9100 1.36 200 0.05 6500 1.76 <100 – 

Mn 1000 5.92 1570 7.02 2260 110 1380 1420 4.94 50 0.05 20 0.02 <10 – 

Si 42,2 0.37 29,8 0.26 13,7 5700 15,5 15,6 0.16 3700 0.09 700 0.02 1300 – 

As 110 22.0 100 22.2 40 40 60 60 40.0 <30 <4.62 <30 <20.0 <30 5000 

Ca 4900 0.83 45,4 7.26 14 10,4 17,7 23,1 4.02 1200 0.23 2400 0.66 <100 – 

Cr 200 5.80 230 6.48 200 <20 240 220 3.41 <20 <0.08 <20 <0.04 <20 5000 

Fe 2100 0.10 314 11.87 322 1420 304 300 10.93 40 0.01 40 0.01 20 – 

Pb 100 5.13 100 3.45 300 20 150 110 3.24 <10 <0.07 <10 <0.07 <10 5000 

S 8000 80.0 2000 20.0 3000 4000 5000 5000 50.0 <1000 <10.0 885 184.4 <1000 – 

Sr 60 1.11 50 0.86 60 50 40 40 0.71 <10 <0.15 <10 <0.15 <10 – 

Ti <10 0.01 <10 0.01 <10 20 <10 <10 0.01 70 0.01 10 0.01 <10 – 

Zn 41 0.31 180 1.29 88 63 122 101 0.75 40 0.44 6 0.07 10 25 

 

Limit values given in the U.S. EPA standard. 

N.M. not measured. 

Liquid 1 are the fluid extractant used in the TCLP test. 

a Before firing process. 

b After firing process. 
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Table 6. Average concentration (mBq L
−1

) of each sample analysed by alpha spectrometry. Transfer factor (%) in TCLP. 

 

  
238

U 
234

U 
232

Th 
230

Th 
210

Po 

RSM/MUD mBq L
−1

 % mBq L
−1

 % mBq L
−1

 % mBq L
−1

 % mBq L
−1

 % 

RSMa 29 ± 3 1.5 36 ± 4 1.8 50 ± 17 1.7 129 ± 28 7.6 7.3 ± 1.9 0.4 

100/0 (RSMb) 13 ± 2 0.8 20 ± 3 1.1 37 ± 9 1.2 121 ± 17 6.7 16 ± 3 0.8 

97/3 10 ± 2 0.6 10 ± 2 0.5 18 ± 6 0.6 54 ± 10 2.5 12 ± 2 0.7 

95/5 4.8 ± 1.4 0.2 6.3 ± 1.7 0.3 33 ± 11 1.0 75 ± 17 3.0 10 ± 2 0.6 

93/7 6.3 ± 1.4 0.3 5.1 ± 1.2 0.3 11 ± 4 0.4 24 ± 6 1.3 11 ± 3 0.3 

90/10 6.4 ± 1.4 0.4 6.4 ± 1.4 0.4 5.1 ± 1.6 0.2 8.0 ± 2.0 0.4 5.5 ± 0.8 0.3 

0/100 (Mudb) 1.9 ± 0.8 0.1 1.4 ± 0.7 0.1 28 ± 11 0.7 91 ± 19 3.6 8.9 ± 1.9 2.5 

Muda 2.1 ± 0.7 0.1 5.3 ± 1.2 0.3 37 ± 10 1.0 99 ± 18 4.3 10 ± 3 0.1 

Liquid 1 3.9 ± 1.4 N.M. 8.3 ± 2.1 N.M. 4.6 ± 2.6 N.M. 8.0 ± 3.5 N.M. 11 ± 2 N.M. 

 

N.M. not measured. 

Liquid 1 is the fluid extractant used in the TCLP test. 

a Before firing process. 

b After firing proces 
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Finally, neither 
226

Ra, 
228

Ra, nor 
40

K were detected by gamma spectrometry in the leachates 

of any tile, leading transfer factor values not detected due to the higher limit of detection of this 

radiometric technique. 

4. Conclusions 

The present work has demonstrated that ilmenite mud from the TiO2 industry can be 

successfully used in the manufacture of red stoneware ceramic bodies. XRD analysis showed 

that, in relation to the standard tile, no significant effects on the crystalline phases were 

observed with the addition of undissolved mud. SEM microstructural analysis showed that 

composition with less than 10% of waste has a finer fracture surface with fewer defects 

compared with the reference sample (100/0). 

The technological properties of the new tiles obtained by adding the mud waste are 

comparable, or even better, than the commercial sample taken as reference. We have 

demonstrated that the addition of this mud as additive (3–5%) has a beneficial role as an agent 

of the sintering processes, decreasing both apparent porosity and water absorption. This 

facilitates the drying stage thanks to the decrease in water absorption and improve the resistance 

to cycles of freeze–thaw and to stains. In relation to the water absorption and bending strength, 

the different tiles can be classified into the following groups: samples formed by the addition of 

3–5% of undissolved mud belong to the BIa group with a water absorption of 0.5% < E ⩽ 3% 

and a minimum value required of bending strength of 30 MPa; tiles produced by the addition of 

7–10% of ilmenite mud belong to the BIIa group, which includes tiles with a water absorption of 

3% < E ⩽ 6% and a minimum bending strength of 22 MPa. Higher ilmenite mud additions (30–

50%) lead to ceramic tiles that can be classified into the BIIb group, which includes tiles with a 

water absorption of 6% < E ⩽ 10% and a minimum bending strength of 18 MPa. In all cases, 

the tiles produced from ilmenite mud clearly exceed bending strength values required in the 

corresponding groups. 

The leaching tests showed that the mobility of metals and radionuclides in the different 

mixtures is similar to that of the reference tile. The use of undissolved mud waste in red 

stoneware ceramic bodies can offer a technological solution to the problems caused by its 

disposal in controlled landfills. 

Our research group has studied other uses of the ilmenite mud as, for example, in the 

manufacturing of materials for fire isolation in building with better isolation properties, or as 

additive in cements and concretes. We think that effectively the use of ilmenite mud like 

additive in ceramic manufacturing could be the best potential application of this waste since its 
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technological properties are significantly improved, and therefore this commercial application 

could consume all the ilmenite mud production due to the high amount of ceramic produced in 

worldwide. 
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