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Highlights:  

* We describe the developmental origin of the two main insect endocrine organs  
 
* We show the gene-network required for the development of insect endocrine organs 
 
* We introduce a novel model to study EMT and concerted cell migration 
 
* We uncover one of the most extreme cases of evolutionary organ divergence 
 

 

Summary: 

Segmented organisms have serially repeated structures [1] that become specialized 

in some segments [2]. We show that the Drosophila corpora allata, the prothoracic 

glands and the trachea have a homologous origin and can convert into each other. 

The tracheal epithelial tubes develop from ten trunk placodes [3, 4]; homologous 

ectodermal cells in the maxilla and labium, form the corpora allata and the 

prothoracic glands. The early endocrine and trachea gene networks are similar, 

with STAT and Hox genes inducing their activation. The initial invagination of the 

trachea and the endocrine primordia is identical, but activation of Snail in the 

glands induces an Epithelial to Mesenchymal Transition after which the corpora 

allata and prothoracic gland primordia coalesce and migrate dorsally joining the 

corpora cardiaca to form the ring gland. We propose that the Arthropod 

ectodermal endocrine glands and the respiratory organs arose through an extreme 

process of divergent evolution from a metameric repeated structure. 

 



 3 

Results and discussion 
 

The endocrine control of moulting and metamorphosis in insects is regulated by the 

corpora allata (ca) and the prothoracic glands (pg), which secrete Juvenile Hormone 

and Ecdysone respectively [5]. In diptera, these glands and the corpora cardiaca (cc) 

fuse during development to form a tripartite endocrine organ called the ring gland 

(Fig.1A). While the corpora cardiaca is known to originate from the migration of 

anterior mesodermal cells, the origin of the other two ring gland components is unclear 

[6, 7].  

The tracheae have a completely different structure consisting of a tubular 

network of polarized cells [4]. The tracheae are specified in the second thoracic to the 

eighth abdominal segments (T2-A8) by the activation of trachealess (trh) and ventral 

veinless (vvl) [4, 8-12].  

We isolated the enhancers controlling trh and vvl in the tracheal primordia and 

showed they are activated by JAK/STAT signalling [13]. While the trh enhancers are 

restricted to the tracheal primordia in the T2 to A8 segments, the vvl1+2 enhancer is 

also expressed in cells at homologous positions in the maxilla (Mx), labium (Lb), T1 

and A9 segments in a pattern reproducing the early transcription of vvl (Fig.1C-E). The 

fate of these non-tracheal vvl expressing cells was unknown, but it was shown that 

ectopic trh expression transforms these cells into tracheae [14]. To identify their fate we 

made vvl1+2-EGFP and mCherry constructs. Although the vvl1+2 enhancer drives 

expression transiently [13], the stability of the EGFP and mCherry proteins labels these 

cells during development. We observe that while the T1 and A9 patches remain in the 

surface and integrate with the embryonic epidermis, the patches in the Mx and Lb 

invaginate just as the tracheal primordia do (Fig.2N-N’). Next the Mx and Lb patches 

fuse and a group of them undergo an Epithelial to Mesenchymal Transition (EMT) 
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initiating a dorsal migration towards the anterior of the aorta where they integrate into 

the ring gland (Fig.2A-I and Fig.1F). To find out what controls the EMT we studied the 

expression of the snail (sna) gene, a key EMT regulator [15]. Besides its expression in 

the mesoderm primordium, we found that sna is also transcribed in two patches of cells 

that become the migrating primordium (Fig. S1A). Using sna BACs with different cis-

regulatory regions [16-18] we localized the enhancer activating sna in the ring gland 

primordium (sna-rg). A sna-rg-GFP construct labels the subset of Mx and Lb vvl1+2 

expressing cells that experience EMT and migrate to form the ring gland (Fig.2B-I, 

Movies S1-S2). Staining with seven-up (svp) and spalt (sal) [also known as salm] [19, 

20] markers, that label the ca and the pg respectively (Fig.1B,G), shows that the sna-rg-

GFP cells form these two endocrine glands (Fig.2K’,M’). The sna-rg-GFP expressing 

cells in the Mx activate svp (Fig.2J) and those in the Lb activate sal (Fig.2L) before they 

coalesce, indicating that the ca and pg are specified in different segments before they 

migrate.  

To test if Hox genes, the major regulators of antero-posterior segment 

differentiation [21], participate in gland morphogenesis we stained vvl1+2-GFP 

embryos and found that the Mx vvl1+2 primordium expresses Deformed (Dfd) and the 

Lb primordium Sex combs reduced (Scr) while the T1 primordium expresses very low 

levels of Scr (Fig.3A). Dfd mutant embryos lack the ca, while Scr mutant embryos lack 

the pg (Fig.S2). Dfd and Scr expression in the gland primordia is transient suggesting 

they control their specification. Consistently, in Dfd, Scr double mutant embryos vvl1+2 

is not activated in the Mx and Lb patches (Fig.3B) and the same is true for vvl 

transcription. In these mutants the sna-rg-GFP expression is almost absent (Fig.3C) and 

the ca and pg do not form. In each case Dfd controls the expression of the Mx patch and 

Scr of the Lb patch.  
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We tested the capacity of different Hox genes to rescue the ring gland defects of 

Scr, Dfd double mutants (Fig.3D,G,K,O and Fig.S3). Induction of Dfd with the sal-Gal4 

line in these mutants, restores the expression of vvl1+2 (Fig.3G) and sna-rg-GFP in the 

Mx and the Lb. However, in contrast to the wild type (Fig.2J-M), both segments form a 

ca as all cells express Svp (Fig.3E-F). Similarly, induction of Scr also restores the 

vvl1+2 (Fig.3K) and sna-rg-GFP expression but both primordia form a pg as they 

activate Sal and phantom [22], an enzyme required for ecdysone synthesis (Fig.3I-J). 

The capacity of both Dfd and Scr to restore vvl expression regardless of the segment, 

made us test if other Hox proteins could have the same function. Induction of 

Antennapaedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A) or Abdominal-B 

(Abd-B) restores vvl1+2 expression in the Mx and Lb, but these cells form tubes instead 

of migratory gland primordia (Fig.3L-O and Fig.S3). These cephalic tubes are trachea 

as they do not activate sna-rg (Fig.S3E’), express Trh and their nuclei accumulate 

Tango (Tgo), a maternal protein that is only translocated to the nucleus in salivary 

glands and tracheal cells [23], indicating that the trunk Hox proteins can restore vvl 

expression in the Mx and Lb, but induce their transformation to trachea. 

To investigate if vvl and trh expression is normally under Hox control in the 

trunk, we focused on Antp that is expressed at high levels in the tracheal pits (Fig.S3J). 

In double Dfd, Antp mutant embryos (Fig.S3K-K’) vvl1+2 is maintained in the Lb 

where Scr is present, while the Mx, T1 and T2 patches are missing. In T3-A8 vvl1+2 

expression, although reduced, is present probably due to the expression of Ubx, Abd-A 

and Abd-B in the posterior thorax and abdomen. Thus, Antp regulates vvl expression in 

the tracheal T2 primordium. Surprisingly, in Dfd, Antp double mutants, Trh and Tgo are 

maintained in the T2 tracheal pit (Fig.S3K), indicating that although Hox genes can 

activate ectopic trh expression, in the tracheal primordia they may be acting redundantly 
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with some other unidentified factor, explaining why the capacity of Hox proteins to 

specify trachea had not been reported previously.  

 We studied sna null mutants to find out its requirement for ring gland 

development, but their aberrant gastrulation [24, 25] precluded analyzing specific ring 

gland defects. To investigate sna function in the gland primordia we rescued the sna 

mutants with the sna-squish BAC [16] that drives normal Sna expression except in the 

ring gland (Fig.S1B). These embryos have a normal gastrulation and activate the sna-

rg-GFP, however the gland primordia degenerate and disappear (Fig.4B). To block 

apoptosis we made these embryos homozygous for the H99 deficiency that removes 

three apoptotic inducers [26]. In this situation, the ca and pg primordia invaginate and 

survive but they do not undergo EMT (Fig.4C). As a result the gland primordia 

maintain epithelial polarity, do not migrate and form small pouches that remain attached 

to the epidermis (Fig.4D).  

Vvl is required for tracheal migration [8, 9, 27]. In vvl mutant embryos sna-rg-

GFP expression is activated but the cells degenerate (Fig.4E). In vvl mutant embryos 

also mutant for H99, the primordia undergo EMT and migrate up to the primordia 

coalescence, however the later dorsal migration does not progress (Fig.4F-G). 

 We have shown that the ca and pg develop from vvl expressing cephalic cells at 

positions where other segments form trachea, suggesting that they could be part of a 

segmentally repeated structure that is modified in each segment by the activity of 

different Hox proteins. As the cephalic primordia are transformed into trachea by 

ectopic expression of trunk Hox (Fig.3L-N), we tested if the trachea primordia could 

form gland cells. Ectopic expression of Dfd with arm-Gal4 results in the activation of 

sna-rg-GFP on the ventral side of the tracheal pits (not shown). These sna-rg-GFP 

expressing cells also express vvl 1+2, Trh and have nuclear Tgo showing that they 
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conserve tracheal characteristics. These sna-rg-GFP positive cells do not show EMT 

and keep associated to the ventral anterior tracheal branch. The strength of ectopic sna-

rg-GFP expression increases when ectopic Dfd is induced in trh mutant embryos 

(Fig.3P). However migratory behaviours in the sna-rg-GFP cells are only observed if 

Dfd is coexpressed with Sal (Fig.3Q-T). Thus sal is expressed several times in the gland 

primordia, first at st9-10 repressing trunk Hox expression in the cephalic segments 

(Fig.S3G), and second from st11 in the prothoracic gland. It is uncertain if sal 

requirement for migration is linked to the first function or if it represents an additional 

role. 

Our results show that the endocrine ectodermal glands and the respiratory 

trachea develop as serially homologous organs in Drosophila. The identical regulation 

of vvl in the primordia of trachea and gland by the combined action of the JAK/STAT 

pathway and Hox proteins (Fig.3, Fig.S3 and S4) could represent the vestiges of an 

ancestral regulatory network retained to specify these serially-repeated structures; while 

the activation of Sna for gland development, and Trh and Tgo for trachea formation 

could represent network modifications recruited later by specific Hox proteins during 

the functional specialization of each primordium (Fig.4H). This hypothesis or 

alternative possibilities should be confirmed by analyzing the expression of these gene 

networks in various arthropod species. The diversification of glands and respiratory 

organs must have happened before the split of Insects and Crustaceans as there is a 

correspondence between the endocrine glands in both Classes, with the corpora 

cardiaca corresponding to the pericardial organ; the corpora allata to the Mandibular 

organ; and the prothoracic gland to the Y-gland [5, 28, 29]. Despite their divergent 

morphology, a correspondence between the Insect trachea and the Crustacean gills can 

also be made, as both respiratory organs coexpress vvl and trh during their 
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organogenesis [30]. Divergence between endocrine glands and respiratory organs may 

have occurred when the evolution of the arthropod exoskeleton required solving two 

simultaneous problems: the need to moult to allow growth and the need of specialized 

organs for gas exchange.  

 

Experimental Procedures 

 

Constructs generated for this work: 

 

A polylinker with EcoRI and XbaI restriction sites at the ends was synthesized (Sigma) 

and digested with EcoRI and XbaI. A pCaSpeR.lacZ.NLS was digested with EcoRI and 

XbaI, releasing the polylinker, the hs43 promoter and the lacZ.NLS that was substituted 

with the new polylinker creating (pCaSpeR polylinker) where a PH membrane domain 

from Phospholipase C delta digested with BamHI-XbaI, was cloned creating (pCaSpeR-

PH). Next mCherry, was PCR amplified from pCS2+ vector, with BamHI/BglII tailed 

primers. A sequenced mCherry PCR product was digested with BamHI-BglII and 

cloned into pCaSpeR-PH BamHI digested (restriction site included in polylinker). Next, 

the hs43 promoter digested with BamHI-BglII from pCaSpeR.NLS-LacZ, was cloned 

into BamHI, completing the plasmid pCaSpeR-mCherry-PH.  

 

pCaSpeR-EGFP-PH, was constructed in a similar way using EGFP from the pCS2+ 

vector to create a pCaSpeR-EGFP-PH plasmid. 

 

The sna-rg enhancer was amplified by PCR from Drosophila genomic DNA and cloned 

into pGEMTeasy using the following primers: 
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Upper sna-rg primer: 5'-ACCAAACCAGAACTCCAGACC-3'  

Lower sna-rg primer: 5'- GCTTGGGTTTTTCGTTTTCAG-3' 

 

Finally, the enhancer was subcloned into pCaSpeR-EGFP-PH to create a reporter 

plasmid. The vvl 1+2 enhancer [13] was cloned from pGEMT-easy to pCaSpeR-

mCherry-PH and pCaSpeR-EGFP-PH reporter plasmids. Both plasmids where 

transformed into Drosophila by the Drosophila Consolider-Ingenio 2007 transformation 

platform (Spain). 

 

Fly stocks  

The following mutant alleles and transgenic lines from the Drosophila Bloomington 

stock collection where used: 

Dfd4 ; Dfd16, Scr4 ; Df(3L)H99; Df(1)os1A; Dfd16 , Antp7; P{HZ}svp3; vvlGA3; trh8; sna1; 

sna18; P{UAS-Dfd.B}W4; P{UAS-Scr.M}EE2; P{UAS-Antp.Mb}W1; P{UAS-myr-

mRFP}. UAS-sal and Df (2)5 sal- salr- were obtained from R. Barrio, and phm-

GAL4>CD8::GFP line [31] from Marco Milán. The sna-lacZ 6kb reporter and sna-GFP 

BAC collection was obtained from A. Stathopoulos and M. Levine. The following 

stocks from our laboratory where used: UAS-Ubx; UAS-AbdBm [32]; the reporter 

vvl1+2-lacZ; and the enhancer trap lines sal-GAL4 459.2 and arm-Gal4 (Bloomington 

stock number 1560). 

 

Primary antibodies: Chicken anti-gfp (Abcam); rabbit anti-gfp (Invitrogen); rat anti-

RFP (Chromotek); rabbit or mouse anti-ßGal (Promega) and Chicken anti-ßGal 

(Abcam); rat anti-Trh (J. Casanova); rabbit anti-Sal (R. Barrio); rabbit anti-Svp (R. 
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Cripps); rabbit anti-aPKC (Santa Cruz); rabbit anti-Dfd (T. Kaufman); anti-DIG-AP 

(Roche) and from the Hybridoma Bank we obtained mouse anti-Tgo; mouse anti-Fas II; 

mouse anti-Scr; mouse anti-AbdB; mouse anti-Ubx (FP3.38) and mouse anti-Antp. 

 

Secondary antibodies: The following Invitrogen antibodies were used: anti-mouse 

A488; anti-mouse A555; anti-mouse A647; anti-chicken A488; anti-Goat A647; anti-

Rabbit A488; anti-Rabbit A555; anti-Rabbit A647 and anti-Rat A555. 

 

RNA probes: In situ RNA probes: snail RE35237 and phantom RE03155. Riboprobes 

were made using DIG RNA Labeling Kit (Roche). 

 

Microscopy: 

In vivo time-lapse microscopy was done using a Leica DMI 6000 SP5 MP-AOBS 

inverted confocal microscope. A Leica SPE Confocal Microscope was used for multiple 

antibody stainings and in situ/antibody stainings. Images were processed using ImageJ 

and Imaris (7.6). 
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Figure legends 

Figure 1. Ring gland structure and primordia origin. (A) Frontal view 

reconstruction of a late embryo ring gland showing the position of the three independent 

glands: The corpora allata (green) expresses svp, the prothoracic glands (red) phantom, 

and the corpora cardiaca (blue) is labelled by FasII. (B) Dorsal view of a late embryo 

labelled with sal-Gal4 driving UAS-RFP and svp-lacZ. The ring gland is localized 

anterior to the aorta (note that svp also labels some cardiomyocites in the aorta and heart 

(yellow asterisk). (C) At extended germ band vvl1+2-EGFP labels the tracheal 

primordia in T2-A8 as well as cells in more anterior and posterior segments. (D) 

Expression of the Trh protein in the ten tracheal primordia as well as the salivary gland. 

(E) Double staining of vvl1+2 and Trh. (F) Frontal view of a ring gland in the process 

of fusing dorsally stained with FasII and vvl1+2-EGFP, the corpora allata and the 

prothoracic glands express vvl1+2 showing their ectodermal origin, while the corpora 

cardiaca does not. (G) Ring gland z-section of a sal-Gal4 UAS-RFP, svp-lacZ embryo 

stained with RFP, anti-bgal and FasII. Images from this series where used for the 

reconstruction shown in (A). White scale bar 50µm, yellow scale bars 10µm. 

 

Figure 2. Formation of the corpora allata, prothoracic glands and tracheae. (A-I) 

Embryos double stained to detect the vvl1+2-mCherry marking gland and trachea (red), 

and the sna-rg-EGFP (green) marking the corpora allata and prothoracic glands. (A) 

Early st10 embryos express vvl1+2 in a segmentally repeated pattern. (B) In st11 

embryos vvl1+2 cells invaginate in all segments except in T1 and A9. In the Mx and Lb 

a subgroup of vvl1+2 cells activate sna-rg-EGFP. (C) Tracheal primordia from T2 to 

A8 start branching at the time when the sna-rg-EGFP cells experience the Epithelial to 
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Mesenchymal Transition. (D) Dorsal migration of the coalesced ca/pg primordium, all 

migrating cells express sna-rg-EGFP while non-snail expressing vvl1+2 cells stay 

behind. (E-G) Close-up of the Mx and Lb segments before (E-F) and after (G) the two 

gland primordia coalesce. Note that there are two different coalescence processes: one 

at st11 when the vvl1+2 expressing cells invaginating from the Mx and Lb come 

together (F); another, at st13 when the migrating sna-rg-EGFP cells coalesce (G). (H) 

Dorsal view of the sna-rg-EGFP cells at the time when the prothoracic glands meet the 

corpora cardiaca (unstained in this figure). (I) Dorsal view of the ring gland as the 

contralateral corpora allata primordia fuse (comparable frontal view in Fig.1F-G). (J-

M) Specification of the corpora allata and prothoracic glands. (J) svp-lacZ, sna-rg-

EGFP embryos double stained with anti-ßgal and anti-GFP show that the corpora allata 

is specified in the Mx prior to coalescence and maintains svp expression until the ring 

gland is formed (K-K’). (L) sna-rg-EGFP cells double stained using anti-Spalt to show 

that the prothoracic gland is specified in the Lb before coalescence. (M-M’) Embryo 

expressing sal-Gal4 showing that this line drives expression specifically in the 

prothoracic gland. (N-N´) Embryos double stained for vvl1+2 and aPKC show that both 

the gland primordia (N) and the trachea primordia (N´) maintain epithelial polarity 

during invagination. (O-O’) In the Mx and Lb segments only vvl1+2 cells expressing 

sna-rg-EGFP experience EMT and lose apical aPKC; in contrast, vvl1+2 cells never 

lose apical polarity in the trachea (P). Asterisk in g and o labels vvl1+2 cells that do not 

activate sna and maintain epithelial characteristics. White scale bar 50µm, yellow scale 

bars 10µm, purple scale bars 25µm. (See also Fig. S1 and Movies S1-S2). 

 

Figure 3. Hox genes control the specification of corpora allata, prothoracic glands 

and trachea. (A) Ventral view of a vvl1+2-EGFP embryo stained with anti-Dfd (blue) 
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and anti-Scr (red). (B-C) Dfd, Scr double mutant embryos fail to activate vvl1+2 in the 

Mx and Lb (B, asterisks) and have very low levels of sna-rg (C). (D,G,K,O) Dfd, Scr 

double mutants expressing GFP or different Hox genes with the sal-Gal4 line that 

drives early expression in the Mx, Lb and T1 segments (D). (D-D´) Expression of GFP 

does not rescue vvl1+2 expression (red) in Dfd, Scr mutant embryos. Expression of Dfd 

(G), Scr (K) or Antp (O) rescues vvl1+2 expression in both Mx and Lb (asterisks). (E-

F) Embryos rescued with Dfd produce ring glands composed exclusively of corpora 

allata cells as judged by Svp expression. (H-H”) Wild type ring glands express phm 

only in the subset of sna-rg cells forming the prothoracic gland. (I-I”) Embryos rescued 

with Scr produce ring glands composed exclusively of prothoracic gland cells as judged 

by phm or (J) sal-Gal4 expression in all the sna-rg cells. (L) Dfd, Scr embryo rescued 

with Antp show nuclear Tgo in the cephalic segments. (M-M”) Close up of an embryo 

of the same genotype as in (L) showing the vvl1+2 primordium in the Mx is 

transformed towards trachea as it expresses Tango. (N-N’) Dfd, Scr embryo rescued 

with Antp induces expression of Trh in the head indicating they are forming trachea. (P) 

Ectopic expression of Dfd in the ectoderm using the arm-Gal4 line induces robust 

expression of sna-rg-EGFP in the trunk segments of trh mutant embryos. (Q-T) 

Embryos labelled with vvl1+2 mCherry and expressing Dfd and Sal with the arm-Gal4 

line induce the expression of sna-rg-EGFP in a ventral subset of vvl1+2 cells (Q); the 

sna-rg-EGFP cells become motile (R-R’) migrating dorsally (S-T). Note that despite the 

UAS-Scr line (K) expressing lower amounts of protein than other Hox lines used (G,O), 

these are sufficient to rescue vvl1+2 expression. White scale bars 50µm, yellow scale 

bars 10µm. (See also Fig. S2 and S3 S4). 
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Figure 4. Function of Sna and Vvl in the ring gland. (A) Wild type ca and pg 

primordia labelled with sna-rg-GFP at st11. (B) The ca and pg become apoptotic and 

disintegrate when sna is removed specifically from the primordia. (C) When apoptosis 

is blocked from ca and pg primordia that do not express Sna, the cells do not go into 

EMT and remain attached to the surface without losing apical aPKC (purple). (D) ca 

and pg primordia not expressing Sna do not migrate and the primordia remain separated 

at late stages. (D’) Close up of the pg in (D) showing that the primordium’s apical side 

integrates with the neighbouring epithelial cells. (E) In vvl mutant embryos the ring 

gland primordia also become apoptotic. (F-G) vvl mutant embryos where apoptosis is 

prevented by the deletion of the apoptotic inducers. The ca and pg invaginate and go 

into EMT losing apical aPKC. Although both primordia coalesce (G) dorsal migration 

does not progress. (H) Schematic representation of the early ectodermal endocrine and 

respiratory primordia specification gene-network. In both networks Hox and STAT 

induce the expression of the early transcription factors. While all Hox genes can induce 

vvl expression only Dfd and Scr induce sna expression, while trunk Hox genes induce 

Trachealess expression. Sal represses trunk Hox expression in the head (H) preventing 

trh expression. White scale bar 50µm, yellow scale bars 10µm (See also Fig. S4). 
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Supplemental information 

Figure S1. Related to Figure 2. sna expression in the corpora allata and 

prothoracic gland. (A) In situ sna mRNA expression during embryogenesis. At 

blastoderm (st4) sna is activated in the mesoderm primordium, this expression soon 

disappears with sna becoming activated at st11 in specific cells including the ca and pg 

primordia (asterisks) before coalescence. Expression of sna is maintained during dorsal 

migration (st13) and ceases just before dorsal fusion (red asterisks show wing and 

haltere sna expression appearing as ring gland expression fades away at st15). 

Schematic representation of the genomic sna region including part of the neighbouring 

Tim17b2 gene, and the constructs and BAC elements used to localize the sna-ring gland 

enhancer. (C) Summary of ring gland activity of the different constructs. The Full 

upstream BAC and the BAC element deleting both distal and proximal shadow 

mesoderm enhancers maintain ring gland expression. The sna SQUISH BAC lacks ring 

gland expression but is capable of rescuing the germ band abnormalities of sna null 

mutant embryos without rescuing sna function in the ring gland. These data and the 

expression of a 6kb sna-lacZ reporter gene in the ring gland primordia, locates the 

region controlling sna expression in the ring gland to a 1.9 kb fragment. (D) Expression 

of the sna-rg enhancer drives strong levels of EGFP in the corpora allata and the 

prothoracic glands from st11 up to larval stages.  

 

Figure S2. Related to Figure 3. Hox gene requirement for corpora allata and 

prothoracic gland development. Dorsal views of late svp-lacZ embryos stained with 

anti-ßGAL (green) and a phm RNA probe (purple) to show the corpora allata and 

prothoracic gland in wild type (A), Dfd (B) or Scr mutant embryos (C). In the dorsal 
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region focused here, svp-lacZ also labels four cardiomyocites per segment in the aorta. 

In these stainings there is some unspecific labelling of the tracheal lumen. In Dfd 

mutants the corpora allata do not form (B) but the prothoracic glands (B’) develop 

normally. In Scr mutants the prothoracic glands do not form (C) but the corpora allata 

reach their normal destination (C’). Yellow scale bars 10µm. 

 

Figure S3. Related to Figure 3. Capacity of Hox genes to activate tracheal and ring 

gland markers. (A) In a Dfd, Scr double mutant embryo, ectopic expression of Ubx 

(blue) with a sal-Gal4 line rescues expression of vvl1+2 (red) in the Mx and Lb 

(asterisks in A’) and also induces ectopic Trh expression (purple in the close up shown 

in B). (C) Ectopic Abd-B expression (green) also rescues vvl1+2 expression (red in C 

and C´) in the Mx and Lb (asterisks in C’) and induces ectopic Trh expression (purple in 

D). (E) Ectopic Ubx expression rescues vvl1+2 expression but does not induce sna-rg-

EGFP (E’ asterisks). (F) In a wild type embryo, ectopic Antp expressed with sal-Gal4 

induces anterior Trh expression in T1 and Mx but does not eliminate the sna-rg 

expression driven by cephalic Hox genes (asterisks). (G-H) In sal mutant embryos there 

is ectopic Ubx expression (G) correlating with the formation of ectopic trachea 

observed in these embryos as shown by nuclear Tgo localization (H). (I) Ectopic 

expression of Ubx with sal-Gal4 induces trachea formation in T1 but not in the Mx and 

Lb segments probably due to endogenous Dfd and Scr expression in these segments 

(compare with B). (J) vvl1+2-EGFP embryos costained with Antp (red) show high 

Antp expression in the T2 tracheal pit and moderate levels in T1. (K-K’) In Dfd, Antp 

double mutant embryos vvl1+2 expression (red) is reduced from the Mx, T1 and T2 

segments correlating with the domains where Dfd and Antp proteins should be 

expressed. High levels of vvl1+2 expression are maintained in the Lb where Scr is 
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expressed. Intermediate levels of vvl1+2 expression are observed in T3-A5, which is the 

domain of Ubx and Abd-A expression. High levels of vvl1+2 are present in the Abd-B 

expression domain. Tgo nuclear localization (green in K) is not affected in the T2 

tracheal primordium despite the absence of Antp indicating that there is another 

mechanism to maintain Trh/Tgo expression in trunk segments besides the Hox proteins. 

White scale bars 50µm, purple scale bars 25µm. 

 

Figure S4. Related to Figure 4. JAK/STAT signalling requirement for Sna and Vvl 

expression in the ring gland and tracheae primordia. (A) Wild type embryo 

expressing sna-rg (green) and vvl1+2 (red in A'). (B) Df(1)os1A embryos lacking all 

three upd ligands required for JAK/STAT activation[33] show reduced sna-rg 

expression (asterisks in B) and vvl1+2 expression (red in B´). White scale bars 50µm. 

 

Supplementary movie 1. Primordia coalescence and dorsal migration. 

Lateral view of st11 to st14 sna-rg-EGFP homozygous embryos showing the 

coalescence and dorsal migration of the corpora allata and the prothoracic gland. Scale 

bar 50µm. 

 

Supplementary movie 2. Ring gland dorsal fusion. 

Dorsal view of st14 to st15 sna-rg-EGFP homozygous embryos showing the fusion of 

the contralateral corpora allata. Note the active formation of filopodia. Scale bar 10µm. 

 

 


















