provided by Digital.CSIC

Comprehensive Series in Photochemical and Photobiological Sciences

Singlet Oxygen

Applications in Biosciences and Nanosciences Volume 1

Edited by Santi Nonell and Cristina Flors

Chapter 12

Endogenous Singlet Oxygen Photosensitizers in Plants[†]

Juan B. Arellano*a and K. Razi Naqvi*b

^aInstituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain; ^bDepartment of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

*E-mail: juan.arellano@irnasa.csic.es, razi.naqvi@ntnu.no

Table of Contents

12.1.	Introdu	action	241
12.2.	Mecha	nisms of Singlet Oxygen Production in Plants	241
	12.2.1.	Photosensitization by Chlorophyll	241
	12.2.2.	Chemical Production by Lipid Hydroperoxides	242
12.3.	Endoge	enous Singlet Oxygen Production by Photosynthetic	
	Compl	exes of Plants	243
	12.3.1.	Antenna Complexes	243
	12.3.2.	Photosystem II Reaction Center (PSII RC)	246
	12.3.3.	Cytochrome $b_6 f$	249
	12.3.4.	Chlorophyll Derivatives and Free Chlorophyll Molecules .	249
12.4.	Prevention of Singlet Oxygen Formation in Plants		251
	12.4.1.	Triplet Excitation Energy Transfer from Chlorophyll	
		Molecules to Carotenoid Molecules	251
	12.4.2.	Nonphotochemical Quenching	252
	12.4.3.	Changes in Redox Potential of Plastoquinone A	253

 † This chapter is dedicated to the memory of María Cabeza Arellano (1964–2015), a dedicated and well-beloved teacher of biology.

Singlet Oxygen: Applications in Biosciences and Nanosciences Edited by Santi Nonell and Cristina Flors © European Society for Photobiology 2016 Published by the Royal Society of Chemistry, www.rsc.org

240	JUAN B. ARELLANO AND K. RAZI NA	QVI	
12.5.	Deactivation of Singlet Oxygen	254	
	12.5.1. Physical Deactivation		
	12.5.2. Chemical Quenching: β-Carotene Products as Signaling		
	Molecules	257	
	12.5.3. Lipophilic Quenchers: Can α-Tocopherol Outperform		
	β-Carotene in Photoprotecting PSII RC?	258	
	12.5.4. Hydrophilic Quenchers	260	
12.6.	Singlet Oxygen Diffusion in Plants	261	
	12.6.1. Can Singlet Oxygen Be a Signaling Molecule Itself Based		
	on Its Diffusion Distance?	261	
	Acknowledgements		
	References		

12.1. Introduction

Since all preliminary matters concerning the reactivity and photophysical properties of singlet oxygen ($^{1}O_{2}$) have already been dealt with in the preceding chapters, we need not dwell on these issues here, apart from reminding the reader that $^{1}O_{2}$ formation through photoexcitation of a ground-state oxygen molecule (O_{2}) has a negligibly small probability because the corresponding radiative transition is doubly forbidden, as it violates the selection rule for spin as well as that for electric-dipole radiation. This leaves photosensitization as the main feasible means of generating $^{1}O_{2}$. We proceed therefore to discuss the sensitization mechanisms through which $^{1}O_{2}$ is formed in plants. Additionally, we briefly introduce the formation and decomposition of some derivatives of lipid hydroxyperoxides as a possible source of chemical $^{1}O_{2}$ production in plants. The chapter also deals with photoprotection processes by which $^{1}O_{2}$ formation is prevented or $^{1}O_{2}$ is efficiently deactivated after its formation. Finally, the distance over which $^{1}O_{2}$ can diffuse in a viscous cellular medium, such as that found inside chloroplasts, is analyzed.

12.2. Mechanisms of Singlet Oxygen Production in Plants

12.2.1. Photosensitization by Chlorophyll

A molecule with a singlet ground state can act as a photosensitizer (PS) when it is in its lowest triplet excited state (³PS*) or in its lowest singlet excited state (1PS*). The latter case will not be discussed here, because the singlet-state lifetime (τ_s^0) of the relevant PSs is too short, and the energy gap between ¹PS* and ³PS* too small, to warrant contemplation in the present context. In order to be an efficient PS, a molecule must have a large molar absorption coefficient in at least one region of the visible spectrum, a large quantum yield for intersystem crossing (ISC) denoted as $\Phi_{\rm T}$, and a long triplet lifetime, $\tau_{\rm T}^0$. Among photosynthetic pigments, chlorophyll (Chl) molecules are by far the most important PSs in plants, although their derivatives, such as pheophytin (Phe), also meet all the above requirements. Photoexcitation of a Chl molecule to a high-lying level in the singlet manifold (Soret or Q_x band) is followed by a rapid (within a few ps or even faster) internal conversion to the lowest singlet excited state (Q_v ¹Chl*), characterized by a lifetime (τ_S^0) of a few ns. In the absence of a fast competing event, which may be singlet excitation energy transfer (EET) to another Chl molecule or transfer of an electron to a neighboring molecule, the Q_v state of Chl makes a transition either to the ground state (through internal conversion or fluorescence emission), or to the first triplet excited state through ISC, leading to the formation of ³Chl* (eqn (12.1)).

$$Chl + hv \rightarrow {}^{1}Chl^* \rightarrow {}^{3}Chl^*. \tag{12.1}$$

In photosynthetic antenna complexes of plants, ISC is the only route for the formation of ³Chl*, but in the reaction center (RC) of photosystem II (PSII),