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Abstract 10 

The antimicrobial capability of three water extracts of citrus peels was evaluated 11 

against S. Typhimurium and E. coli O157:H7 at various concentrations (0.5, 1, 5, 10%) 12 

and temperatures (5, 10, 22°C) in a reference medium. The best of them was mandarin 13 

by-product, achieving a maximum inactivation level against S. Typhimurium (8 log10 14 

cycles) with 5% at 5°C. Also, this by-product had the highest total polyphenol content. 15 

Mandarin by-product showed a bactericidal effect in a food matrix also at 5°C (≈2 log10 16 

cycles). All results were adjusted to the Weibull model and the b values indicated that 17 

the higher concentration of mandarin, the greater the inactivation rate in reference 18 

medium, without significant differences between 5 and 10%. Similarly, in the food 19 

matrix, the inactivation rate of S. Typhimurium was higher when the mandarin by-20 

product was added. Therefore, the mandarin by-product could be used as a control 21 

measure of S. Typhimurium in pasteurized products, which are stored under 22 

refrigeration. 23 

 24 
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1. Introduction 34 

Citrus is the largest fruit crop worldwide, with an annual production of approximately 35 

100 million tons. The main world producers are Brazil, the USA and Mediterranean 36 

countries (Djilas, 2009; Ghafar et al., 2010). The industrial production of juices and 37 

other citrus derivatives generates approximately 15 million tons of citrus waste a year 38 

worldwide, which mainly consists of peel, seeds, and the fruit pulp. Citrus waste is 39 

usually consigned to landfill or incineration, which generates negative effects on the 40 

environment and a cost to the producers (O’Shea et al., 2012). 41 

This valueless citrus waste can be considered as a renewable source of raw material 42 

whose use in various industrial fields could have a double benefit, economic and 43 

technological, as a result of its valorization (Schieber et al., 2001; Martín-Luengo et al., 44 

2011). Since 2010 generalized agri-food by-product valorization has been a European 45 

Union requirement (EUROSTAT, 2010) and many research studies nowadays are 46 

focused on recovering, revaluing, and recycling these by-products. One way of 47 

valorizing these by-products is the formulation of new products with added nutritional 48 

value. Citrus by-products are rich in functional compounds such as carotenoids and 49 

flavonoids, among others (O’Shea et al., 2012), whose antioxidant, anticarcinogenic, 50 

antiviral, and anti-inflammatory properties are well known. Citrus derivative compounds 51 

have an important nutritional and flavoring value, and an antimicrobial capability has 52 

also been attributed to some of them, mainly due to ferulic acid, hydrocinnamic acid, 53 

yaniding glucoside, hisperidin, vitamin C, carotenoid, and naringin (Ghafar et al., 2010). 54 

In this sense, they could be used like natural antimicrobials to control the growth of 55 

foodborne pathogens, replacing the chemical compounds which are used currently. 56 

Also, they could be used as an additional control measure of the microbial growth in 57 

situations of cold chain breakdown in pasteurized food that is stored in refrigeration 58 

(Sanz-Puig et al., 2015).    59 
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In this context, the aim of this study was to evaluate the antimicrobial effect of water 60 

extracts of by-products of citrus fruits – mandarin, orange, and lemon – against two of 61 

the foodborne pathogens of most concern that are found in low-acid beverages: 62 

Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7. 63 

 64 

2. Material and Methods 65 

2.1 Microbiology 66 

Pure cultures of S. Typhimurium (CECT 443) and E. coli O157:H7 (CECT 5947) were 67 

provided freeze-dried by the Spanish Type Culture Collection. Both cultures were 68 

rehydrated with 10 mL of Tryptic Soy Broth (TSB) (Scharlab Chemie, Barcelona, 69 

Spain). After 20 minutes, the rehydrated culture was transferred to 500 mL of TSB and 70 

incubated at 37°C with continuous shaking at 200 rpm for 14 hours to obtain cells in a 71 

stationary growth stage. The cells were centrifuged twice at 4000 × g at 4°C for 15 72 

minutes and then resuspended in TSB. After the second centrifugation, the cells were 73 

resuspended in 20 mL of TSB with 20% glycerol, and then dispensed in 2-mL vials with 74 

a final concentration of 108 colony forming units per milliliter (CFU/mL). The 2-mL 75 

samples were immediately frozen and stored at –80°C until needed for the kinetic 76 

inactivation studies. 77 

2.2 Citrus by-products 78 

Dehydrated peel residues from mandarin (Citrus reticulata), orange (Citrus sinensis) 79 

and lemon (Citrus limon) were provided from primary production (Indulleida, S.A.). 80 

Each raw by-product was tested to screen its bacteriological quality. The 81 

bacteriological analysis determined the presence/absence of microbial contamination 82 

with Listeria monocytogenes and Bacillus cereus (Gram-positives), or E. coli O157:H7 83 

and S. Typhimurium (Gram-negatives), and was carried out according to the 84 
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procedures described by Aycicek et al. (2006). No samples studied presented 85 

contamination with any of the microorganisms tested. 86 

2.3 Total Phenolic Compounds 87 

The total phenol content of the citrus by-products was determined 88 

spectrophotometrically according to the Folin–Ciocalteu colorimetric method (Singleton 89 

and Rossi, 1965). Gallic acid calibration standards with concentrations of 0, 100, 200, 90 

300, 400, 500, 600, 700, 800, and 1000 ppm were prepared. Three mL of sodium 91 

carbonate solution (2% (w/v)) (Sigma-Aldrich Co. LLC, USA) and 100 μL of Folin-92 

Ciocalteu reagent (1:1 (v/v)) (Sigma-Aldrich Co. LLC, USA) were added to an aliquot of 93 

100 μL from each gallic acid standard (Sigma-Aldrich Co. LLC, USA) or sample tube. 94 

The mixture was shaken and allowed to stand at room temperature in the dark for 1 h. 95 

Absorbance was measured at 750 nm using a Lan Optics Model PG1800 96 

spectrophotometer (Labolan, Spain), and the results were expressed as mg of gallic 97 

acid equivalents (GAE)/L. 98 

2.4 Antimicrobial assay 99 

Buffered peptone water (Scharlab Chemie, Barcelona, Spain) (0.1% (w/v)) was used 100 

as a reference substrate in the present study. For the assessment of citrus by-product 101 

antimicrobial capability, 1 mL of each vial of stock culture was added to reference 102 

substrate at a final concentration of 107 CFU/mL. The inoculated medium (buffered 103 

peptone water) was supplemented with dehydrated peel residues at different 104 

concentrations (0.5, 1, 5, and 10% (w/v)). All the samples were then incubated at 105 

different temperatures (5, 10, and 22°C). At regular time intervals (hours), the cell 106 

suspension for each sample was evaluated by plate count in Tryptic Soy Agar (TSA) 107 

(Scharlab Chemie, Barcelona, Spain) after serial dilution with 0.1% (w/v) buffered 108 

peptone water. The plates were incubated at 37°C for 24 hours. Each dilution was 109 
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plated in duplicate. The experiments were carried out in triplicate and the plate counts 110 

were used for CFU/mL enumeration. 111 

A second set of experiments was conducted. The most effective antimicrobial of the 112 

three tested in the reference medium was evaluated against S. Typhimurium in various 113 

formulated beverages. 114 

Finally, in order to compare the results, the behavior of both microorganisms under 115 

exposure to citrus by-product was characterized by estimating the minimal inhibitory 116 

concentration (MIC), being the lowest concentration of antimicrobial substance that is 117 

able to inhibit microbial growth (Guillier et al., 2007). 118 

Also, the minimal bactericidal concentration (MBC) was estimated, being the lowest 119 

concentration of antimicrobial substance that is able to exert a bactericidal effect 120 

against the microorganism under study (Bär et al., 2009). 121 

2.5 Food Matrix 122 

The antimicrobial potential of the most bactericidal citrus by-product was tested against 123 

both pathogens in complex food matrices. Firstly, an oat beverage (OB) was used in 124 

this set of experiments. The beverage used was supplemented with the most effective 125 

citrus by-product and compared with the non-supplemented beverage. The 126 

concentration of the by-product was the minimum bactericidal concentration (MBC), 127 

and the incubation temperature was 5°C, a typical temperature for storage of 128 

beverages of this kind. Secondly, an oat beverage containing 32.5% papaya, 10% 129 

mango, and 7.5% orange (OB-FM) was used. As in the case of the oat beverage, this 130 

beverage was supplemented with the most effective antimicrobial by-product using the 131 

minimum bactericidal concentration (MBC). The results were compared with those 132 

obtained in the non-supplemented OB-FM beverage. 133 
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The food matrices considered, OB (supplemented/not supplemented) and OB-FM 134 

(supplemented/not supplemented with the most bactericidal by-product), were 135 

inoculated with an initial microbial population of 108 CFU/mL. The bacterial 136 

growth/death during refrigerated storage was monitored by means of viable cell counts. 137 

2.6 Modeling of microorganism inactivation 138 

The microbial behavior was fitted to a Weibull equation (Peleg and Cole, 1998) to 139 

obtain a mathematical description of the kinetics of bacterial inactivation by the citrus 140 

by-product: 141 

                       (1) 

 

 

 

where t is the time (hours), S is the survival fraction, i.e., the quotient between the cell 142 

concentration at time t (Nt) (CFU/mL) and the initial cell concentration (N0) (CFU/mL); b 143 

is the scale factor and n is the form factor. 144 

2.7 Data analysis and model evaluation 145 

The statistical analysis was performed with STATGRAPHICS Centurion XV (version 146 

15.1.03; STATGRAPHICS, Warrenton, VA). 147 

This analysis included average and standard deviation calculations for the three 148 

repetitions and an ANOVA analysis to test significant differences depending on 149 

incubation conditions. The goodness of fit of the model was assessed by using the 150 

adjusted regression coefficient (adjusted-R2) (López et al., 2004). 151 

 152 

3. Results and Discussion 153 

3.1 Antimicrobial capacity of Citrus by-products against S. Typhimurium 154 
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The antimicrobial effect of the mandarin, orange, and lemon by-products was evaluated 155 

against S. Typhimurium cells during 96 hours of incubation at 5 and 10°C and 24 hours 156 

of incubation at 22°C. Figure 1 shows the log cycle reduction achieved for each 157 

combination. 158 

With regard to the effect of temperature, S. Typhimurium growth was inhibited in non-159 

supplemented reference medium (0%) with refrigerated incubation of 5°C, while at 160 

10°C detectable growth was observed after 96 hours, and it was higher at 22°C. 161 

Therefore it can be concluded that low temperature acts as an effective bacterial 162 

proliferation barrier against S. Typhimurium, which is in agreement with the findings of 163 

other authors (Okada et al., 2013). 164 

In general, all by-products tested reduced the microbial load of S. Typhimurium 165 

regardless of the incubation temperature, with a maximum reduction very close to 8 166 

log10 cycles at 5% and 10% mandarin by-product and 5 and 10°C incubation 167 

temperature. We note that mandarin was the most effective by-product, followed by 168 

orange and lemon. 169 

With regard to the by-product concentration, only 5 and 10% of orange and lemon by-170 

products could be considered as an additional control measure for S. Typhimurium in 171 

the case of a cold chain break (22°C), at least for 24 hours. In contrast, for mandarin 172 

by-product, all concentrations tested could be used. In the case of temperature abuse 173 

(10°C), 5 and 10% of by-product could also be considered as an additional control 174 

measure for this microorganism, at least for 96 hours, although in orange by-product no 175 

significant differences (p ≤ 0.05) were observed among the concentrations studied. 176 

An ANOVA analysis concluded that both incubation temperature and by-product 177 

concentration had a significant impact (p ≤ 0.05) on S. Typhimurium cell survival. As 178 

can be seen in Figure 1, at all temperatures an increase in citrus by-product 179 

concentration was accompanied by greater microorganism growth inhibition or 180 
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inactivation. However, no significant differences were observed between inactivation 181 

levels achieved when citrus by-product was added to the medium at 5–10%, with 182 

inactivation levels very close to 8 log10 cycles at incubation temperatures of 5 and 10°C 183 

in samples with mandarin by-product. 184 

The antimicrobial potential of the by-products studied could be particularly relevant 185 

under the concept of hurdle barriers, acting as an additional measure to control 186 

bacterial proliferation in situations of abuse temperature (10°C) or in the case of cold 187 

chain breakdown (22°C) in pasteurized food products which must be storage at 188 

refrigeration temperatures. They can be added to this kind of products (fruit or 189 

vegetable creams or beverages) like an ingredient and control the microbial growth 190 

during their storage period. However, these by-products have a low but characteristic 191 

taste and odour that could not be accepted by the consumers at high concentrations. 192 

Therefore, is important to carry on a sensorial study with the aim to find the 193 

concentration of by-product with an antimicrobial capability and sensorial acceptance 194 

(Valero & Giner, 2006) and the food products where it could be added.   195 

The minimum inhibitory concentration (MIC) and the minimum bactericidal 196 

concentration (MBC) for each citrus by-product in relation to incubation temperature 197 

were calculated (Table 1). S. Typhimurium is highly sensitive to contact with citrus by-198 

products, with very low MIC and MBC values (0.5%). The microbial sensitivity of S. 199 

Typhimurium depends on both the temperature and the citrus by-product type (p < 200 

0.05). The lowest MBC was obtained for mandarin at 5 and 22°C; while lemon and 201 

orange required a smaller MBC than mandarin to be effective against S. Typhimurium 202 

when the incubation temperature was 10°C. 203 

Generally, the MBC at refrigeration temperatures was lower than at room temperature 204 

(22°C). This may be because refrigeration temperatures have a bacteriostatic capacity 205 

and exert a synergistic or additive effect with the by-product concentration. Other 206 



10 
 

authors have shown the bacteriostatic capacity of refrigeration temperatures and have 207 

attributed it to a stress response mechanism that is activated in microorganisms at low 208 

temperatures (Shapiro and Cowen, 2012). 209 

3.2 Antimicrobial capacity of Citrus by-products against E. coli O157:H7 210 

The results for the effect of the citrus by-products on E. coli O157:H7 are shown in 211 

Figure 2. 212 

As can be seen, low temperature (5°C) inhibited E. coli O157:H7 cell growth in 213 

reference medium (0% by-product), while at 10 (abuse of temperature) and 22°C (cold 214 

chain break) the microorganism was able to grow. Focusing on the effect of by-product 215 

concentration, 5 and 10% mandarin and orange by-product had a bactericidal effect (≥ 216 

0.5 log10 cycles), reducing E. coli O157:H7 counts by a maximum of 1.5 log10 cycles. 217 

The effect of 5 and 10% concentrations on the bacteriostatic or bactericidal effect at 218 

temperatures other than 5°C depended on the citrus by-product used. Concentrations 219 

lower than 5% appear to have a bacteriostatic effect, slowing down growth of the 220 

microorganisms. Note that at 10°C E. coli O157:H7 started to grow and addition of the 221 

mandarin by-product showed a bacteriostatic capacity. In contrast, addition of the 222 

orange and lemon by-products did not have any antimicrobial (bacteriostatic or 223 

bactericidal) effect at this temperature. At 22°C, the by-products studied had a 224 

bacteriostatic effect against E. coli O157:H7 when they were added at 5% (w/v), and 225 

addition of mandarin by-product at 10% (w/v) had a bactericidal effect, achieving a 226 

maximum reduction of 1.6 log10 cycles. 227 

The mandarin by-product also showed the highest antimicrobial potential against E. coli 228 

O157:H7, with reductions of 1.3 and 1.6 log10 cycles at 5 and 22°C, respectively. The 229 

orange and lemon by-products achieved a bactericidal effect, with reductions ranging 230 

from 0.5 to 1 log10 cycles at refrigeration temperatures, and both exerted a 231 

bacteriostatic effect at 22°C. 232 
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It is important to note that the effect of the by-products depended on the microorganism 233 

tested and the polyphenol structure (Taguri et al., 2004; Daglia, 2011). In our case, S. 234 

Typhimurium was more sensitive than E. coli O157:H7 to the various by-products used. 235 

This might indicate that each antimicrobial could be specific against a particular 236 

microorganism or group of microorganisms. 237 

An ANOVA analysis of data for E. coli O157:H7 revealed that for all the by-products 238 

studied both incubation temperature and by-product concentration had a significant 239 

influence on the antimicrobial activity against E. coli O157:H7 (p < 0.05), achieving the 240 

highest antimicrobial effect by 5 and 10% by-product addition, without significant 241 

differences between them. 242 

Table 2 shows the MIC and MBC of the citrus by-products against E. coli O157:H7 for 243 

each combination of the factors (temperature – concentration) tested. The MIC values 244 

are 0.5% at all the temperatures studied, and the MBC values are between 1 and 5%, 245 

both being influenced by the incubation temperature and the type of citrus by-product 246 

added. 247 

The mandarin by-product had a bactericidal effect at 5°C, a bacteriostatic effect at 248 

10°C, and both at 22°C. However, although the orange and lemon by-products have 249 

the same MIC and MBC values as the mandarin by-product at 10 and 22°C, they 250 

showed a lower antimicrobial capacity expressed as log10 cycle reduction. Therefore, 251 

under the conditions studied, it is possible to conclude that E. coli O157:H7 has less 252 

sensitivity to the citrus by-products studied than S. Typhimurium. 253 

It is well known that the antimicrobial effect of many natural products in a real or 254 

buffered medium is influenced by environmental factors (e.g., pH and temperature 255 

conditions), the concentration of the natural ingredient, and the sensitiveness of the 256 

microbe (e.g., strain, virulence) (Bajpai, 2012). 257 
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Table 3 shows the pH values for the citrus by-products tested at concentrations of 5 258 

and 10%. Although it has traditionally been accepted that pH plays an important part in 259 

inhibiting cellular activity, the table shows that the citrus by-product with the lowest pH 260 

value is lemon, while the by-product with the best antimicrobial effect against the 261 

microorganisms under study is mandarin. This result appears to indicate that pH is not 262 

the most important factor that influences citrus by-product antimicrobial activity. 263 

3.3 Polyphenol concentration of Citrus by-products 264 

The bacteriostatic and bactericidal capacities of citrus by-products could be 265 

significantly influenced by their composition, mainly because of their polyphenol 266 

content. Numerous studies show that they have many bioactive compounds such as 267 

polyphenols, including ferulic acid, hydrocinnamic acid, cyaniding glucoside, hisperidin, 268 

carotenoid, and naringin, in their peel and seeds, which have antioxidant and 269 

antimicrobial properties (Ghafar et al., 2010). Table 4 shows the polyphenol content 270 

measured for each citrus by-product under study. As can be seen in the table, the 271 

mandarin by-product has the highest total polyphenol content, followed by orange and 272 

then lemon. In this case, the total polyphenol content coincides with the antimicrobial 273 

capacity of the by-products: the citrus by-product with the highest polyphenol content, 274 

mandarin, is the one with the greatest antimicrobial capacity, followed by the orange 275 

and lemon by-products. Therefore we can conclude that polyphenol content may be 276 

directly related to antimicrobial activity, in accordance with other studies (Devi et al., 277 

2008). 278 

3.4 Mathematical modeling of S. Typhimurium and E. coli O157:H7 inactivation 279 

The experimental curves obtained for S. Typhimurium and E. coli O157:H7 were fitted 280 

to a Weibull distribution function, owing to its simplicity and robustness for describing 281 

inactivation kinetics (De Oliveira et al., 2013). 282 
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The results of the fitting are shown in Tables 5 and 6. The b value is related to 283 

inactivation rate: the higher the b value, the faster the microorganism dies. The Weibull 284 

kinetic b values for S. Typhimurium (Table 5) increase with higher by-product 285 

concentrations, achieving the maximum inactivation rate at 5% by-product 286 

concentration, without significant differences (>0.05) between the b values at 5 and 287 

10% by-product concentration. 288 

The same pattern occurs in the E. coli O157:H7 inactivation kinetics. As can be seen in 289 

Table 6, at lower by-product concentrations the b values are close to 0 or negative, 290 

owing to microorganism growth. However, at higher citrus by-product concentrations 291 

the b value increases, without significant differences between 5 and 10% (w/v) 292 

addition. 293 

Therefore the concentration of citrus by-product added affects the inactivation rate of 294 

the two Gram-negative microorganisms studied. In contrast, there does not appear to 295 

be a relationship between incubation temperature and b value, and, therefore, with the 296 

rate of microorganism inactivation. 297 

3.5 Antimicrobial potential of mandarin by-product incorporated in an oat-based 298 

beverage 299 

According to the results in the previous sections, mandarin (MND) had the highest 300 

antimicrobial potential among the citrus by-products studied in reference medium. 301 

Table 7 shows the inactivation levels reached in S. Typhimurium and E. coli O157:H7 302 

in oat beverage (OB) supplemented or not supplemented with mandarin during the 303 

refrigerated storage period of 144 hours at 5°C. Although temperature produces some 304 

log reductions in the microbial load, an additive effect can be attributed to the mandarin 305 

by-product added to the real beverages, producing an additional reduction for S. 306 

Typhimurium of 0.47 log10 cycles when MND was incorporated in OB and 0.68 log10 307 

cycles when MND was added to oat-based beverage with fruit juice mixture (OB+FM); 308 
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and for E. coli O157:H7 additional reductions close to 1.18 log10 cycles were achieved 309 

when MND was incorporated in OB, and 0.65 log10 cycles when MND was added to 310 

OB+FM. Although MND had higher effectiveness against S. Typhimurium in reference 311 

medium, E. coli O157:H7 was more sensitive when MND was added to the food 312 

matrices studied. It can be observed that the inactivation levels achieved for both 313 

microorganisms in OB+FM were significantly (p ≤ 0.05) higher than those achieved in 314 

OB. Some research studies have shown that many fruits are rich in bioactive 315 

compounds with antioxidant properties, such as polyphenols, which could also have 316 

additional antimicrobial properties against foodborne pathogens (Ghasemi et al., 2009; 317 

Mandalari et al., 2007). 318 

According to the results obtained, the bactericidal effect of mandarin on both 319 

microorganisms was higher in reference medium than in food matrix. When the 320 

mandarin by-product was added to a real matrix, its antimicrobial effectiveness against 321 

S. Typhimurium was 75% less than when it was added to the reference medium. The 322 

interference of the real substrate was remarkable in the case of the S. Typhimurium 323 

growth/death pattern under refrigeration using OB as the food matrix. The addition of 324 

MND (5% (w/v)) in reference medium resulted in a reduction of 8 log10 cycles for S. 325 

Typhimurium, while incorporation of this by-product in OB only produced a reduction 326 

close to 1 log10 cycle under the same time and temperature storage conditions (96 h, 327 

5°C). Several authors attribute to food matrix complexity a protective effect that 328 

reduces the effectiveness of many control treatments (Gutierrez et al., 2008). The 329 

protective effect of a lipid-rich substrate such as oat milk could affect the antimicrobial 330 

potential of mandarin against S. Typhimurium (Di Pascua et al., 2006). 331 

The addition of a papaya, mango, and orange juice mixture to the beverage studied 332 

significantly increased the inactivation values at each storage point recorded for both 333 

microbial populations. After the complete storage period, S. Typhimurium inactivation 334 

was almost doubled (increasing from 0.74 log10 cycles in OB to 1.25 in OB+FM) by the 335 
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additional effect of the fruit juices. This may be because mango, orange, and papaya 336 

are fruits rich in bioactive substances such as polyphenol compounds (Tomás-337 

Barberán and Espín, 2001), which might produce an antimicrobial effect against the 338 

microorganisms studied. Also, the acid pH of the beverage (pH 4.6) might contribute to 339 

the antimicrobial effect shown when the fruit juice mixture was added. The 340 

supplementation of OB+FM with 5% (w/v) MND increased the final S. Typhimurium 341 

inactivation level to a maximum of 1.85 log10 cycles compared with the 1.12 log10 342 

cycles achieved in OB+MND, and it increased the maximum E. coli O157:H7 343 

inactivation level to 2.22 log10 cycles compared with the 2.01 log10 cycles achieved in 344 

OB+MND. 345 

3.6 Mathematical modeling of antimicrobial effect of mandarin by-product addition in an 346 

oat-based beverage 347 

The results obtained for microbial inactivation in the oat-based beverage and oat-based 348 

beverage with fruit juice mixture, both supplemented/not supplemented with mandarin 349 

by-product addition, were fitted to a Weibull distribution function and their kinetic 350 

parameters were obtained. The b and n values obtained are shown in Table 8. In all 351 

cases the n values are below 0, indicating a concave survival pattern for the 352 

microorganisms studied in the beverage. With regard to the scale factor, the b values in 353 

the fruit juice mixture were higher than those obtained in the oat beverage, indicating 354 

the influence of the juice mixture on the microbial inactivation response. The addition of 355 

mandarin increased inactivation rates in both OB and OB+FM, with a maximum of 356 

0.571 ± 0.006 for S. Typhimurium inactivation and 0.802 ± 0.026 for E. coli O157:H7 357 

inactivation in OB+FM supplemented with mandarin by-product. 358 

 359 

4. Conclusions 360 
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In conclusion, the three citrus by-products under study showed an antimicrobial effect 361 

against S. Typhimurium. The maximum reduction level was achieved by the mandarin 362 

by-product, followed by the orange and lemon by-products. 363 

The same order can be observed in their polyphenol content, so there may be a 364 

relationship between the polyphenol content of the citrus by-products and their 365 

antimicrobial activity. 366 

Also, the mandarin by-product was able to exert an antimicrobial effect both on a 367 

reference medium (8 log10 cycles for S. Typhimurium and 1.6 log10 cycles for E. coli 368 

O157:H7) and on a real food matrix, an oat-based beverage supplemented/not 369 

supplemented with a fruit juice mixture (≈2 log10 cycle reductions for S. Typhimurium 370 

and E. coli O157:H7). Therefore this by-product could be used as an ingredient for 371 

technological purposes owing to its potential to act as an additional control measure 372 

inhibiting bacterial proliferation, e.g., in pasteurized foods, which have limited 373 

refrigerated storage. 374 

 375 
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Figure Captions 

Figure 1. Inactivation levels (Log10 (Nf/N0)) of S. Typhimurium in contact with various 

(0, 0.5, 1, 5, 10%) citric by-products concentrations: mandarin (a), orange (b), and 

lemon (c) in buffered peptone water, incubated at different temperatures (5, 10, and 

22°C). 

 
Figure 2. Inactivation levels (Log10 (Nf/N0)) of E. coli O157:H7 in contact with various 

(0, 0.5, 1, 5, 10%) citric by-product concentrations: mandarin (a), orange (b), and 

lemon (c) in buffered peptone water, incubated at different temperatures (5, 10, and 

22°C). 

 



Table 1. Minimum inhibitory concentration (MIC) and Minimum bactericidal 

concentration (MBC) for S. Typhimurium in the conditions tested. No significant effects 

(–). 

S. Typhimurium 

Temperature (°C) By-product MIC (%) MBC (%) 

 
5 
 

Mandarin – 0.5 

Orange – 1 

Lemon – 1 

 
10 

 

Mandarin 0.5 5 

Orange – 0.5 

Lemon – 0.5 

 
22 

 

Mandarin – 0.5 

Orange 0.5 5 

Lemon 0.5 5 

 

Table 1



 



Table 2. Minimum inhibitory concentration (MIC) and Minimum bactericidal 

concentration (MBC) for E. coli O157:H7 in the conditions tested. No significant effects 

(–). 

E. coli O157:H7 

Temperature (°C) By-product MIC (%) MBC (%) 

 
5 
 

Mandarin – 5 
Orange – 1 
Lemon – 5 

 
10 

 

Mandarin 0.5 – 
Orange 0.5 5 

Lemon – 5 

 
22 

 

Mandarin 0.5 5 
Orange 0.5 – 
Lemon – 5 

 

 

Table 2



Table 3. pH values measured for mandarin, orange, and lemon by-products at 
concentrations of 5 and 10%. 
 

  Mandarin Orange Lemon 

 5% 10% 5% 10% 5% 10% 

pH 4.39±0.02 4.24±0.01 4.85±0.04 4.54±0.02 3.92±0.06 3.77±0.06 

 

Table 3



Table 4. Total polyphenol content in by-product extracts. 
 

Citrus by-product 
Polyphenol content 

(mg gallic acid/L) 

Mandarin 10% 5111.50 ± 201.93 

Orange 10% 4809.72 ± 287.47 

Lemon 10% 4600.00 ± 20.00 

 

Table 4



Table 5. Weibull kinetic values for S. Typhimurium inactivation under the citrus by-product effect at various concentrations (% (w/v)) and 
temperatures (°C). 

% By-product 0% 0.5% 1% 5% 10% 

MANDARIN 

5 °C 

b 0.013±0.017 0.008±0.004 0.132±0.077 1.019±0.118 0.915±0.126 

n 0.804±0.434 1.277±0.144 0.776±0.148 0.420±0.027 0.445±0.040 

R
2 

0.904 0.998 0.956 0.965 0.957 

10 °C 
 

b -0.005±0.054 -0.103±0.153 -0.007±0.022 1.935±0.100 1.668±0.151 

n 0.285±0.159 0.580±0.668 0.558±0.174 0.273±0.010 0.333±0.019 

R
2
 0.908 0.905 0.913 0.951 0.958 

22 °C 

b -0.005±0.001 0.036±0.024 0.005±0.004 0.428±0.026 0.300±0.001 

n 1.796±0.053 1.0395±0.265 1.774±0.313 0.510±0.030 0.554±0.012 

R
2
 0.948 0.952 0.979 0.979 0.960 

ORANGE 

5 °C 

b 0.009±0.011 0.004±0.005 0.068±0.045 0.350±0.009 0.285±0.010 

n 0.804±0.362 1.839±0.874 1.226±1.274 0.512±0.011 0.561±0.012 

R
2
 0.928 0.948 0.960 0.940 0.941 

10 °C 

b -0.098±0.139 0.349±0.141 0.409±0.001 0.303±0.036 0.008±0.005 

n 0.814±1.035 0.387±0.081 0.301±0.013 0.382±0.057 1.178±0.153 

R
2
 0.905 0.941 0.951 0.901 0.959 

22 °C 

b -0.005±0.001 -0.014±0.009 -0.034±0.005 0.414±0.009 0.421±0.019 

n 1.796±0.053 0.674±0.200 0.337±0.464 0.301±0.012 0.294±0.020 

R
2
 0.948 0.961 0.949 0.964 0.937 

LEMON 

5 °C 
 

b 0.026±0.012 0.011±0.011 0.057±0.015 0.007±0.004 0.033±0.030 

n 0.418±0.183 0.784±0.175 0.519±0.086 1.090±0.125 0.798±0.223 

R
2
 0.940 0.953 0.931 0.935 0.948 

10 °C 

b -0.039±0.039 0.023±0.011 0.027±0.012 0.030±0.026 0.003±0.004 

n 0.458±0.130 0.570±0.142 0.608±0.155 0.701±0.131 1.265±0.396 

R
2
 0.934 0.910 0.913 0.951 0.942 

22 °C 

b -0.005±0.001 -0.014±0.009 -0.041±0.004 0.478±0.113 0.384±0.040 

n 1.796±0.053 0.674±0.200 0.170±0.228 0.320±0.092 0.416±0.057 

R
2
 0.948 0.961 0.954 0.941 0.916 

 
* The b value is negative when the microorganism grows and positive when the microorganism dies. 

 

Table 5



Table 6. Weibull kinetic values for E. coli O157:H7 inactivation under the citrus by-product effect at various concentrations (% (w/v)) and 
temperatures (°C). 

% By-product 0% 0.5% 1% 5% 10% 

MANDARIN 

5 °C 

b 0.017±0.008 0.027±0.013 0.033±0.011 0.107±0.016 0.090±0.010 

n 0.561±0.067 0.548±0.230 0.855±0.074 0.613±0.044 0.652±0.018 

R
2 

0.925 0.921 0.928 0.938 0.931 

10 °C 

b -0.001±0.001 -0.009±0.016 -0.027±0.037 -0.001±0.001 -0.018±0.006 

n 1.460±0.284 0.663±0.497 0.859±0.561 3.796±0.968 0.344±0.230 

R
2
 0.960 0.949 0.955 0.930 0.953 

22 °C 

b -0.036±0.002 -0.015±0.021 -0.116±0.037 0.358±0.178 0.291±0.036 

n 1.138±0.026 1.798±0.912 0.180±0.253 0.450±0.188 0.544±0.041 

R
2
 0.973 0.921 0.953 0.942 0.912 

ORANGE 

5 °C 

b 0.005±0.006 0.001±0.001 0.014±0.019 0.001±0.001 0.001±0.002 

n 1.013±0.547 1.385±0.501 1.849±0.470 1.843±0.051 1.532±0.569 

R
2
 0.941 0.945 0.965 0.957 0.921 

10 °C 

b -0.001±0.001 0.029±0.028 0.033±0.007 0.023±0.009 0.079±0.013 

n 1.457±0.280 0.403±0.239 0.437±0.035 0.559±0.130 0.438±0.060 

R
2
 0.960 0.966 0.939 0.963 0.921 

22 °C 

b -0.036±0.002 -0.038±0.010 -0.051±0.057 0.020±0.028 0.029±0.069 

n 1.138±0.026 1.012±0.071 0.647±0.154 1.078±1.265 0.347±0.490 

R
2
 0.973 0.922 0.970 0.939 0.925 

LEMON 

5 °C 

b 0.017±0.006 0.008±0.005 0.017±0.011 0.003±0.003 0.001±0.001 

n 0.526±0.049 0.785±0.091 0.349±0.212 1.137±0.257 1.485±0.007 

R
2
 0.935 0.913 0.939 0.927 0.915 

10 °C 

b -0.001±0.001 0.038±0.029 0.014±0.019 0.032±0.018 0.839±0.121 

n 1.378±0.168 0.460±0.132 0.808±0.337 0.669±0.093 0.037±0.038 

R
2
 0.952 0.933 0.925 0.935 0.985 

22 °C 

b -0.036±0.002 -0.018±0.018 -0.019±0.017 0.035±0.001 0.001±0.001 

n 1.138±0.026 0.961±0.645 0.769±0.344 0.672±0.094 2.905±1.919 

R
2
 0.973 0.961 0.954 0.923 0.965 

 
* The b value is negative when the microorganism grows and positive when the microorganism dies. 

 

Table 6



Table 7. Inactivation levels (log10 cycles) achieved in the food matrices studied for both 
S. Typhimurium and E. coli O157:H7 by the intervention of mandarin (MND) by-product 
added at MBC 5% during a refrigerated storage period of 144 h at 5 °C. 
 

Microorganism Storage 
time (h) 

OB OB+MND OB+FM OB+FM+M
ND 

E. coli O157:H7 0 0 0 0 0 

 24 -0.10±0.00 -0.92±0.05 -0.91±0.05 -1.75±0.12 

 48 -0.15±0.04 -0.96±0.04 -0.96±0.07 -1.92±0.06 

 96 -0.72±0.06 -1.12±0.08 -1.06±0.05 -1.73±0.06 

 144 -0.83±0.06 -2.01±0.13 -1.57±0.07 -2.22±0.23 

S. Typhimurium  0 0 0 0 0 

 24 -0.10±0.00 -0.77±0.03 -0.59±0.02 -1.20±0.11 

 48 -0.15±0.02 -0.94±0.02 -0.64±0.05 -1.32±0.07 

 96 -0.48±0.01 -0.98±0.05 -0.85±0.05 -1.54±0.06 

 144 -0.65±0.06 -1.12±0.08 -1.17±0.06 -1.85±0.10 

OB: Oat beverage; OB+MND: Oat beverage supplemented with 5% (w/v) mandarin; OB+FM: Oat beverage and fruit 

juice (papaya, mango, and orange) mixture; OB+FM+MND: Oat beverage and fruit juice mixture supplemented with 

5% (w/v) mandarin. 

 

Table 7



Table 8. Weibull kinetic parameters of E. coli O157:H7 and S. Typhimurium inactivation 
in Oat beverage and Oat beverage – fruit juice mixture when supplemented/not 
supplemented with 5% (w/v) mandarin by-product under refrigerated storage (144 h, 5 
°C). 
 

Beverage  OB OB+MND OB+FM OB+FM+MND 

S. Typhimurium b 0.014±0.003 0.461±0.015 0.137±0.002 0.571±0.006 
 n 0.746±0.012 0.179±0.022 0.419±0.025 0.219±0.011 
 Adj-R

2
 0.903 0.968 0.962 0.983 

 RMSE 0.071 0.051 0.055 0.002 

E. coli O157:H7 b 0.018±0.003 0.121±0.011 0.261±0.001 0.802±0.026 
 n 0.767±0.025 0.541±0.023 0.325±0.031 0.221±0.021 
 Adj-R

2
 0.946 0.887 0.915 0.993 

 RMSE 0.091 0.062 0.022 0.001 
OB: Oat beverage; OB+MND: Oat beverage supplemented with 5% (w/v) mandarin; OB+FM: Oat beverage and fruit 

juice (papaya, mango, and orange) mixture; OB+FM+MND: Oat beverage and fruit juice mixture supplemented with 

5% (w/v) mandarin. 

 

Table 8
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Figure 2.  
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