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Plants, unlike animals, alternate multicellular diploid, and haploid generations in their life
cycle. While this is widespread all along the plant kingdom, the size and autonomy of
the diploid sporophyte and the haploid gametophyte generations vary along evolution.
Vascular plants show an evolutionary trend toward a reduction of the gametophyte,
reflected both in size and lifespan, together with an increasing dependence from the
sporophyte. This has resulted in an overlooking of the importance of the gametophytic
phase in the evolution of higher plants. This reliance on the sporophyte is most notorious
along the pollen tube journey, where the male gametophytes have to travel a long way
inside the sporophyte to reach the female gametophyte. Along evolution, there is a
change in the scenery of the pollen tube pathway that favors pollen competition and
selection. This trend, toward apparently making complicated what could be simple,
appears to be related to an increasing control of the sporophyte over the gametophyte
with implications for understanding plant evolution.

Keywords: pollen tube, sporophyte, gametophyte, pistil, evolution

INTRODUCTION

Alternation of generations between gamete-producing multicellular gametophytes and spore-
producing sporophytes is present in all land plants (Hofmeister, 1851). However, along the
evolutionary line, the gametophytic phase gets reduced in terms of both size and lifespan compared
to the sporophytic phase (Heslop-Harrison, 1975). In bryophytes the gametophytic generation is
the more prominent phase and the sporophyte is nutritionally dependent on the gametophyte
(Maciel-Silva and Porto, 2014). However, this situation is reversed in seed plants, in which the
sporophyte is the prominent phase and the gametophytic generation is the one that develops and
spends most of its life enclosed within the tissues of the sporophyte. Due to this prevalence of
the sporophytic phase, often the implications of the gametophytic phase in plant evolution and
domestication have been overlooked.

The mature pollen is the haploid microgametophyte. Mature pollen of gymnosperms is highly
variable and can be formed by up to forty cells (Sterling, 1963; Pacini et al., 1999). However, a
trend toward decreasing the number of cells could have appeared early in gymnosperm evolution
(Sterling, 1963), probably linked to an evolutionary advantage related to a more efficient energy
use (Pacini et al., 1999). In angiosperms, the mature male gametophyte is reduced to three cells,
the vegetative cell and the two sperm cells. The female gametophyte (embryo sac) is generally
formed by seven cells (two synergid cells, the egg cell, the central cell and three antipodal cells)
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embedded in the sporophytic tissues of the ovule. Interestingly,
in spite of the wide morphological diversity observed for most
traits and structures in the sporophytic phase of flowering
plants, the development, structure, and function of the male and
female gametophytes are very well conserved across angiosperm
lineages.

However, clear differences in the subsequent contribution of
the sporophytic tissues that envelop the female gametophyte and
interact with the male gametophyte are observed along evolution.
This is shown in the male–female meeting place where pollen
germinates, and also along the pollen tube pathway toward the
female gametophyte. All these steps have been widely studied in
seed plants, but more extensively in angiosperms (Whitehead,
1969; Mulcahy, 1979; Eriksson and Bremer, 1992; Herrero, 1992;
Hormaza and Herrero, 1992; Sargent and Otto, 2004), than in
gymnosperms (Friedman, 1993, 2015; Owens et al., 1998; Gelbart
and von Aderkas, 2002). In angiosperms, pollen germination
and pollen tube growth takes place within the carpel that has
been suggested to provide an opportunity for pollen competition
and selection (Mulcahy, 1979; Hormaza and Herrero, 1992;
Herrero and Hormaza, 1996; Taylor and Kirchner, 1996; Erbar,
2003; Lankinen and Green, 2015). However, variations in carpel
structure are apparent along the evolution. Here we examine
these differences, paying especial attention to the interaction
between the male gametophyte and the female sporophyte during
the different steps of the pollen tube pathway. We first examine
the conservation of a pollen tube and then follow the pollen tube
pathway, where a change in the meeting place and variations in
the style and the ovary are observed. Finally, the implications of
these variations during plant evolution are considered to get an
integrated view on the evolutionary trends in the control of pollen
tube performance in seed plants and the role of the sporophyte in
this process.

THE CONSERVATION OF A POLLEN
TUBE

A comparative review of the evolution of the male gametophyte
(Friedman, 1993; Rudall and Bateman, 2007) shows that the most
basal groups of extant gymnosperms, cycads, and Ginkgoales
(Chaw et al., 2000), have multiflagellate sperms that swim to
reach the archegonia [zooidogamy] (Friedman, 1990) whereas
conifers (Fernando et al., 2005), Gnetales (Chaw et al., 2000)
and angiosperms release non-motile male gametes through
siphonogamy (Friedman, 1993). In fact, since the first pollen
tube was observed by Amici (1824) in the angiosperm Portulaca
oleracea in the early 19th century, pollen tubes were consistently
observed in very different seed plant species. Evidence of
microgametophyte tubes have also been observed in other plant
taxa such as paleozoic seed ferns (Rothwell, 1972), where the tube
was found in a chamber showing a branching pattern that can also
be found in gymnosperms (Little et al., 2014). Thus, pollen tube
development of Ginkgo biloba shows an initial tubular multiaxial
form (Figure 1) (Friedman, 1987), cycad male gametophytes
typically show unbranched pollen tubes although they can also
be slightly branched (Friedman, 1987), and conifers show pollen

tubes that can vary from unbranched to extensively branched
(Fernando et al., 2005). Branching in gymnosperms has been
suggested to have a haustorial role (Sterling, 1963; Little et al.,
2014). In this sense, the heterotrophic pollen tube growth of most
gymnosperms is associated with the degeneration of the invaded
cells of the sporophyte by cellular outgrowth or enzymatic action.
Thus, in gymnosperms, nucellar cell degeneration produced
by pollen tube growth has been observed in Zamia furfuracea
(Cycadaceae) (Choi and Friedman, 1991) and in Pseudotsuga
menziesii (Pinaceae) (Owens and Morris, 1990). In angiosperms,
heterotrophic pollen tube growth at the expenses of the
stylar reserves was early documented (Herrero and Dickinson,
1979). Pollen tube branching has also been reported in several
angiosperm species (Wilms, 1974; Hill and Lord, 1987; Smith-
Huerta, 1991; Johri, 1992; Sogo and Tobe, 2005), but no
consensus on the cause or function of this branching has yet been
reached. Non-mutually exclusive hypotheses include a haustorial
role (Johri, 1992), a response to the clumping of pollen grains
on the stigma (Smith-Huerta, 1991), interspecific (Williams et al.,
1982), and intraspecific (Seavey and Bawa, 1986) incompatibility
responses, or chalazogamy -the entrance of the pollen tube
through the chalaza instead of the common way through the
micropyle- (Sogo and Tobe, 2005, 2006b). But all these different
situations may share a common ground: the absence of proper
guidance signals for pollen tube growth from underdeveloped
ovules (Herrero, 2000, 2001, 2003; Sogo and Tobe, 2006a).

Once the pollen tubes reach their target, fertilization takes
place after the release of the male gametes from the pollen
tube to the fertilization chamber in gymnosperms, or to the egg
apparatus in angiosperms. Interestingly, morphological evidence
suggests that the cytoskeleton of sperm cells and generative cells
of angiosperms are closely related to the cytoskeleton of the
flagellated sperm cells (Southworth and Cresti, 1997).

The Gnetales, with the exception of Welwitschia (Friedman,
2015), show some additional features that are also found
in angiosperms. Thus, double fertilization occurs in Ephedra
(Friedman, 1990; Friedman and Carmichael, 1996), and Gnetum
displays a cell–cell interaction between the pollen tube and
nucellar cells in an angiosperm-like fashion (Bell, 1995). Taken
together this information, it appears clear that the construction of
a pollen tube provides a prevalent useful way for themale gametes
to travel toward the female gametophyte. But the landing site and
the length of the pollen tubes in the different species are very
variable, depending on the distance needed to travel to reach the
targeted female gametophyte.

CHANGING THE MEETING PLACE

The first meeting point between the male gametophyte and the
female sporophyte changes along the evolution of seed plants.
Thus, in most gymnosperms, pollen lands in a pollination drop
on the micropyle (Figure 1), which is reabsorbed with pollen
and other air-borne particles (Gelbart and von Aderkas, 2002;
Little et al., 2014). The situation is different in angiosperms
in which a major synapomorphy is the presence of the ovule
enclosed in a carpel (Endress and Igersheim, 2000). The carpel
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FIGURE 1 | Diversity of pollen tube pathways in seed plants. Schematic cross section of the gymnosperm carpel of (A,B) Ginkgo biloba, modified from
Friedman (1987) and the angiosperm carpel of (C) Annona cherimola, (D) Prunus persica, and (E) Arabidopsis thaliana. (A,B) Gymnosperm carpel of (A) Ginkgo
biloba showing the pollination drop and (B) pollination drop retraction with a branched pollen tube. (C) Angiosperm carpel of an early divergent angiosperm (Annona
cherimola) showing extragynoecial compitum and unfused carpels (apocarpous). (D) Angiosperm carpel of an evolutionarily derived angiosperm (Prunus persica)
showing pollen competition in the long style. (E) Angiosperm carpel of an evolutionarily derived angiosperm (Arabidopsis thaliana) showing pollen competition in the
style and septum of a syncarpous gynoecium. PD, pollination drop; S, stigma; ST, style; SE, septum.

adds an additional envelope to the female gametophyte and also a
different landing place for the pollen grain, the stigma (Figure 1).

In gymnosperms, the pollination drop is a viscous liquid
secretion produced by the ovule, usually by the nucellar
tissue (Gelbart and von Aderkas, 2002; Coulter et al., 2012),
with the probable contribution of other tissues such as the
megagametophyte and the integument (Owens et al., 1998). The
pollination drop is composed of carbohydrates, amino acids, and
a miscellany of other compounds (Gelbart and von Aderkas,
2002; Nepi et al., 2009; von Aderkas et al., 2015). Pollination
drops are commonly found in Ginkgoales (Friedman, 1987),
Cycadales (Choi and Friedman, 1991), Gnetales (Endress, 1996;
Bolinder et al., 2015; Friedman, 2015; von Aderkas et al., 2015),
and Pinales (Owens et al., 1998; Möller et al., 2000; Chandler
and Owens, 2004), although no pollination drop seems to be
produced in Abies, Cedrus, Tsuga, Pseudotsuga, or Larix in which
pollen is drawn into the micropyle by collapse or inward growth
of integument cells (Sedgley and Griffin, 1989). Captured pollen
triggers a retraction of the drop that facilitates access of the
pollen to the micropyle. While pollen from unrelated species
can initiate the retraction of the pollination drop, the process
is only completed by conspecific pollen (Mugnaini et al., 2007;
Jin et al., 2012). Environmental conditions can significantly
affect the success of pollination since the pollination drop can
evaporate under low relative humidity conditions (Gelbart and
vonAderkas, 2002). Conversely, the withdrawal of the pollination
drop can be inhibited by high relative humidity (Mugnaini et al.,
2007; Jin et al., 2012). In Pinaceae a pollination drop has not
been identified and it has been proposed that rainwater could
take its function (Owens et al., 1998; Leslie, 2010). Besides
favoring or jeopardizing the production of the pollination drop,
environmental factors may also provide clues for its production,

as the situation recently reported in insect-pollinated Ephedra
foeminea where the pollination drop is produced during the
full moon of July (Rydin and Bolinder, 2015). Taken together,
these observations suggest that the pollination drop, and hence
a successful pollination in gymnosperms, is rather vulnerable
to environmental conditions. In fact, in both angiosperms
and gymnosperms, pollen capture is highly influenced by
environmental factors (Heslop-Harrison and Heslop-Harrison,
1985; Heslop-Harrison, 2000); however, in angiosperms the
situation changes, showing a higher involvement of the
sporophyte in the process due to the presence of closed carpels.

In fact, in angiosperms pollen landing occurs in a highly
specialized structure: the stigma. While several molecules such as
surface esterases, arabinogalactan proteins (AGPs), low-esterified
homogalaturonans, or glycoside hydrolases can be found in both
stigma and pollination drops (Coulter et al., 2012) and could
be analogous (Villar et al., 1984), the stigma represents a major
evolutionary transition that provides adhesion, hydration, and
germination media for the pollen grains (Sanzol et al., 2003;
Hiscock, 2008). A number of factors, such as reactive oxygen
species (ROS; McInnis et al., 2006; Allen et al., 2011; Traverso
et al., 2013; Serrano et al., 2015) commonly proposed to mediate
cell–cell communication (Gilroy et al., 2014), or surface esterases
(Hiscock et al., 2002) contribute to this receptivity. In apple
flowers, AGPs are secreted to the stigma concomitantly with the
acquisition of stigmatic receptivity (Losada and Herrero, 2012)
and their role supporting pollen germination is shown by the
fact that they vanish following pollen germination. AGPs have
been found in the stigma of several early divergent angiosperms
(Prychid et al., 2011; Costa et al., 2013; Losada et al., 2014),
and recent work shows that they also mark stigmatic receptivity
in Magnolia (Losada et al., 2014), strongly suggesting that the
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secretion of AGPs could well be a conserved process in flowering
plants marking stigmatic receptivity. Interestingly, AGPs were
also reported in the pollination drop of the gymnosperm Taxus
x media (Coulter et al., 2012). Low-esterified homogalacturonans
are also involved in the adhesion of the pollen to the stigma
of angiosperms (Mollet et al., 2000) and seem to be play a role
also in pollen grain adhesion in the gymnosperm Larix decidua
(Rafińska et al., 2014). Glycoside hydrolases that are required for
cell wall elongation and, consequently, for pollen tube growth,
are found in both the angiosperm stigmas and the gymnosperm
pollination drop, but expansins that are also involved in cell wall
elongation are only found in the stigma of angiosperms (Coulter
et al., 2012).

Stigmatic receptivity usually provides a short window of
opportunity for pollination to be effective (Sanzol et al., 2003).
This window is influenced by environmental factors, basically
temperature at flowering (Hedhly et al., 2003, 2005b; Lora et al.,
2011a; Sage et al., 2015). High temperatures accelerate stigma
degeneration, whereas low temperatures maintain the stigma
receptive for a longer time, affecting the effective pollination
period (Sanzol and Herrero, 2001).

Once the pollen grains have germinated in the ovular
pollination drop in gymnosperms or in the stigma in
angiosperms, the pollen tube grows to reach the female
gametophyte. The pollen tube pathway takes place surrounded
by female sporophytic tissues and, consequently, with less
environmental dependence but higher male–female interaction.
Moreover, in angiosperms, this journey is further complicated by
the presence of a new structure, the style.

THE STYLE: MAKING A SHORT STORY
LONG

In most angiosperms, from pollen landing on the stigma to
fertilization inside the ovary, the pollen tube has to traverse an
intermediate territory, the style (Figure 1). The pollen tube grows
through a stylar canal or a stylar transmitting tissue, and reaches
the locule cavity of the ovary where the ovule is located. In the
basal grade of angiosperms and magnoliids the style is very short
or even absent and the stigma forms the margins of the sealed
but unfused carpel in a continuum with the placenta leading to
the ovule (Endress, 2015). Examples of these observations include
basal angiosperms, such as Amborella trichopoda (Williams,
2009), Nymphaea capensis (Orban and Bouharmont, 1995), or
Cabomba caroliniana (Galati et al., 2016), and magnoliids such as
Annona cherimola (Lora et al., 2010, 2011a),Magnolia virginiana
(Losada et al., 2014), or Saururus cernuus (Pontieri and Sage,
1999).

The stylar canal, or the stylar transmitting tissue, provides
an extracellular secretion that is incorporated into the growing
pollen tubes and allows a heterotrophic pollen tube growth
(Labarca and Loewus, 1973; Herrero and Dickinson, 1979), that
differs from the autotrophous pollen tube growth in the stigma
(Herrero and Dickinson, 1981; Stephenson et al., 2003). This role
of the pistil providing nutrients for the growing pollen tubes has
been shown in a wide range of angiosperms including many fruit

tree crops (Herrero and Arbeloa, 1989; Gonzalez et al., 1996;
Martinez-Palle and Herrero, 1998; Alcaraz et al., 2010; Distefano
et al., 2011; Suárez et al., 2013), and seems to be a conserved
process in flowering plants. Secretion along the short style is also
already present in basal angiosperms [Trimenia moorei, Illicium
floridanum (Bernhardt et al., 2003), Kadsura longipedunculata
(Lyew et al., 2007), or Amborella trichopoda (Thien et al., 2003)]
as well as in early divergent angiosperms [Saururus cernuus
(Pontieri and Sage, 1999), Psedowintera axillaris (Sage and
Sampson, 2003), or Magnolia virginiana (Losada et al., 2014)].
The implication of different molecules in pollen–pistil interaction
has been put forward with a role in providing adhesion and
facilitating pollen tube growth through the transmitting tissue
(Boavida et al., 2011; Chae and Lord, 2011; Palanivelu and
Tsukamoto, 2012; Qu et al., 2015).

A number of different molecules that contribute to pollen
tube building and guidance have been found in the style of
angiosperms and a similar scenario has also been proposed
in the gymnosperm Larix decidua (Rafińska et al., 2014).
Concomitantly with pollen tube growth, an increase in the
amount of calcium in the extracellular matrix has been observed
(Lenartowska et al., 2001; Ge et al., 2009), which suggests the
provision of an optimal calcium environment for polar pollen
tube growth (Hepler et al., 2012; Steinhorst and Kudla, 2013).
The role of calcium on pollen grain germination and pollen tube
growth was also shown in conifers (Chen et al., 2008; Lazzaro
et al., 2013). Suggesting complex needs for both gymnosperm
and angiosperm pollen germination and tube growth. Other
signals from the stigma and style, such as stigma/style cysteine-
rich adhesins (SCA) or chemocyanins, have also been shown
in lily (Chae and Lord, 2011). While SCA are involved in
pollen tube tip growth (Chae and Lord, 2011; Qu et al., 2015),
chemocyanins appear to play a role in adhesion of the pollen
tube to the stylar tissue (Park et al., 2000). Plantocyanins, blue
copper proteins expressed also in the stylar transmitting tissue
and homologs of chemocyanins, are also involved in pollen tube
guidance, which is disrupted by plantocyanin overexpression
in Arabidopsis (Dong et al., 2005). Experiments performed
in maize also showed the sporophytic control of pollen tube
guidance through the transmitting tissue that it is unaffected
in RNAi-lines lacking functional embryo sacs (Lausser et al.,
2010).

Recent studies have revealed the role of AGPs on pollen tube
growth (Pereira et al., 2015) that have also been detected in the
pollen tube tip of angiosperms (Qin et al., 2007; Dardelle et al.,
2010). AGPs were observed in the stigma at pollination time in
Magnolia (Losada et al., 2014), where a proper style is missing,
and in olive (Olea europaea) (Suárez et al., 2013) that has a
reminiscent style. Interestingly, in apple flowers which have a
proper long style, AGPs were clearly present in the stigma but
were not observed in the stylar transmitting tissue. Conversely,
extensins that are involved in cell wall extension could not be
detected in the stigma, but filled the style (Losada and Herrero,
2014). The clear boundary in two adjacent territories (stigma and
style) of angiosperms, in which pollen tube kinetics are clearly
different, suggests a support for faster pollen tube growth in the
style. The remaining question is the possible meaning of this
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accelerated pollen tube growth in the style and the biological
significance of the acquisition of a long style that requires the
building up of a long pollen tube, making long, and complicated
what could be a short and simple process.

A rapid pollen tube growth rate has been considered a key
innovation of angiosperms (Williams, 2008). Thus, the whole
process from pollination to fertilization can take several months
in gymnosperms, which generally show slower pollen tube
growth rates than angiosperms. An exception could be Ephedra,
where a rapid fertilization has been reported (Land, 1907), but
associated with a short pollen tube pathway and, consequently,
a slow pollen tube rate similar to that observed in other
gymnosperms (Williams, 2008). Rapid fertilization associated
with a fast pollen tube growth rate was observed in the extant
ANITA grade and magnoliids where pollen tubes penetrated the
ovule in some 9–48 h after pollination (Bernhardt et al., 2003;
Williams, 2008, 2012a,b; Lora et al., 2010).

However, in addition to the trend toward a faster pollen tube
growth rate observed in seed plants, the process is also highly
dependent on temperature (Hedhly et al., 2004; Coast et al.,
2016). Thus, pollen tube growth is often slower in species adapted
to temperate climates; for example, the progamic phase from
pollination to fertilization takes three weeks in Prunus persica
(Herrero and Arbeloa, 1989). Still, temperature cannot be the
only factor influencing pollen tube growth rate since species
flowering under similar temperatures have clear differences in the
length of the progamic phase, as it occurs between peaches and
apricots (Herrero and Arbeloa, 1989; Rodrigo et al., 2000). Most
significantly, a slow pollen tube growth rate appears to be related
to a delayed maturation of the pistil in the ovary (Herrero and
Arbeloa, 1989).

THE OVARY: A HIDDEN INTENSE
INTERACTION AREA

In both gymnosperms and angiosperms the seeds that will
produce the next sporophytic generation develop from the
ovules. In angiosperms, once the pollen tubes get to the base
of the style, they face the ovary that encloses the ovule(s).
Angiospermy, or the presence of a closed carpel, is considered
a key innovation of angiosperms (Endress and Igersheim, 2000;
Endress, 2015), although variations in the degree of closure of
the carpel have been described (Endress and Igersheim, 2000),
ranging from sealing by secretion without postgenital fusion
to complete postgenital fusion with intermediate stages. In
the ANITA grade, carpel sealing is usually without postgenital
fusion (Endress and Igersheim, 2000). In the magnoliids Annona
cherimola (Lora et al., 2010) and Magnolia virginiana (Losada
et al., 2014), papillae along the suture line face each other in a
zip like fashion, with secretion filling the gaps and the pollen
tubes grow along this continuous zip that goes from the stigma
down to the ovule. In more derived clades, the process is more
complex and the pollen tube has to enter the ovary, where
particular structures may protect this entrance (Herrero, 2000).
In peach flowers, the obturator -a placental protuberance facing
the ovule- regulates this access, since pollen tube growth is only

possible when this structure enters a secretory phase (Arbeloa and
Herrero, 1987). The obturator has also been described in basal
angiosperms such as members of the Austrobaileyales (Kadsura
longipedunculata) (Lyew et al., 2007), and early divergent
angiosperms in the magnoliid clade [Annona cherimola (Lora
et al., 2010) and Persea americana (Sedgley and Annells, 1981)],
although its active role in promoting pollen tube passage was
not observed. This may be related to a continuous secretion,
as it occurs in Annona cherimola where secretion is continuous
all along the suture line right from anthesis up to fertilization
time (Lora et al., 2010). A similar situation has been recorded
in kiwifruit flowers with obturators secreting right from anthesis
up to fertilization time (Gonzalez et al., 1996), which occurred
some 3 days after pollination. Conversely, in peach flowers, this
process was much slower lasting for about three weeks (Herrero
and Arbeloa, 1989), and this delayed growth was due to a slow
basipetal maturation of the pistil. In this species, the obturator
did not only act as a gate to open the access to the ovule, but
also seemed to close it since, following the secretory phase and
pollen tube passage, callose was layered down on the obturator,
preventing additional pollen tubes to pass by (Arbeloa and
Herrero, 1987).

In other species with chalazogamy a different structure with
a similar role has been described. In pistachio (Pistacia vera),
a chalazogamous species (Martinez-Palle and Herrero, 1998),
concomitantly with the arrival of the pollen tubes to the
base of the style, a protuberance (the ponticulus) develops in
the uppermost area of the funiculus, filling the physical gap
between the base of the style and the ovule (Martinez-Palle and
Herrero, 1994). A ponticulus has also been described in other
species of the Anacardiaceae such as mango (Mangifera indica)
(Joel and Eisenstein, 1980; De-Wet et al., 1986; Bachelier and
Endress, 2009). A similar situation has been described in Fagales,
where, interestingly, in Juglans (Luza and Polito, 1991) both
chalazogamy and porogamy -the entry of the pollen tube into
the ovule through the micropyle- could be observed, depending
on the developmental stage of the ovule. Chalazogamy has also
been reported in hazelnut (Corylus heterophylla) that shows a
delayed fertilization; in this case, the pollen tube grows through
the chalaza 52 or 55 days after pollination and this could be
related to the delayed development of the ovule whose ovule
primordium was observed 20 days after blooming (Liu et al.,
2014).

Sporophytic control of pollen tube growth is also observed
in the integuments, which surround the nucellus that embeds
the embryo sac forming the micropyle. Most angiosperms show
bitegmic ovules compared to the single integument present in
most extant and fossil gymnosperms (Herr, 1995; Endress, 2011;
Lora et al., 2015). In evolutionarily derived angiosperms, the
outer integument seems to be involved in providing cues for
pollen tube guidance toward the embryo sac (Herrero, 2000,
2001, 2003). The role of the inner integument on pollen tube
growth was also suggested by the Arabidopsis pop2 mutant that
shows higher concentration of GABA in the inner integument
associated to reduced pollen tube guidance (Palanivelu et al.,
2003). Moreover, in Arabidopsis, a truncated version of a protein
disulfide isomerase PDIL2-1, expressed in the sporophytic tissue
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with higher expression in the micropyle of mature ovules, affect
ovule structure, and impede embryo sac development disrupting
pollen tube guidance (Wang et al., 2008). In the Arabidopsis inner
no outer (ino) mutant lacking the outer integument, pollen tubes
wander in the ovary and rarely reach the micropyle, although
this could also be related to the absence of the embryo sac
(Skinner and Gasser, 2009), since synergid cells play a role on
pollen tube guidance (Higashiyama et al., 2001; Higashiyama and
Hamamura, 2008; Kessler and Grossniklaus, 2011). However, the
situation was different in a similar ovule ino mutant in Annona
squamosa (magnoliids), which showed pollen tubes targeting
the micropyle (Lora et al., 2011b). Further work is required to
elucidate if this was due to the presence of an embryo sac in these
ovules or to a late recruitment of the outer integument for pollen
tube guidance in angiosperms, since in this species as in other
Annona species the outer integument is retracted and does not
embrace the micropyle.

To date, several molecules have emerged as major players
involved in the cell–cell communications between synergids/egg
apparatus and pollen tube (reviewed in Higashiyama and
Takeuchi, 2015; Qu et al., 2015) supporting the main role
of the female gametophyte in pollen tube reception (Kessler
and Grossniklaus, 2011). Examples of those molecules include
the defensin-like polypeptide LUREs (Okuda et al., 2009) in
Torenia, the homolog AtLURE1 (Takeuchi and Higashiyama,
2012), the transcription factor MYB98 (Kasahara et al., 2005), the
FERONIA (Escobar-Restrepo et al., 2007), and, recently, TURAN
and EVA (Lindner et al., 2015) in Arabidopsis, or ZmEA1 that
is expressed in the egg apparatus of maize (Marton et al., 2005).
Recent studies have also shown the role of ROS on pollen tube
growth (Potocký et al., 2007) and on the rupture of the pollen tube
and subsequent fertilization in Arabidopsis (Duan et al., 2014),

Although less work has been done in gymnosperms, studies
on the composition of the pollination drop has shown similar
components to those of the stigma and style (Coulter et al., 2012),
suggesting an involvement of these molecules on pollen–pistil
interaction. Additional functional studies for these molecules to
show their putative role in pollen tube guidance or pollen tube
reception are needed. Work in angiosperms converges to the
point of a sophisticated pollen–pistil interaction all along the
different pistil territories the pollen tube has to traverse. Yet
the question remains on the significance of this interaction and
why along evolution the pollen tube journey seems to gain in
complexity and difficulty. This complexity appears to share a
common ground: a bigger control of the sporophyte.

TOWARD A MAJOR CONTROL OF THE
SPOROPHYTE

When comparing gymnosperms, basal angiosperms and
evolutionarily derived eudicots, evolution seems to have
complicated what virtually could be simpler. The continuous
adding of layers to envelop the embryo sac complicates pollen
tube growth that in angiosperms has to often grow long distances
within the sporophytic tissues of the flower. In angiosperms,
closed carpels provide opportunities for an intense pollen–pistil

interaction, whereas in gymnosperms the main interaction of
pollen with the female sporophyte takes place at the micropyle
in the pollination drop (Figure 1). Mulcahy (1979) proposed
that the combination of closed carpels (syncarpy) and insect
pollination could increase the chances for male gametophytic
competition and selection enhancing the ability of natural
selection to act on the gametophytic phase of the life cycle of
angiosperms helping to understand the adaptive success of
flowering plants.

The presence of physical barriers, such as dichogamy,
monoecy, dioecy, or floral heteromorphy, between the female
and male parts to avoid self-fertilization have developed in
both gymnosperms and angiosperms (Zavada and Taylor, 1986).
Moreover, the rejection of pollen from unrelated species, or
incongruity (Hogenboom, 1975), has been documented in
both gymnosperms (Mugnaini et al., 2007; Jin et al., 2012),
and angiosperms (Heslop-Harrison, 2000). It is difficult to
understand how minute secretions allow discerning between
conspecific and heterospecific pollen, since the basic ingredients
of artificial pollen germination media are very similar for the
different species. This discernment suggests a precise male–
female cross talk, right from the first encounter (McInnis et al.,
2006).

More intriguing is the possible pollen selection in intraspecific
matings. The most common way to avoid self-fertilization in
angiosperms is self-incompatibility (SI) (de Nettancourt, 2001;
Iwano and Takayama, 2012; Sawada et al., 2014). Although
evidence of failure of pollen tube growth before fertilization has
been reported in conifers (Kormutak, 1999; Takaso et al., 1996;
Gelbart and von Aderkas, 2002), this is still a subject of debate
(Little et al., 2014), and, in a good number of instances, selection
against self-fertilization in gymnosperms appears to be related to
post-fertilization events (Orr-Ewing, 1957; Hagman andMikkola,
1963; Mergen et al., 1965; Williams et al., 2001; Owens et al.,
2005).

In angiosperms, the evidence of SI is widespread, but the very
different types of incompatibility recorded in different families
suggest that SI has arisen de novo several times in independent
lineages of flowering plants (Ferrer and Good, 2012; Gibbs,
2014). It is estimated that half of angiosperm species show SI
(Dresselhaus and Franklin-Tong, 2013; Gibbs, 2014), but only
in a few families has SI been characterized in detail. Three main
types of SI have been described, sporophytic self-incompatibility
(SSI), gametophytic self-incompatibility (GSI), and late acting-
self incompatibility (LSI). SSI has only been reported in six
families (Gibbs, 2014) and seems to be restricted to eudicots
(Allen and Hiscock, 2008); GSI has been reported in species of 18
families (Gibbs, 2014) and is the most abundant SI mechanism
in flowering plants, present in all major clades of monocots and
eudicots (Allen and Hiscock, 2008). Excellent recent reviews have
addressed the evolution, diversity and molecular mechanisms of
the different self-incompatibility systems (de Nettancourt, 2001;
Takayama and Isogai, 2005; Franklin-Tong, 2008; Iwano and
Takayama, 2012; Gibbs, 2014).

Different empirical evidence shows a high overlap in the
genes expressed during the gametophytic and the sporophytic
phases of the angiosperm life cycle (Ottaviano and Mulcahy,
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1989; Mascarenhas, 1990; Honys and Twell, 2003) as well as
a correlation between higher pollen competition and selection
and traits in the following sporophytic generation (Hormaza and
Herrero, 1992, 1994). Pollen selection is highly dependent on
pollen competition, and the pistil seems to be well devised to
favor competition among growing male gametophytes (Hormaza
and Herrero, 1992, 1994, 1996b; Herrero and Hormaza, 1996),
starting by the promotion of an accumulation of a high number
of pollen grains in the stigma. This allows the style to act as a long
sieve, with a progressive reduction in both nutritive resources and
space, that finally results in a reduced number of pollen tubes
able to reach the ovary (Herrero, 1992). However, this situation
appears to be different between the ANITA grade, magnoliids and
eudicots. The stigmas of the ANITA grade and magnoliids show
extragynoecial compitum that allows pollen tube growth between
the stigmas of the different carpels (Endress and Igersheim,
2000; Williams et al., 2010; Lora et al., 2011a). Moreover, the
carpels of he ANITA grade and magnoliids are generally separate
(apocarpous) and show a short style (Orban and Bouharmont,
1995; Pontieri and Sage, 1999; Lora et al., 2010; Galati et al.,
2016). As a consequence, the main competition among male
gametophytes occurs in this extragynoecial compitum. In fact,
extragynoecial pollen tube growth is widespread in apocarpous
species (Wang et al., 2012). In contrast, most evolutionarily
derived angiosperms (83%) show fusion of the carpels forming
a syncarpous gynoecium (Endress, 1982). The syncarpous
gynoecium mostly has an intragynoecial compitum that provides
more protection from adverse environmental conditions, and
allows a more intense pollen tube competition and selection
(Endress, 1982). This increased pollen competition is reinforced
in evolutionarily derived angiosperms by the common presence
of long styles that act as long sieves reducing basipetally both
the space and the nutrients available for growing pollen tubes
(Herrero and Hormaza, 1996; Distefano et al., 2011).

In theory, this gametophytic competition and selection should
not be restricted to the male gametophytes but it is more difficult
to prove in the female gametophytes. Nevertheless, recently,
Bachelier and Friedman (2011) have shown the occurrence of
gametophytic competition among female gametophytes within
the single ovule in the early-divergent angiosperm Trimenia
moorei. It will be of interest to analyze if this could be the case
in other angiosperm lineages although, in any case, the likelihood
of a significant selection pressure will always be higher in the male
gametophytes due to their higher population number.

Although the presence of pollen competition in plants has
been shown in a high number of cases (Hormaza and Herrero,
1994), it is still difficult to ascertain whether this competition
finally results in selection for particular traits or adaptation
to particular conditions that could result in a change in the
gene frequencies of the next sporophytic generation (Baskin
and Baskin, 2015). Evidence has been obtained mainly in two
areas. Pollen behavior in response to different environmental
factors has been shown to differ among different genotypes
(Hormaza and Herrero, 1992; Hedhly et al., 2005a), and plants
exposed to a selection pressure during the reproductive process
may produce an offspring more adapted to these conditions
than when the same crosses are performed under controlled

conditions (Hormaza and Herrero, 1996a; Hedhly et al., 2009;
Hedhly, 2011). Recent work usingmolecular approaches provides
additional evidence that genome evolution could be affected by
pollen competition. Thus, Arunkumar et al. (2013) showed in
Capsella grandiflora that selection had more detectable effects on
pollen-exclusive genes than on seedling-exclusive genes whereas
Chettoor et al. (2014) observed that selective pressures based
on the male gametophytic function result in high effects on the
maize plant genome. Additional work assessing paternity of the
offspring shows that pollen tube competition could also result in
sexual selection in plants (Hedhly et al., 2015).

All this converges to the point that the pistil exerts a
dual support/constrain strategy that may result in gametophyte
competition and selection (Herrero and Hormaza, 1996). Thus
the sporophyte supports pollen tube heterotrophic growth, but
also promotes pollen competition and selection with spatial and
nutritive constraints and with self-incompatibility systems that
involve cell-cell recognition. In fact, if gametophytic selection
is mainly based in the growth rate of pollen tubes, we would
expect that the traits responsible for rapid pollen tube growth
should be rapidly fixed in the populations. Sporophytic control
would result in the fact that the best male–female combinations
are favored providing an advantage to the best suited male
gametophytes for a given female genotype which could explain
why genetic variation for male gametophytic fitness has been
maintained in plant populations (Herrero and Hormaza, 1996;
Hormaza and Herrero, 1996a). In angiosperms the development
of the carpel, while providing further protection for the female
gametophyte and the seed, also gives an enhanced opportunity
for male–female cross talk. This results first in a change in the
meeting place from the pollination drop of gymnosperms to the
secretory stigma of angiosperms. But, more interestingly, it also
results in changes in the landscape that the pollen tube has to
traverse to reach the megagametophyte. The style provides ample
opportunity for pollen competition and selection, and the ovary
shows a close control of pollen tube access to the ovule. This
change in the territory that the pollen tube has to traverse along
its journey results in a process more protected from external
environmental factors, but also in the sporophyte gaining control
over the gametophyte. As a result, the interaction between the
gametophyte and the sporophytic tissues of the flower seems to
be an arena with implications for plant diversity and evolution.
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