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Optical absorption and magnetic susceptibility data of the Zn12xMnxGa2Se4 family of compounds
have been collected in the temperature range 10–300 K. One of the most interesting aspects of this
series is the availability of samples in the whole composition range, in contrast with most diluted
magnetic semiconductors that are only miscible in a limited range of compositions.
Temperature-independent absorption bands with maxima at 2.33, 2.49, and 2.66 eV have been
found that are assigned to electron transitions from the6A1 ground state to the4T1, 4T2, and4A1,
or 4E excited states of the Mn11 ion in a tetrahedral crystalline field. The optical spectra exhibit a
temperature dependent absorption edge in the 350–600 nm region that corresponds to a direct band
gap. The band gap energy has been determined as a function of atomic concentration and
temperature. At room temperature, the variation of the energy gapEg with the Mn content shows a
rather anomalous behavior that consists of an initial decrease forx,0.1, followed by a roughly flat
variation for 0.1,x,0.5, and a nearly linear increase forx.0.5. An analogous evolution ofEg

with x is found when decreasing temperature. Such behavior has been compared with that reported
for analogous systems. The variation ofEg with temperature follows Varshni’s relation for all
compositions. A monotonic increase of the magnetic susceptibility withx is found within the whole
range of Mn content. ©2001 American Institute of Physics.@DOI: 10.1063/1.1337601#

I. INTRODUCTION

Diluted magnetic semiconductors~DMS! have attracted
the attention of many scientists from various fields.1 The
scientific interest in these systems is based on their struc-
tural, electronic, optical, and magnetic properties.2 They are
also suitable for electro-optical applications and for the
preparation of quantum wells and superlattices. The unique
physical properties of diluted magnetic semiconductors arise
from the interaction between localized magnetic moments of
the magnetic ions and conduction and valence band elec-
trons.

There are two distinct optical processes in Mn based
DMS compounds. One of them is related to electron transi-
tions between the valence band and the conduction band of
the semiconductor. The other is related to internal electron
transition in the Mn11 ions. Frequently, these two phenom-
ena coincide within the same spectroscopic region and they
are difficult to separate.3 They can be distinguished because
they show a different variation with temperature and compo-
sition. The position of the energy maximum of intra-Mn
transitions does not change with temperature and varies
slightly with composition while the intrinsic transitions asso-
ciated to a direct band gap change significantly with both
temperature and composition.

One of the most interesting properties of DMS solid so-
lutions for optical applications is the tunability of their band

gap with composition. Most work on optical properties of
DMS solid solutions has been directed to A12x

II MnxB
VI

alloys.3 Usually, these compounds have a direct band gap
that varies linearly with composition. In other words, they
follow the virtual crystal approximation~VCA!.1 However,
in some compounds, like Cd12xMnxS and Zn12xMnxSe
alloys,4,5 there is a deviation from linearity for low values of
x. This deviation consist of the bowing of theEg vs x plot for
low Mn content. In these alloys, the parent compound AIIBVI

has wurtzite or zinc-blende crystal structure. In most cases,
the structure of the parent compound is maintained in the
alloy. However, substitution of the cation by Mn can be
achieved over a limited range ofx.1

In this article we report optical absorption and magnetic
susceptibility measurements in a less known type of DMS,
the A12x

II MnxB2
IIIC4

VI alloys. In particular, we have grown
Zn12xMnxGa2Se4 single crystals in the range 0<x<1. We
have observed absorption bands in the optical absorption
spectra of compounds with a high Mn content that are related
to intra-Mn11 transitions. The variation of the band gap en-
ergy with the Mn content has been followed within the
whole composition range. We have observed a non-VCA
behavior that it is compared with that reported for other
semiconductor alloys. The dependence of the energy gap on
temperature has been determined for eight members of the
series.

II. EXPERIMENT

Orange single crystals of Zn12xMnxGa2Se4 ~x50.00,
0.10,0.23,0.49,0.63,0.75,0.88,1.00! were prepared at our in-
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stitute, ICMA, by using the chemical vapor transport method
following the growing conditions reported in the literature
for the parent compounds,6–8 MnGa2Se4 and ZnGa2Se4. Io-
dine was used as a transport agent. The purity of the samples
was tested by means of conventional x-ray powder diffrac-
tion methods. No impurities were found. The Mn content of
the samples was calculated from magnetic susceptibility data
in the temperature region where the Curie–Weiss law ap-
plies. The Curie constant determined in this procedure is
proportional to the amount of Mn21 that is present in the
sample. For additional details concerning this standard pro-
cedure, see, e.g., Ref. 9.

The crystals were polished with alumina powders to a
thickness of less than 20mm. Optical absorption measure-
ments in the range 350–2500 nm were carried out in a Hita-
chi U-3400 spectrophotometer, from room temperature down
to 10 K. As a reproducibility test, at least two different
samples were measured for every composition. Magnetic
measurements were performed in the same temperature re-
gion by using a superconducting quantum interference de-
vice magnetometer manufactured by Quantum Design.

III. RESULTS AND DISCUSSION

A. Mn intra-atomic transitions

No significant features were observed in the optical ab-
sorption spectra in the region from 600 to 2500 nm~insert in
Fig. 1!, apart from typical interference signals in samples
with a thickness of a few microns.

The absorption spectrum of MnGa2Se4 at 10 K shows
three bands with maxima at 532, 498, and 466 nm, respec-
tively ~Fig. 1!. These absorption maxima are also present in

the spectra ofx50.88 andx50.75 samples. They are not
observable at lower Mn content due to band broadening, and
they are totally absent forx50. These bands do not shift with
temperature. Therefore, they are assigned to intra-Mn11

transitions.
The coordination of the Mn11 ion in the

Zn12xMnxGa2Se4 series is expected to be tetrahedral since
MnGa2Se4 and ZnGa2Se4 have been described in a defective
chalcopyrite and defective stannite structure,
respectively.10,11 The first excited state of Mn11, a d5 con-
figuration, is4G. According to Suganoet al.,12 the 4G state
splits into4T1, 4T2, 4A1, and4E states in a tetrahedral crys-
talline field. Thus, the absorption bands observed at 2.33,
2.49, and 2.66 eV can be assigned to transitions from the6A1

ground state to the excited states4T1 , 4T2 , 4A1, and 4E,
respectively. In a previous study concerning the optical prop-
erties of MnGa2Se4 exclusively,13 Niftiev et al. found only
one Mn band with a maximum at 2.43 eV that was associ-
ated with the6A1→4T2 transition.

Table I shows a comparison of Mn-related absorption
bands seen in other DMS compounds with a Mn tetrahedral
coordination, and the transitions they were assigned. Notice
that the best agreement is obtained about the 2.66 eV band
corresponding to the4A1, 4E states, which are invariant with
the strength of the crystalline field. On the other hand,
Langer and Ibuki14 found a fine structure in Mn-bands that
was interpreted in terms of phonon-coupled transitions.
Therefore, real transition energies are given by zero-phonon
lines and not by band maxima. Therefore, a determination of
the crystalline field strength,Dq, and the Racah parameters,
B and C12 for Zn12xMnxGa2Se4 from our band maximum
energies could only be approximate. On the other hand, the
energies of band maxima we found and those reported in

TABLE I. Intra-Mn11 absorption maxima ~in electrovolts! in
Zn12xMnxGa2Se4, and in several DMS alloys with zinc-blende~z.b.! or
wurtzite ~w.! structure.

Compound x

Transition

Source6A1→4T1
6A1→4T2

6A1→4A1,4E

Zn12xMnxGa2Se4 1 2.33 2.49 2.66 a

1 2.43 b

Zn12xMnxSe ~z.b.! 0.001 2.34 2.48 2.66 c

0.23 2.38 2.57 2.68 d

0.5 2.42 2.54 2.70 d

Cd12xMnxS ~w.! 0.4 2.43 2.58 2.72 e

Zn12xMnxS
~z.b. and w.!

0.007 2.22i 2.441 2.63i f

0.08 2.32 2.49 2.67 f

0.5 2.38 2.52 2.68 g

Zn12xMnxTe ~z.b.! 0.5 2.30 2.38 2.58 h

0.6 2.33 2.44 2.61 h

aThis work.
bReference 13.
cReference 33.
dReference 3.
eReference 4.
fReference 14.
gReference 34.
hReference 35.
iZero phonon lines.

FIG. 1. Optical absorption spectra of MnGa2Se4 at 10 K, in the wavelength
range from 450 to 600 nm, showing the maxima of the intra-Mn11 absorp-
tion bands~black arrows!. In the insert, idem, in the range from 350 to 2500
nm.
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Ref. 14 for Zn12xMnxS alloys are very similar. Therefore,
the value ofDq in Zn12xMnxGa2Se4 must be close to 480
cm21, which is the value calculated for Zn12xMnxS from the
zero-phonon lines.

B. Energy gap

The plot of the absorption coefficient squareda2 against
the photon energyhn yields a straight line near the funda-
mental absorption edge for all the samples, as it is shown in
Fig. 2 for ZnGa2Se4 and MnGa2Se4. This indicates a direct
energy gap.15 We obtained a band gap energyEg of 2.32 eV
for ZnGa2Se4 at 298 K. This is among other values reported
in the literature:16–18 2.17, 2.18, and 2.465 eV. We find that
Eg52.50 eV for MnGa2Se4 at 298 K, which is also among
previously reported values:19–21 2.33, 2.56, 2.70, and 2.77.

The variation of the energy gap of Zn12xMnxGa2Se4

solid solutions with composition is shown in Fig. 3. It is
clear that, unlike most of A12x

II MnxB
VI alloys,3,

Zn12xMnxGa2Se4 does not follow the VCA.1 With increas-
ing Mn content,Eg first decreases to a minimum atx;0.1, it
is then roughly constant fromx;0.1 tox;0.50, and it finally
rises sharply beyondx;0.50. A similar pattern is observed at
low temperature except that the minimum deepens~Fig. 3!.

Anomalous variations of the energy gap with composi-
tion for DMS alloys have been explained in many different
ways in the literature. Bylsmaet al.5 concluded that the
minimum of Eg for low Mn content observed in Zn13MnxS
and Zn12xMnxSe solid solutions5,22,23is related to the varia-
tion of the magnetic susceptibility by the following equation:

Eg~x,T!5E0g~x,T!2bxT, ~1!

whereE0g ~x, T! stands for the value of the energy gap when
x50, andb is a parameter that can be fitted. They derived
Eq. ~1! considering a coupling of band electrons and local-
ized Mn spins, using a simple model based on second-order
perturbation theory. Data points we have obtained for the
susceptibility of Zn12xMnxGa2Se4 are plotted versusx in
Fig. 4. Clearly, nothing like the curves shown in Fig. 3 can
be obtained from the data on Fig. 4, using Eq.~1! and a
linear E0g~x! function. Consequently, the departure from
VCA in Zn12xMnxGa2Se4 cannot be explained in this way.

Indeed, the departure from VCA in Zn12xMnxGa2Se4

may be unrelated to its semimagnetic character, because
some nonmagnetic semiconductor alloys also exhibit behav-

FIG. 2. Relation between the absorption coefficient squareda2 and the
photon energyhn for Zn12xMnxGa2Se4 ~x50.00,1.00! at 298 K. The arrow-
head lines are extrapolations of the straight portion of the plot toa250,
which give the value ofEg .

FIG. 3. Composition dependence of the optical energy gapEg for
Zn12xMnxGa2Se4 ~x50.00,0.10,0.23,0.49,0.63,0.75,0.88,1.00! at several
temperatures. The lines are drawn to guide the eye.

FIG. 4. Composition dependence of the magnetic susceptibilityx for
Zn12xMnxGa2Se4 ~x50.00,0.10,0.23,0.49,0.63,0.75,0.88,1.00! at 10 and
298 K. The lines are drawn to guide the eye.
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iors of this type.24,25 For the latter systems, several authors
have found no relation between non-VCA behavior and
changes in the crystal structure. For instance,Eg for ZnSe–
ZnTe alloys24 shows a nonmonotonic concave variation with
x. Indeed, the variation of the lattice parameter with compo-
sition follows Vegard’s law1 throughout the whole range.
Then, the anomalous variation ofEg~x! was assigned to some
unspecified property peculiar to Te atoms.24 On the other
hand, other diamagnetic solid solutions that do not contain
Te, such us GaP–ZnS and GaP–ZnSe, also exhibit a non-
VCA behavior.25 Furthermore, the variation of the lattice
constant with composition is linear for the GaP–ZnS and
GaP–ZnS series that show a nonlinear variation ofEg ~x!,
whereas the lattice constant is nonlinear for the GaAs–ZnSe
series that shows a linear variation ofEg ~x!. Thus, the in-
fluence of structural factors on anomalousEg~x! variation, if
any, is not clear.

Another attempt to explain non-VCA behavior has been
made with regard to CdSnAs2–In2As3, CdTe–AgInTe2, and
CdTe–CuGaTe2 alloys.26,27 The minimum in the Eg~x!
curves observed in these systems was related to the strong
coulomb potentials that follows from the substitution of di-
valent ions~Cd and Sn! by trivalent ions~In and Ga!.28 Ob-
viously, this explanation does not account for our results,
since no valence change takes place upon ion substitution,
even though Mn~II ! is more ionic than Zn~II !.

The variation ofEg with T for the Zn12xMnxGa2Se4

series is shown in Fig. 5. In the temperature range from 80 to
300 K, the energy gap decreases linearly for the whole series.
The average temperature coefficient of the energy gap,
dEg/dT, calculated in this interval is given in Table II. Al-

though a regular trend cannot be deduced from the variation
of dEg/dT with x, the thermal shift ofEg appears to decrease
with x in the low Mn content region. The temperature coef-
ficient for MnGa2Se4,–6.031024 eV/K, is within values re-
ported for MnGa2S4, 27.531024 eV/K,29 and MnGa2Te4,
25.031024 eV/K.30 On the other hand, the evolution of
Eg~T! for every composition fits well Varshni’s relation31

Eg~T!5Eg~0!2aT2/~T1b!, ~2!

whereEg~0! represent the band gap energy atT50 K, anda
andb are constants of the material. Table II shows the values
of the Varshni parameters obtained in the fitting. The de-
crease ofb with the Mn content reflects a tendency ofEg~T!
to linearity. The addition of a susceptibility term to Eq.~2! as
suggested by Bylsmaet al.5 did not improve the fitting. This
additional term was used to account for a coupling between
band electrons and localized Mn spins. It can be inferred that
this kind of magnetic effect is not of significant relevance in
the Eg~x,T! dependence exhibited by the Zn12xMnxGa2Se4

compounds in the temperature range considered. However, it
could be of interest to determineEg~x,T! at temperatures
bellow 6.4 K that is the reported critical temperature for
magnetic ordering in MnGa2Se4 .

IV. SUMMARY AND CONCLUSIONS

The optical absorption of the Zn12xMnxGa2Se4 series
has been measured for the whole composition range as a
function of temperature. The spectra of compounds with a
high Mn content show absorption bands corresponding to
intra-Mn11 electronic transitions. These bands, with
maxima at 2.33, 2.49, and 2.66 eV, have been assigned to
internal Mn11 transitions from the6A1 ground state to the
4T1, 4T2, and 4A1 or/and 4E excited states, in accordance
with values reported for other Mn chalcogenides.

The variation of Eg with composition in
Zn12xMnxGa2Se4 solid solutions does not follow the virtual
crystal approximation within the whole range ofx. This
anomalous variation ofEg with x has also been found in
semiconductor alloys of very different kinds. The explana-
tions proposed in the literature are vague and only apply to
particular cases. This question remains open and should
stimulate further research. Perhaps, the scheme of configura-
tion interaction would throw some light onto the subject.32

The evolution ofEg with temperature fits well Varshni
relation. Such evolution presents a clear trend towards lin-

TABLE II. Fitting of the Eg vs T dependence to the Varshni equation, and
temperature coefficient values in the range from 80 to 300 K, for
Zn12xMnxGa2Se4.

x
2dEg /dT

(31024 eV/k!
Eg(0)
~eV!

a
(31024 eV/k!

b
~K!

0.00 4.7 2.435~0.001! 6.9 ~0.5! 233 ~39!
0.10 5.3 2.341~0.001! 7.0 ~0.5! 172 ~36!
0.24 6.2 2.391~0.002! 6.9 ~0.2! 68 ~13!
0.49 6.3 2.383~0.002! 8.5 ~0.2! 32 ~9!
0.75 7.4 2.522~0.002! 7.9 ~0.3! 49 ~13!
0.88 6.9 2.648~0.002! 7.0 ~0.2! 0
1.00 6.0 2.674~0.001! 6.0 ~0.2! 0

FIG. 5. Temperature dependence of the optical energy gapEg for
Zn12xMnxGa2Se4 ~x50.00, 0.23, 0.75, 1.00!. Solid lines show fits to the
Varshni relation @Eg~T!5Eg~0!2aT2/~T1b!, where Eg~0! represent the
band gap energy atT50 K, anda andb are constants of the material#.
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earity with increasing Mn content. Due to magnetic ordering
that MnGa2Se4 exhibits below 6.4 K, further experimental
work below this temperature would be of interest. This
would enable one to analyze the relevance of the magnetic
effects on the energy gap as a function of composition and
temperature.
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