Provided by Digital.CSIC

BIOLOGY OF REPRODUCTION (2013) 89(5):110, 1-7
Published online before print 11 September 2013.
DOI 10.1095/biolreprod.113.112110

Metadata, citation and similar papers at core.ac.uk

Sperm Population Structure and Male Fertility: An Intraspecific Study of Sperm Design

and Velocity in Red Deer'

Manuel Ramén,** Ana Josefa Soler,* José Antonio Ortiz,> Olga Garcia-Alvarez,* Alejandro Maroto-
Morales,* Eduardo R.S. Roldan,® and José Julian Garde**

3CERSYRA, Junta de Comunidades de Castilla-La Mancha, Valdeperias, Spain

4SaBio (CSIC-UCLM-JCCM), Campus Universitario s.n., Albacete, Spain

’Medianilla SL Finca Las Lomas, Vejer de la Frontera, Cadiz, Spain

®Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain

ABSTRACT

Sperm design and velocity play key roles in influencing sperm
performance and, therefore, can determine fertilization success.
Several interspecific studies have demonstrated how these
features correlate, and it has been hypothesized that selection
may drive changes in these sperm traits. Here, we examine the
association between sperm design and swimming velocity in a
study conducted at an intraspecific level in Iberian red deer
(Cervus elaphus hispanicus). We addressed how the structure of
different sperm subpopulations, based on sperm morphometry
and velocity, are interrelated and, in turn, how they associate
with fertility. Our results show that males with high fertility rates
have ejaculates with high percentages of spermatozoa exhibiting
fast and linear movements and that these are highly correlated
with a large proportion of spermatozoa having small and
elongated heads. On the other hand, males with low fertility
are characterized by a subpopulation structure in which slow
and nonlinear as well as small and wide spermatozoa are
predominant. These findings provide insight regarding how
sperm size and velocity are interrelated and how they both are
associated with fertility.

ejaculate heterogeneity, fertility, sperm, sperm length, sperm size,
sperm subpopulations, sperm velocity

INTRODUCTION

Numerous studies have attempted to explain how sperm
parameters determine male fertility, mostly focusing on sperm
velocity as a trait that may influence a male’s fertilizing
capacity. Sperm velocity has been related to fertility in a wide
range of species, including mammals [1-3], fish [4], birds [5],
or insects [6]. The diversity in sperm size and shape across
species is also thought to influence sperm velocity and,
therefore, possibly determine fertility. A number of studies
have addressed how sperm design and sperm velocity could be
interrelated [7—10] and how both could affect the reproductive
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success of males [3, 4, 11-12]. Controversy exists, however,
about the way diversity in sperm design translates into
variation in sperm velocity. Thus, whereas the results of
several studies have supported associations between sperm
design and sperm velocity [7, 10, 13, 14], others have not
detected such associations [8].

Most studies have been conducted at the interspecific level,
and the large degree of variation between species has allowed
identification of an association between sperm morphometrics
and velocity [10]. However, this relationship has been more
difficult to appreciate at the intraspecific level (i.e., within
species) given that differences between males are usually
smaller. A recent intraspecific analysis showed that when data
on sperm size and swimming velocity are matched for the same
sperm cells, the relationship is strong and clear [15]. However,
when data on size and velocity are collected from different
sperm subsamples (as in most studies), such relationships
might not arise.

One key characteristic of mammalian ejaculates is hetero-
geneity [16—18]. This heterogeneity has been related to
different aspects of male reproductive performance, with the
realization that fertilization ability may vary depending on the
characteristics that spermatozoa show at the time of fertilization
[17, 19]. The majority of studies have addressed the relations
between sperm traits and male fertility based on average values
of sperm parameters, but to our knowledge, no attention has
been paid to sperm heterogeneity and how it could affect the
fertilization ability of a male. The characterization of such
ejaculate heterogeneity would allow a more detailed analysis of
the relationship among sperm features and their role in
determining male fertility.

To characterize sperm heterogeneity of an ejaculate,
clustering statistical methods have been used to identify groups
or subpopulations of spermatozoa sharing common character-
istics [20]. The sperm traits used to characterize this
heterogeneity should be those with a role in determining the
fertility of a male. The identification of sperm parameters of
interest for fertility requires not only a sperm-quality
assessment but also a definition of the best conditions for
fertility evaluation [21]. It is now clear that fertilization success
does not simply depend on the absolute number of vital, motile,
morphologically normal spermatozoa inseminated in the
female [19]. Moreover, measures of individual sperm traits or
the results of single functional tests are poorly correlated with
fertility [22]. As a result, the emphasis is now focused on
analyses that incorporate multiple variables to examine how
different sperm parameters interact to determine fertility. To
achieve these goals, a supervised learning statistical method-
ology [23-25] has recently been incorporated in these analyses.
The advantage of this methodology lies in the use of prior

Article 110


https://core.ac.uk/display/45446034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RAMON ET AL.

sources of information when characterizing spermatozoa,
which ultimately will allow a more comprehensive interpreta-
tion of functional relationships. Although this methodology has
been used in other biological systems [24, 26, 27], its use in the
field of spermatology is novel [28, 29].

In the present study, we examined, at the intraspecific level
in red deer, the relationship between sperm design and velocity
in males with different fertility. To account for sperm
heterogeneity of an ejaculate, we identified and characterized
different sperm subpopulations based on sperm design and
velocity features. For the characterization of sperm subpopu-
lations, we took advantage of supervised learning methods as a
way to consider multiple sources of information jointly in a
single analysis. The sperm subpopulation distribution defined
in this way was then used to assess how changes in sperm
population structure reflect on male fertility.

MATERIALS AND METHODS
Ethics

The present study was approved by the “Comité de Etica en Investigacién
de la Universidad de Castilla-La Mancha.” All animal handling was done
following Spanish Animal Protection Regulation RD1201/2005, which
conforms to European Union Regulation 2003/65.

Animals

The study sample included 12 Iberian red deer (Cervus elaphus hispanicus)
stags culled during the mating season (October—December) in three different
wild populations from the south of Spain [30]. Culls were performed following
Spanish laws that in turn conform to European Union regulations. Medianilla
SL allowed the insemination of hinds at Finca Las Lomas (Vejer de la Frontera,
Cadiz, Spain).

Sperm Collection and Evaluation

Both testes in the scrotum were removed and transported at 20-21°C to the
laboratory. Time elapsed between the animal’s death and sperm analysis and
processing ranged from 3 to 6 h, which is an adequate and reliable interval for
evaluating sperm parameters in this species as the decrease in quality of sperm
traits only begins 12 h after the death of the male [31]. Sperm samples were
cryopreserved as described by Soler et al. [32] and then used to inseminate
hinds. Only samples with a minimum of 80% motile sperm and a wave motion
of 4 (on a linear scale from O [no movement] to 5 [strong wave motion]),
assessed subjectively, were used. Just after sample thawing and before
insemination, subsamples were taken to assess sperm morphometric and
velocity parameters. Methods for analyses of sperm morphometry and velocity
have been described previously [7, 33]. Briefly, spermatozoa were diluted in
Dulbecco PBS with 0.5% bovine serum albumin. Objective measures of sperm
velocity were recorded using a computer-aided sperm analyzer (Sperm Class
Analyzer [SCA]; Microptic). For the assessment of sperm morphometry,
microscope slides were prepared by placing 5 pul of sperm diluted in PBS on the
clear end of a frosted slide and then dragging the drop across the slide. Semen
smears were air-dried and stained using the commercial kit Hemacolor (catalog
no. 11661; Merck). Next, stained samples were permanently mounted to the
slide with a coverslip and DPX. The morphometric module of the SCA was
used to capture sperm head dimensions. A total of five sperm head dimension
parameters were assessed: head length (HL), head width (HW), head area (HA),
head perimeter (HP), and the shape factor known as perimeter to area (p2a;
calculated as HP?4 X © X HA) (Fig. 1) [34]. In addition, six motility
descriptors were quantified: curvilinear velocity (VCL), average path velocity
(VAP), straight line velocity (VSL), linearity (LIN), amplitude of lateral head
displacement (ALH), and beat cross frequency. Data for sperm morphometry
were collected from eight stags, whereas velocity descriptors were obtained
from 12 stags.

Fertility Data

Data on male reproductive performance were also gathered. Sperm samples
from the 12 red deer males were used to inseminate a total of 257 hinds. To
allow insemination of a large number of females with spermatozoa from the
same male, sperm samples were cryopreserved and stored in liquid nitrogen
after collection. Each female was inseminated once with spermatozoa from one
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FIG. 1. Schematic drawings of the perimeter to area (p2a) shape factor.
For a circle, p2a equals 1 (left). As the value of p2a increases, the shape
becomes more elongated (middle and right).

male, and samples from each male were used to inseminate between 4 and 69
females. No effect of the number of females inseminated by each stag was
found on individual male fertility rate. To eliminate female influence on fertility
success and retain the intermale variation on fertility rates, the experiment was
designed so that 1) no preferential matings were conducted, 2) all females were
in good physical conditions and had given birth the previous year, 3) the
estrous cycles of all females were synchronized, and 4) the total number of
spermatozoa inseminated (100 X 10°) was kept constant for all the artificial
inseminations performed [11]. We considered that a male had scored a
successful fertilization when the female became pregnant. Fertilization success
for every male was calculated as the number of hinds made pregnant divided by
the number of hinds inseminated and expressed as percentage. In the present
study, male fertility was of 55% = 4.9% (mean = SEM).

Statistical Analysis

A supervised learning method was used to characterize sperm subpopu-
lation structures based on motility and morphological information. The
statistical procedure used to characterize sperm subpopulations was the support
vector machine (SVM) methodology [23-25]. The basis of supervised learning
methodology is as follows: The goal is to predict the value of an outcome
measure based on a number of input measures, so the presence of the outcome
variable guides the learning process. A training set of data is used to observe
the outcome and feature measurements for a set of objects. Using these data, we
build a prediction model, or learner, that will enable us to predict the outcome
for new, unseen objects. A good learner is one that accurately predicts such an
outcome. When translating this idea to the field of spermatology and, more
specifically, the aim of the present study, the outcome measure was the
subpopulation to which spermatozoa belong, and the input measures were all
the characteristics of sperm design and velocity assessed. As a training data set,
we used two subset of male deer, one with low fertility rates and one with high
fertility rates. Clear differences were observed in the sperm subpopulation
distribution among the groups of high and low fertility (Fig. 2). For each of
these males in the training data set, individual sperm tracks and morphometry
were assessed visually and assigned to one of the different subpopulations as
described by Goodson et al. [28] and Ramén et al. [29]. Then, the SVM
methodology was used to generate a model that, using the information on
sperm shape and velocity, allowed an accurate classification of sperm from a
male ejaculate into the subpopulation to which they belonged. This model was
then used to characterize the sperm subpopulations in the ejaculates of the other
males not included in the training set.

In the present study, information on sperm design and velocity from four
males, two with low fertility and two with high fertility, was used as source of
prior information in a training data set (Fig. 2). Individual sperm from these
four males were assigned to different subpopulations based on their head
morphometry and velocity parameters and then used by the supervised learning
procedure to generate the SVM model for the automated characterization of
sperm subpopulations. The sperm characteristics used as initial classificatory
variables were HL and p2a for head morphometry [18] and VAP and LIN for
velocity [17]. Once SVM equations were generated, we performed the
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FIG. 2.

Distribution of sperm subpopulations in Iberian red deer ejaculates based on head morphometry and velocity parameters. Sperm distribution for

males with low fertility, males with high fertility, and all males included in the present study are shown. Three head morphometry sperm subpopulations
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characterization of the sperm subpopulations for the sperm samples of the other
eight males.

After characterizing sperm subpopulations, we performed a two-way
correlation analysis including all sperm subpopulations to explore possible
associations between both sperm head morphometry and sperm velocity.
Finally, we performed regression analyses to explore the relationships between
the proportion of each sperm subpopulation in the sperm sample and fertility.

All statistical analyses were performed using the R statistical environment
[35]. Package 1071 [36] were used to perform SVM analysis. P-values of less
than 0.05 were considered to be statistically significant.

RESULTS

Graphical display of sperm head morphometry and velocity
characteristics for males with large differences in their fertility
rates (Fig. 2) showed that, for males with low fertility, sperm
heads were mostly small and wide, with predominantly slow
movement, whereas for males with high fertility, sperm heads
were mostly small and long, with fast movement. According to
differences observed in the p2a parameter (values of p2a close
to 1 indicate a shape similar to a circle, and as this value

), and long and wide (SP3

morpho
and fast and nonlinear (SP3

morpho)” Three motile sperm subpopulations were

).

vel

increases, a more elongated shape is observed; see Fig. 1),
males with low fertility were characterized by spermatozoa
with a round head, whereas males with high fertility rates were
characterized by spermatozoa with an elongated head (Fig. 2).
When all males were considered, three sperm morphometric
subpopulations could be defined. This classification is in
agreement with results reported earlier on sperm head
morphometry in red deer [18].

Figure 2 also presents the distribution of subpopulations
based on sperm velocity parameters. Males with low fertility
were characterized by spermatozoa with a slow movement
(lower VCL and VAP). Conversely, males with high fertility
rates exhibited a decrease in the percentage of spermatozoa
with slow movement, with an increase in VCL. Within
spermatozoa with high VCL, two groups could be distin-
guished based on their VAP. Overall, three velocity subpop-
ulations were obtained, which matched subpopulations
previously identified for red deer [17].

TABLE 1. Summary of sperm subpopulation characteristics based on spermatozoa head dimensions.?

Fertility (%)

Sperm characteristics

Subpopulation Low High All males (range) Length (um) Width (um) Area (pmz) p2a

SP]morpho 67.75 = 1.89 29.86 = 5.10 37.96 = 7.20 (16-70) 7.82 £ 0.02 4.62 = 0.02 30.25 = 0.17 2.26 = 0.01
b 2494 * 351 65.00 727  52.32 £7.22 (21-80)  8.14 £ 0.03  4.46 = 0.02  29.37 = 0.14  2.98 = 0.02
morpho 7.31 £ 1.62 5.14 £ 2.17 9.72 * 2.33 (3-22) 8.70 = 0.03 4.78 = 0.04 33.81 = 0.39 2.24 = 0.02

¢ Data are presented as the mean * SEM.
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TABLE 2. Summary of sperm subpopulation characteristics based on spermatozoa velocity.”
Fertility (%) Sperm characteristics

Subpopulation Low High All males (range) VCL (um/sec) ~ VSL (um/sec) VAP (um/sec) LIN (%) ALH (um)
SP1,, 80.45 = 9.02 17.48 =£3.20 34.74 = 11.29 (5-95) 83.77 £2.99 29.37 £1.57 40.39 £1.29 3791 = 1.66 4.60 = 0.22
SP2 13.34 £ 8.08 56.39 = 9.84 53.35 = 10.07 (0-77) 153.86 = 2.69 112.10 = 2.59 128.09 = 2.46 73.20 = 1.09 5.21 = 0.16
SP3,. 6.20 £ 0.94 26.12 * 6.63 11.90 = 2.87 (3-26) 179.55 = 6.33 40.50 = 2.14 95.61 = 3.07 23.18 £ 1.30 8.71 = 0.44
¢ Data are presented as the mean * SEM.

The use of information on sperm morphometry and velocity DISCUSSION

from males with considerable differences in their fertility rates in
an SVM procedure resulted in the classification of spermatozoa
in three morphometric sperm subpopulations (Table 1) and three
velocity sperm subpopulations (Table 2). The three sperm
subpopulations obtained based on sperm head morphometry
were as follows: small and wide (SleorPho), small and

elongated (SP2mOIphO), and long and wide (SP2morpho). Morpho-

metric subpopulations were classified as small or long based on
whether their HL. and HA were below or above average (average
HL, 8.15 um; average HA, 30.3 um?); in addition, morphomet-
ric subpopulations were classified as wide or elongated based on
whether their p2a was below or above average (average p2a,
2.63). Regarding sperm velocity, the characteristics of the three
sperm subpopulations were as follows: slow and nonlinear
(SP1, ), fast and linear (SP2_)), and fast and nonlinear (SP3_,)).
Subpopulations based on sperm velocity were classified as slow
or fast based on whether their VCL was below or above average
(average VCL, 136.7 pm/sec); moreover, velocity subpopula-
tions were classified as nonlinear or linear based on whether
their LIN was below or above average (average LIN, 54.07).
We searched for possible correlations between morphom-
etry and velocity subpopulations (percentages of each) to
assess if spermatozoa in a particular morphometric sperm
subpopulation had a characteristic movement (Table 3). We
found that the proportion of spermatozoa with small and wide
heads (SleorphO) showed a strong positive correlation (r =

0.83, P < 0.01) with the proportion of spermatozoa having a
slow and nonlinear movement (SP1__) and a strong negative
correlation (r = —0.76, P < 0.05) with the proportion of
spermatozoa having a rapid and linear movement (SP2_ ). On
the other hand, the proportion of spermatozoa with an
elongated head (SP2__ . ) showed a strong positive correla-
tion (r = 0.69, P < 0.05) with the rapid and linear
subpopulation (SP2_ ) and a strong negative correlation of (r
=—0.76, P < 0.05) with the slow and nonlinear subpopulation
(SPL_ ).

Finally, we examined how the males’ sperm subpopulation
distribution related to their fertility. Four regression analyses
including the small and wide (Sleomho), small and elongated
(SP2m0rph0), slow and nonlinear movement (SP1 ), and rapid
and linear (SP2 ) variables were carried out. The percentages
of spermatozoa with a small and wide head (SP1__ . and a
slow and nonlinear movement (SP1_ ) showed a negative
relation with the fertility rates of males, explaining 70% and
66%, respectively, of the variation in fertility rates (Fig. 3, a
and c). On the other hand, the percentages of spermatozoa with
a small and elongated head (SPZmorpho) and a rapid and linear
(SP2_,) movement were positively correlated with fertility and
explained 69% and 48%, respectively, of the variation of
fertility (Fig. 3, b and d).

The present study examined, at the intraspecific level,
relations between ejaculate subpopulations defined on the basis
of sperm design and velocity and revealed how changes in
sperm population structure are associated with differences in
male fertility. Our findings show that an increase in the
percentage of spermatozoa with a rapid and linear movement is
associated with an increase in male fertility. This motion
pattern is strongly correlated with spermatozoa having a small
and elongated head. On the other hand, high percentages of
spermatozoa with a slow and nonlinear movement strongly
correlates with an increase in the percentage of spermatozoa
with small and wide heads and an associated reduced fertility
of males. Overall, we found that sperm head form is the most
important feature in determining the fertility potential. Thus,
males presenting high fertility rates are characterized by a
sperm subpopulation with elongated heads. Interestingly, these
results agree with the observation that sperm competition
selects for spermatozoa with more elongated sperm heads,
which are thought to result in more hydrodynamically efficient
cells [10]. Therefore, small changes in sperm head shape could
have a major impact on sperm swimming velocity and,
therefore, on sperm fertilization ability [7, 37].

Previous studies have examined correlations between sperm
design and sperm function [7, 38, 39] and their role as
determinants of fertilization success [3, 4, 12]. However,
although some studies showed significant correlations between
these traits, others found no evidence for these associations [8].
All these studies concentrated on analyses of sperm linear
dimensions and, more importantly, used average values for the
different traits examined, and this may have hindered the
possibility of uncovering the relations between traits because
average values do not capture the variation existing among
spermatozoa in an ejaculate. A large degree of variation exists
among species, and such variation may be required for the
identification of associations between traits, as seen in
interspecific comparisons. Such associations may be more
difficult to appreciate at the intraspecific level given the small
magnitude of differences between males [8]. Interestingly,
when data on dimensions and velocity were collected from the
same sperm cells, the relationship between these traits was
clear [15]. However, although this approach is potentially very
useful to accurately assess relationships between sperm design
and function, it may not be applied to all species. Thus,
whereas Fitzpatrick et al. [15] obtained morphometry and
motility data for the same sperm cells in the sea urchin

TABLE 3. Correlations among percentages of sperm subpopulations.®

Subpopulation SPT oo SP2  opho SP3, opho
SP1,,, 0.83* ~0.76* —0.21™
sP2 —0.76* 0.69* 021
SP3,, -0.61N° 0.58™° 0.07™°

%NS, nonsignificant; *P < 0.05; **P < 0.01; ***P < 0.001.
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(Heliocidaris erythrogramma), a species with large and slow-
moving spermatozoa, in others species (i.e., ungulates)
spermatozoa are smaller in size and have a very fast movement,
which prevents detailed examination of sperm morphometry
and velocity in single sperm cells.

The present study examined the relationship between sperm
design and velocity by making use of sperm population
structure as an indicator of the heterogeneity of semen. Sperm
heterogeneity is a widely recognized feature with a key role in
the reproductive performance of males [17-19]. Spermatozoa
in a single ejaculate have different structural and functional
characteristics that may be associated to differences in fertility
potential. Here, we characterized sperm subpopulation struc-
ture of ejaculates based on sperm head morphometry and sperm
velocity, features that were both assessed objectively by means
of computer-assisted sperm analyses. Earlier studies that
assessed this possible relationship only considered sperm
dimensions (length and width) for sperm morphometry [12, 40]
and proportions between sperm components (e.g., ratio of HL
to HW or of sperm HL to flagellum length) [7]. In our analyses,
we included several morphometric parameters not only to
quantify sperm head dimensions but also to approximate
measures of sperm head shape. Thus, we sought to obtain as
much information as possible on sperm morphometry to allow
a better characterization of sperm form. Given that relatively
subtle differences in sperm design seem to have a great impact
upon sperm performance [10], our approach to collect
information on sperm size and an estimation of form allowed
us to identify relationships between sperm traits and fertility
that may not have been detected with the analysis of basic
sperm dimensions.

For the characterization of sperm subpopulations, we have
taken advantage of a joint analysis of different sperm
parameters together with fertility in a supervised learning
procedure [23-25]. This methodology has been used previ-
ously to understand changes in mouse sperm motility patterns
taking place during the transition from progressive to hyper-
activated motility during capacitation [28] and to examine
differences in red deer motile sperm subpopulation structure
occurring as a result of cryopreservation [29]. In the present
study, we used this methodology to identify subpopulation
structures of both sperm form and velocity that best
distinguishes males with low and high fertility.

Earlier attempts to establish relations between sperm design,
sperm velocity, and fertility have been limited by the use of
average values for these sperm traits. Methods to analyze and
quantify ejaculate heterogeneity (i.e., within-male variability)
were not available for those studies, and complex relations
between sperm form, sperm velocity, and fertility could not be
explored. The characterization of sperm subpopulations, as
developed in the present study, has proven useful to capture
sperm heterogeneity in an objective and accurate analysis that
can reveal, if present, relationships between sperm form and
velocity. In this way, it is possible to capture the covariance
between sperm design and velocity within males, with the
opportunity to analyze these traits in the same sperm sample,
which thus allowed us to assess the relationships between
sperm design and velocity more accurately at the intraspecific

o
|
proportion of small and wide (SP1 morpho) sperm. b) Relation between male

fertility and the proportion of small and elongated (SP2 1 oho) SPEMM. ©)
Relation between male fertility and the proportion of slow and nonlinear
(SP1,)) sperm. d) Relation between male fertility and the proportion of fast

and linear (SP2__) sperm.

vel)
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level. This highlights the importance of accounting for all
sources of variation in sperm traits given the substantial within-
and between-male variance in traits, and it supports the idea
that sperm characteristics should be assessed in the same sperm
samples when examining sperm design-velocity correlations
[15]. In the present study, using information on sperm
subpopulation structure, we have shown how sperm design
and sperm velocity interrelate and how this subpopulation
structure differs between males with different fertility.

Finally, it has been hypothesized that sperm design and
velocity are likely to evolve jointly [41], and support for this
idea has been presented [9, 10, 13, 14, 42]. The present study,
which found a strong association between subpopulation
structures defined by sperm morphometry and sperm velocity,
adds support to the hypothesis that these traits evolve together.
If joint evolution of sperm morphometry and sperm velocity
had occurred, we would expect males with high fertility to
show higher percentages of spermatozoa that have more
elongated heads and that swim faster. Our results revealed that
this was, indeed, the case. Previous studies have already found
a strong positive correlation between all sperm components and
how they evolve in an integrated manner into more elongated
spermatozoa [10, 43]. The increase in sperm length has been
found to be associated with enhanced swimming velocity and,
therefore, higher fertility. The present study also represents a
first attempt to uncover the relationships between sperm design
and velocity in a species with internal fertilization, thus
addressing the question raised by previous work focused on an
externally fertilizing species [15]. These two studies have
found a strong correlation between sperm characteristics using,
in both cases, an approach that allows the evaluation of sperm
design and sperm velocity in the same sample.

In conclusion, our approach for capturing within-male
sperm heterogeneity through the characterization of sperm
subpopulation structure revealed a strong association between
sperm head design and velocity and the role that both may play
in male fertility. Males with high fertility showed high
percentages of spermatozoa with rapid and linear movement
that, in turn, were strongly correlated to high percentages of
spermatozoa with elongated heads. Analyses of sperm
subpopulation structure thus represent an important tool that
will contribute to further characterization of ejaculate com-
plexity.
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