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Abstract

We introduce a lattice model of interacting spins and bosons that leads to Luttinger-liquid physics,
and allows for quantitative tests of the theory of bosonization by means of trapped-ion or
superconducting-circuit experiments. By using a variational bosonization ansatz, we calculate the
power-law decay of spin and boson correlation functions, and study their dependence on a single
tunable parameter, namely a bosonic driving. For small drivings, matrix-product-states (MPSs)
numerical methods are shown to be efficient and validate our ansatz. Conversely, even static MPS
become inefficient for large-driving regimes, such that the experiment can potentially outperform
classical numerics, achieving one of the goals of quantum simulations.

1. Introduction

Our understanding of matter relies on simplified models that try to capture the essence of experiments with
limited microscopic control (e.g. transport in solids). A radically different approach is being pursued with
ultracold atoms [1], trapped ions [2], and superconducting circuits [3], where current technology allows to
design and test such models microscopically. This constitutes a new way of exploring paradigmatic, yet not fully
understood, quantum many-body problems [4, 5]. Besides, this synthetic quantum matter may also realize exotic
models without condensed-matter counterparts that bring the possibility of testing phenomena beyond
Landau’s Fermi-liquid or symmetry-breaking theories [6].

The physics of one-dimensional (1D) strongly correlated models is a fertile ground for such fascinating
phenomena [7]. Here, the interplay of dimensionality and interactions renders the Fermi-liquid concept of
quasiparticles futile. As predicted by the theory of Luttinger liquids (LLs), collective bosons become the relevant
excitations in various fermionic, bosonic or spin models [8]. Despite being 1D, LLs are not mere theoretical
artefacts, but manifest themselves in magnets [9], organic salts [10], carbon nanotubes [11], semiconducting
wires [12], and spin ladders [13]. However, with the exception of the latter, the limited control over the
microscopic parameters hampers a more quantitative test of LL-theory, where ab initio predictions without
adjustable parameters are confronted to experiments [ 14]. It is thus desirable to find new platforms where to
assess the universality of LLs quantitatively.

Ultracold bosonic [15] and fermionic [16] atoms are clear candidates for this quest, as they realize Hubbard-
type interactions amenable of LL-theory [17]. Much less is known about trapped-ion (TI) and superconducting-
circuit setups, which lead to various models with spin-boson interactions [2, 3]. From a fundamental
perspective, it would be interesting to study if such spin-boson synthetic matter hosts a LL. Moreover, these
devices would have the advantage that the scaling of any two-point correlator with distance, which lies at the
heart of LL-theory, can be measured directly. In this work, we address this question, and show that certain driven
spin-boson models yield a rich playground to test LL-theory quantitatively.

This article is organized as follows. In section 2, we start by introducing the driven spin-boson lattice model
that will be the subject of our study. By means of variational techniques and bosonization, we show that the spin-
boson model can be described as a LL, and test this result numerically using matrix-product state (MPS)
algorithms. Some technical details about these derivations are relegated to the Appendices. In section 3, we
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discuss the realization of the aforementioned spin-boson LL in systems of trapped ions, or superconducting
circuits. Finally, we present our conclusions in section 4.

2. Spin-boson synthetic quantum matter

We consider a chain of lattice spacing d, hosting i € {1 ... N} spins and bosons described by the su(2){co%, o7},
andbosonic {a/, a; } algebras. This system not only leads to various equilibrium phases, such as spin-boson
Mott[18] and Anderson [19] insulators, or spin-boson Ising magnets [20], but also to non-equilibrium
phenomena, such as emerging causality [21]. So far, LLs have not been explored in this context.

To fill in this gap, we study a driven spin-boson Hamiltonian H = H, + V, with Hy describing the
uncoupled dynamics

_ Wh ) .
Hy=Y" — Loj 07 — Jvaj ja; + Tafai — Qqe g, + h.c., (1)
i

where J; (Jy ) represents the spin (bosonic) tunnelling strengths, wy, is the bosonic on-site energy (A = 1), and
4, g4 are the driving amplitude and momentum, respectively. We also introduce a spin-boson interaction of
strength U, namely

V=> Uosia/a;. 2

1

Instances of this spin-boson model can be implemented with trapped ions or superconducting circuits, but we
shall postpone the experimental details, focusing first on its physical content. In equation (1), the spin part
describes the well-known isotropic XY model, whose groundstate corresponds to a half-filled Fermi sea of
spinless fermions [22]. Since the bosons shall correspond to either phononic or photonic excitations, the
number of which is not conserved, the regime w}, < 2J, must be excluded as it allows for negative-energy levels,
and the energy of the system would get minimized by populating them with an ever-increasing number of
bosons (i.e. instability). In the absence of the driving, and setting w}, > 2Jj,, the bosons minimize their energy in
the global vacuum, such that the spin-boson interaction (2) does not induce any spin-boson LL behaviour. As
shown below, as the driving is switched on, the bosonic mode of momentum g gets macroscopically populated.
As a consequence, the spin-boson interaction induces non-trivial correlations, which will be shown to
correspond to a new phase: a spin-boson LL.

2.1. Spin-boson variational ansatz

According to the above discussion, we introduce spinless fermions through a Jordan—-Wigner mapping

o =2c¢;— 1, 0" = ¢ exp(in Zj<iC]T ¢) = (0;)"[23], and build our ansatz gradually. First, we note that the
macroscopic population of the driven mode resembles the Bogoliubov theory of superfluids, where

ag =y e ia;/\[N — [Ny, + 6ay such that 6a, are the Gaussian fluctuations for quasi-momentum

q € [—n/d, m/d),and ¢, ,, is the Kronecker delta fixing the mode with macroscopic occupation Ny [24]. This
can be accounted variationally by the ansatz

Wo(tag v1)) = UF [Fa( (1)), Us = ¢ 200 ) 3)
s )) = Us [ ¥e( )

where { g, Yy Y are the variational parameters, and |\ifG> is a fiducial state. Second, in order to account for the
boson-fermion correlations caused by the interaction (2), we use a polaron transformation [25] for the fiducial
state

Z(fiqu,;\fh.c.)cfci

| 1vr})) = U [0u) @ [wx), Up = e , &

where {f, , }are such that the boson-fermion correlations are minimized in the unitarily transformed picture,
|0,) is the boson vacuum, and | ) is a general fermionic variational state.

The variational minimization yields o, = JN (4 /wWy) 64,4, to lowest order in the interaction strength (see
appendix A), where we have introduced the bosonic dispersion w, = wy, — (U + 2J;, cos gd). Thisis the
analogue of the macroscopic population in the Bogoliubov theory [24], which motivates neglecting
contributions of quartic terms. Within this approximation, one can see that the interaction (2) tries to create/
annihilate Gaussian excitations conditioned on the fermion number 1; = ¢/ ¢; through a Holstein-type
coupling [26], which is a well-known interaction in the theory of electron—phonon interactions. For
dispersionless bosons in the Holstein model, a strong-coupling expansion that treats the electron hopping as a
perturbation J; < wy, U, leads to fermion—fermion interactions of strength J2/wy, U by a sort of super-
exchange mechanism [27]. This limit is however not consistent with our treatment of the spin-boson model,
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which requires aregime U < J, Jp. Yet, the dispersive nature of our bosons will allow for long-range
interactions mediated by virtual boson exchange rather than by super-exchange. This will lead to second-order
processes where distant fermions exchange bosons virtually, resulting in a fermion—fermion long-range
interaction. Additionally, as expected from the polaron transformation, a bosonic cloud will dress the fermions
modifying their tunnelling (i.e. band narrowing).

To make this description more quantitative, we specify the polaron parameters f;,, = uo e 1@ a0)di / w; VN
with 1y = 2U$24 /w, . Then, the variational minimization sets | 1) as the groundstate of the fermionic
Hamiltonian

Hi = Z(_TSC;CHI_'_ h.c.) + weni + Yy Viojnin;. (5)
i ij>i

As announced above, we obtain boson-mediated interactions V;_ i and renormalized tunnellings J;,

Vi—j — 7qu(ﬁq«f;’; + C.C.), TS = ]5<0a Hq,q’Daq(fiq)D“q’(ifH'lql) Oa> i ©
q

where we have introduced the generic displacement operator D, (o) = exp (aa’ — ofa).
To guarantee the absence of negative frequencies and thus the stability of bosons, we focus on
A = 2Jy/(wp, — U) < 1.Byusing the displacement-operator algebra, the binomial theorem, and some Taylor
series (see appendix A), we find
- Qqug Vo

_ud
]s = ]5677/1’ ‘/f = \/0 COS (qddf)e 50, W = + —, (7)
Wy 2

d

where the explicit dependences of 1), and Vj, &, on the experimentally tunable parameters are listed”,” in
footnotes. As announced, the dressed tunnelling gets exponentially suppressed as the bosonic driving
increases, and the interactions are long-ranged. For instance, letting wy, ~ 2J;,, the length scale &, diverges,
such that the interaction does not decay with distance. Conversely, for wy, > 2]y, interactions decay very
rapidly. In contrast to the dressed tunnelling, the interaction strength increases with the driving. Additionally,
its attractive /repulsive character oscillates along the chain, which corresponds to frustration effects in the
original spin model.

To test the correctness of equation (7), we compare it to the corresponding expressions obtained by
evaluating numerically the parameters in equation (6). In figures 1(a), (b), we see that (i) the renormalization of
the tunnelling and the exponential decay of the interactions (7) are very accurate. Therefore, the interaction
range can be tuned over &, € (0, co) by controlling A € (0, 1). (i) The dependence of the degree of frustration
on the driving momentum (7) is also very accurate: while figure 1(a) corresponds to unfrustrated attractive
interactions, figure 1(d) shows that alternating attractive/repulsive interactions occur for q; = 7 /d. Finally, (iii)
the ratio of the interactions to the dressed tunnelling can be tuned across | Vy| /J; = 1by controlling a single
parameter, the driving strength 4 (figure 1(c)). This is quite remarkable as we started from the constraint
U < J;, Jy imposed by the Bogoliubov theory of the bosons. Nonetheless, the role of fermion interactions is
enhanced by increasing the driving strength.

2.2.Bosonization and MPS

The nearest-neighbour limit of the model (5) is a paradigm of LLs [28]. Thermodynamic quantities given by the
Bethe ansatz can be combined with LL-theory to obtain various correlation functions [29]. Additionally, the
numerical density-matrix-renormalization-group (DMRG) gives accurate predictions in this limit [30, 31] used
to benchmark the LL [32]. The situation gets more involved for the full model (5), since Bethe-ansatz
integrability is lost, and DMRG with long-range interactions is more intricate (i.e. typically, models with only a
few neighbours are studied [32]).

An analytical LL-theory of the long-range model (5) can be obtained by phenomenological bosonization
[33]. We use instead the constructive approach [34], which allows us to find a constraint on the interaction range
(see appendix B). Provided that (i) V;_; < const/|i — j]|atlarge distances, which is fulfilled by (7) except for
X — 1,and (ii) V; < J, the low-energy excitations are described by two bosonic branches

He = Y uq(d dg, + d}_d, ), ®)

q>0

201 22 o
2= %(1 T e(lqd—ﬁo')d"(l TVl — AZ)),forf > 1
Wp —
; 1—\/1—%]

3 —2uy 1 Jand i — —log[

Ve — -0 -
T -V & )
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0.2 Qu/ 2 1 i— ] 15

Figure 1. Parameters of the spinless fermion model: (a) attractive interactions in the case g; = 0, settingd = 1,

ks =Jp =1=wyp/3,and U = 0.1. The bars (circles) represent the numerical (analytic) evaluation of equation (6) (equation (7)).

(b) Renormalized tunnellings, and (c) ratio of the interaction and tunnelling strengths, as a function of the driving. The solid lines
(symbols) correspond to the numerical (analytic) evaluation of equation (6) (equation (7)). (d) Same as (a) but for g, = 7/d leading to
alternating interactions.

characterized by the sound velocity
. _ 1/2
Vi 51nh(§old)cos(qdd)

ar 27 |, coshz(fo_ld) - cosz(qdd)

A

©)

u=2

The new operators d,.. are related to particle-hole excitations of the original fermionic system by a squeezing
transformation (see appendix) that depends on the Luttinger parameter

Vi sinh(go’ld)cos(qdd) e

2m | J coshz(fgld) - cosz(qdd)

(10)

In the absence of driving, we get V; = 0 and recover the non-interacting value K = 1. When we switch it on, it
is possible to tune K < 1 over a wide range of values as displayed in figure 2.

Following this discussion, the fermionic part of our variational groundstate |1)) is the vacuum of the new
bosonized modes |04), and we thus obtain a spin-boson LL groundstate

|We({ag ve})) = UfUL [0.) @ [0a). (1)

We can now calculate any connected two-point correlator Cyp(¢) = Zi( (Ag+iB;) — (Ag+i) (Bi))/N inthe
variational groundstate, provided that the operators A, B are expressed in the bosonized picture. In this way, we
can test one of the distinctive features of LLs: the power-law decay of correlations.

For instance, the diagonal spin correlators are

Corar(€) = —%(% _ (—1@%), (12)

which coincide exactly with those of the Heisenberg-Ising or XXZ model [28], albeit with a different Luttinger
parameter (10) due to the long range and possible frustration in (5). The off-diagonal spin correlators are

4
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1
K
0.5
0 Qq/J, 20
Figure 2. Luttinger parameter: (a) for the unmodulated case g; = 0, and (b) for q; = . Both figures are calculated for
Jk = J» = 1 = wyp/3, and different driving and interaction strengths.
1 e 2
Coo () = _—1(1 - (_I)K)?): (13)
2 2K 4

which display the power law of the bare XXZ model [28] with an additional distance-dependent renormalization
e~ " due to the bosonic cloud dressing the spins (see footnote 1). Atlong-distances, this polaron effect is constant
Cyro(£) ~ e M/2¢~1/2K and does not modify the power-law exponent.

The off-diagonal bosonic correlators can also be understood from a polaron perspective

|f’—i‘d

2 (K > 1 -
Cata (€) = — _(T - (—1)f~—)Cf,ze S, (14)
aa Zi:ﬂ'z fz fzk

which is a sum of diagonal spin correlations (12) with a polaron weight C, zexp (—|¢Z — #|d/ &,) exponentially
suppressed at large distances, where Cy, 7 is listed” in footnote. For £, >> d, all terms except # = £ are negligible,
and we thus find a power-law decay only determined by the Luttinger parameter.

Finally, we have concrete power-law predictions (12)—(14) that can be numerically benchmarked. We use
DMRG-type methods based on MPS for the thermodynamic limit [35]. By implementing the original short-
range spin-boson model (1), (2), we avoid the intricacies associated to the long-range model (5) mentioned
above. The results displayed in figure 3 agree with the aforementioned power-law decay at intermediate
distances, and depart at longer distances due to technical limitations in the MPS dimension. These results
confirm the validity of our ansatz.

3. Spin-boson LLs on ion traps and superconducting circuits

Experiments on this versatile LL can access different regimes by controlling a single parameter, the driving
(figure 2). As abonus, regimes that differ markedly from K = 1 require very large drivings, which increases
both the bosonic population |y [* o 23 and the dimension of the MPS. Therefore, MPS simulations, limited
by available computing resources, will eventually cease to be trustworthy. Instead, the experiment would actas a
reliable quantum simulator [5] capable of beating its classical MPS counterpart. TT and superconducting-circuit
(SC) architectures meet the requirements for this LL quantum simulator.

We first focus on the bosonic degrees of freedom. For laser-cooled linear chains of TIs [36], the bosons are
the transverse vibrational excitations of each ion, and display Coulomb-induced dipolar tunnellings
Joa; a; / |i — jI>,where Jy/2m ~ 1-10 kHz. The driving is due to an oscillating potential at one of the electrodes,
which has a frequency wy = wy + A with detuning A from the transverse trap frequency w;/2m ~ 1 MHz.
Thisleadsto £24/27 ~ 1-100 kHz,and q; = 0. To obtain q; = 0, one should use instead the ac-Stark shift of a
pair of lasers with beatnote w; — w, = wy + A, suchthat g, = (k; — k) - e, depends on the laser wavevectors
projected along the chain, and §24/27 ~ 1-10 kHz. Note that the crossed-beam ac-Stark shifts must coincide
for each atomic level forming the spin. For cryogenically cooled SCs [3], the bosons are the photonic excitations
of superconducting resonators of frequency w, /2w ~ 1-10 GHz, which are capacitively coupled yielding
nearest-neighbour tunnellings Jj, afaH 1, where J, /27 ~ 1-100 MHz. A microwave drive, detuned from the
resonator frequency wy = w;, + A, isinjected in each resonator, and its amplitude/phase is individually
controlled by quadrature mixers providing 23/2m ~ 1-100 GHz and a site-dependent phase ¢; = g,di.

Y= ,M nqddf(l T2 — 21— )\2)

4(wp — U)?
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Figure 3. Two-point correlators: diagonal (a), (¢) and off-diagonal (b), (d) spin and boson correlators for
k=T =1=wp/3, U= 0.15,and Qg = 1.5with g; = 0.(c), (d). The symbols are numerical data, and the red solid lines represent
the power-law decay obtained from fitting the LL-predictions (12)—(14)at distances up to |i — j| = 100. For Cyy, where N = a'a,
the analytical expression is only valid for £, >> d, where Cyn (¢) ~ (uo/(wp — U))*Cpz,2(£).

We now introduce the spin-1/2 degrees of freedom. For TTs, two levels are selected from either the hyperfine
groundstate or a dipole-forbidden optical transition [2]. Using lasers, a Jaynes—Cummings coupling go; a;e '
can be introduced, where g/27 ~ 1-50 kHz,and /27w ~ 0-0.1 MHz is the red-sideband detuning. For SCs,
two states with different values of charge/flux variables are separated from the rest by exploiting the Josephson
effect [37]. These spins can be coupled to the resonator photons via the same Jaynes—Cummings terms, albeit
reaching g/2m ~ 1-100 MHzand /27 ~ 0.1-1 GHz. In the dispersive regime g < 6, and setting
Jb < Wy, wy, these Jaynes—Cummings couplings are highly off-resonant, and lead to spin—spin J; = g%J,/6% and
spin-boson U = —g?/§ interactions to second order, with the peculiarity that TIs yield a dipolar decay
J/|i — jI’ [19], while nearest-neighbour couplings are the leading contribution in SCs.

Let us note that the equivalence of the TT or SC Hamiltonian to (1), (2) occurs in a rotating frame, where
wp, = Ais the detuning of the driving, and not the trap or resonator frequencies w;, w;. In order to avoid
spurious cross terms of the driving with the Jaynes—Cummings terms, we should also impose g < |6 — A]. We
remark that these realistic experimental parameters allow for a wide tunability of the LL parameters.

Once the driven spin-boson Hamiltonian is implemented, and the groundstate adiabatically prepared for a
certain K of figure 2, one must probe the two-point correlators in figure 3. TIs excel at measuring any spin
correlator through site-resolved spin-dependent fluorescence [2], whereas SCs are better suited to measure the
photonic correlations by collecting the output from the cables used to drive the resonators. It is important to
point out that, although the effective spin-boson model occurs in a rotating frame for both the bosons and spins,
the particular correlation functions studied in this work are not modified, and coincide with those of the original
lab frame. We thus conclude that either TIs or SCs are promising candidates to realize this spin-boson LL-liquid.

4. Conclusions and outlook

We have presented a theoretical study for a new class of spin-boson LLs based on a variational bosonization
approach benchmarked by MPS numerics, and proposed its implementation with TI and SC technologies. This
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model offers a flexible platform to test qualitatively LL-theory, and displays certain regimes where the LL
quantum simulator can beat MPS numerics on any classical computer.
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Appendix A. Variational minimization and effective long-range XXZ model

In this part of the appendix, we describe the variational minimization leading to equations (5) and (7) of the
main text. We first express the original spin-boson Hamiltonian (1), (2) in terms of the Jordan—Wigner
fermions, and the momentum-space bosons, as defined in the main text. This leads to

H= —%N - ]SZ(C,-TCI-_'_l + h.c.) + qu Qd\/_( ag, + aqd) + —Zzeﬂ a-q' d’c ¢ a;a .
i q

q

i qq
(AL)
In order to minimize over the variational family of groundstates introduced in the main text, and given by
. 72(01 hc) Z(fu a,‘\fh.o)cfcX
EG:mm{aq,wf}{<0a <’¢f‘UPUB u>"¢}f>}, Ug=¢€e 4 4% , Up = eqi 11 , (A2)

we first apply the displacement operator Uga, Uy = ay + oy, and proceed in the spirit of the Bogoliubov theory
of superfluids [24]. Accordingly, we linearize the bosonic density in the Fermi—Bose interaction assuming
sufficiently weak interactions, and obtain directly the variational parameter o, = JN (Qq JwWy) 84,4, For this
particular choice, the linear terms in the Fermi—Bose Hamiltonian vanish, and we obtain the following
variational problem Eg = minyy, , { (0| (¢¢| UpH Uy 104) [2) }, where

2
HZ—[%—}—&]N—LZ( 1+1+hc)+2U[ ]chcl—&—qu
w i

44

2UQy . ;
+ (e*‘(q*qd)d’cfci al + h.c.). (A3)
oy 2 q

Asnoted in the main text, the spin-boson interaction reduces to a Holstein-type coupling [26] within this
variational formalism, which corresponds to the last term in the above equation. We note that, contrary to the
Holstein model, the Fermi—Bose coupling strength here depends on momentum and the bosons are dispersive.
We can now identify the parameters of the polaron unitary by following the premise that the Fermi—Bose
coupling must vanish in the transformed picture. This leads to the polaron parameters

f = ype 1@ a4 / wo~/N with uy = 2U€Qy /wq,- Using the polaron transformation rules

Upa,Uj = a, — Upc] Uf = ¢/T4D,, (£, ), (A4)

iq 1 1 4
i
where D, (o) = exp (aa’ — oa) is the bosonic displacement operator, and taking the expectation value over
the bosonic vacuum, one reduces the variational problem to a purely fermionic one
Eg = mingy,, { (| He |) }. Here, H is an effective long-range XXZ Hamiltonian described in equation (5) of
the main text, rewritten here for convenience

Hf:Z( Jic c1+1—|—hc)—|—wsn,—|—ZZV1 ininj, (A5)
i ij>i

where n; = ¢/’ c; is the fermion number operator, and we have introduced the following microscopic
parameters

Vioj= qu(f,qf +cc) ws_zu(Qd] +%,fs:]s<oa

Way

’
4

aq (fiq)Da./ ( _fi+1q’) u> . (A6)
In order to obtain closed expressions for the parameters of this model, let us introduce A = 2J,,/(w, — U)
and assume that A < 1to guarantee the absence of negative boson frequencies. We can then use the geometric
Taylor series, such that
2
Vioj = % ZZX’ ~i(a- qd)d(l ”cos”(qd) (A7)
(wb - U)N 7 =0
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together with the binomial theorem after introducing the binomial coefficients
I & a7\
n — ingd —i2kqd
cos"(qd) o kEZOe (k)e , (A8)

and apply the identity Y ei# = N, . This allows us to express the interaction strengths as a single series,
which can be exactly summed by considering a number of combinatorial identities. In this way, we find

)eufjllog((l*m)/A), (A9)

o f]”)‘h cos (qd li — jl

which yields the expression in equation (7) of the main text with the parameters listed in (see footnote 2). The
validity of this expression is confirmed by the numerical results displayed in figures 1(a), (c), and (d).

We now use the identity for the overlap of coherent states |a) = D, («)|0,), namely
(| B) = e @B F"me—la=BF This allows us to express the dressed tunnelling as an exponential
renormalization of the bare tunnelling . = Jee X with

2
x =3 (1 — ei(q*qd)d). (A10)
q

2
qu

Vioj=—

This sum can be evaluated following a similar procedure as above. We first use the binomial Taylor series, such
that

2 o0
X = “70222(’1 + 1))\”<1 — ei(q’qd)d) cos"(qd). (A11)
(wb - U) N q n=0

This expression can be analytically summed by using again equation (A8) , together with some combinatorial
identities, such that

(1)

Jo=Je (0 0) (97, (A12)
which coincides with equation (7) of the main text with the parameters listed in (see footnote 1). The validity of
this expression is confirmed by the numerical results displayed in figure 1(b).

Appendix B. Constructive bosonization of the spin-boson lattice model

In this part of the appendix, we present the details for the derivation of variational bosonization ansatz of
equations (8)—(11) in the main text, and the corresponding two-point correlators in equations (12)—(14).

We start by setting ws = 0 in equation (5), which is reasonable for sufficiently weak interactions such that
> w Assuming periodic boundary conditions, the kinetic part of the fermionic Hamiltonian Hy = Ky + V¢
can be written as

Ke = —|J

ZC{"(CM - Ci—l), (B1)

where the phase of the dressed tunnelling e has been absorbed in the fermionic operators viaa U(1) gauge
transformation. This yields a band structure ¢,(q) = 2 |J;| cos(qd), where groundstate is obtained by filling all
negative-energy levels —kg < q < kg, with kg = 7/2d, and the low-energy excitations correspond to right- and
left-moving fermions 7 € {R, L} with momentum close to £k, respectively. In the continuum limit, we let

d — 0and N — oo such thatthelength L = Nd remains constant. The low-energy properties are described by
a continuum field theory of slowly varying fields for the left/right-moving fermions

ci = \/z U(x), cix1 = \/z U(x £ d), U(x) = ey (x) + e Ry (x). (B2)
2 2

After Taylor expanding the slowly varying fields \i',](x +d) ~ \i',](x) + d@x\fln (x) + l/zdzafc\i/n(x) + ..., the
kinetic energy correspondstoal + 1 Dirac quantum field theory for massless fermions

L
K=t [ ax(W@iod o — Tpoiod)), (B3)
2

where rapidly oscillating terms e*2k* = (—1)*/4 average out under the integral, higher-order derivatives can be
neglected for d — 0, and we have introduced the Fermi velocity that plays the role of the speed of light in the
continuum limit 2 |J;| d — vp.

The first step of the constructive bosonization [34] is to extend this description, which is expected to be valid
around the Fermi points, to all possible momenta k = %nk where 1 € Z (i.e. the fermionic spectrum is

8
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linearized for all momenta), such that

- 27‘[‘ ad .
Yr(x) = A Z elkep g, U (x) = Z e g, K = Zka: c,z,]ck,n: (B4)

k=—00 k=—o00 kn

where we have introduced the normal ordering:(): with respect to the groundstate of the free theory. In this way,
we can focus on certain low-energy excitations above the Dirac sea of filled negative-energy states by defining
operators associated to the particle-hole excitations of momentum g = Z%nq > 0 for the left/right fermionic
branches, namely

¥
q'r] Z Ck q,]ck n = (b;»,]) > (B5)

q k=—00

which turn out to be bosonic. From the commutation rules of these operators with the Dirac Hamiltonian (B3),
it follows that Ky = Zq qu( RbR + b qL) in the thermodynamiclimit L — oo. Therefore, the low-energy
excitations of the free fermionic model are descrlbed by two bosonic branches for the particle-hole excitations
around each Fermi point (i.e. bosonization).

Itis customary to express the Hamiltonian in terms of bosonic fields

@ (x) = g (x) + h.c., g (x)
= e b 6, = () + hee 9y () = 3 ey, (B6)

ng>0+/ g ng>0+/ "4

where a > 0 is a regularization constant that cuts off large momenta to ensure convergence. Since we are
interested in low-energy properties, this cutoff does not change the physics, and we can set it to zero at the end of
the calculations. The kinetic energy, and thus the 1 + 1 Dirac Hamiltonian, can then be expressed as a free
bosonic field theory

o [ (o) + (o)) - [ ((aae) + (o000,
(B7)

where we have also introduced the so-called dual fields © (x) = (¢ (x) + ¢ (x))/ V2,
and ®(x) = (¢ (x) — ¢p.(x))/~2.

The equivalence of the fermionic (B3) and bosonic (B7) Hamiltonians suggests the existence of a direct
mapping between fermionic and bosonic fields. To obtain the correct fermionic anticommutation relations, one
has to introduce the so-called Klein factors F, fulfilling [F,, qf)n/] =0, {FJ s F} o= 26,,,»and {(E, F S =0 if
n = 1. The bosonization identity [34] then relates the fermionic and bosomc fields in the thermodynamic limit
as follows

Tp() = Reion® = 2T g eici@e i), (x) = Lle-it 0 — |27 B e-id@ein®,  (Bg)
77 VI 7a VI

Equipped with this operator identity, we can bosonize the interaction (5) which, in terms of the fermion
fields (B2), reads

V=2 v f qu @)UV (x + £d)U(x + £d), %)

£>1 2m

where we must define V,d — V, in the continuum limit in analogy to the Fermi velocity below equation (B3).
The bosonization of these interactions is more intricate, as one must avoid possible divergences by normal
ordering. Besides, the long-range tail of the interaction allows for # — oo in the continuum limit, such that
special care must be taken in the truncation of the Taylor series of the fermionic fields for d — 0. This will
impose restrictions on the interaction range tractable by bosonization.

Assuming that the interactions are small enough V; < vg, such that the slowly varying fields (B2) are only
slightly perturbed, we identify the interaction terms V; = V{ + V2 4 V¢ where we have again neglected
rapidly oscillating contributions
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0 Vo7 dx
Vf — —_— —Z \If (x)\Il,](x)\I/ /(X + fd)\ll// (X + fd) >
2nJ-L 27
£>1 2 nn'
dx . - . -
v = 3 (- 1)f2 f B @ G+ )T e+ £
£>1 n=n'
dx - = = =
Vit = fz (=1~ f Lo DU T (x + )T (x + £d): (B10)
>1 n=n'

These terms are expressed in terms of the bosonic fields by means of the identity (B8). To eliminate possible
divergences in the first term, we use the so-called point-splitting regularization
:\I/;(x) \Il,,, (x) = \I/,‘] (x + 5)@,](x) — (0] \IlZ(x + 6)@,,, (x)|0), where |0) is a reference state without particle-hole
excitations, and ¢ — 0 such that we can Taylor expand the field operators. Accordingly, we find
:‘i’Jr (x)‘i/ (%) = (=0pr + Op1) 8x¢,/, which allows us to bosonize the first V{ interaction term

Z i (x)q/,,(x)\lﬁ,(x + £d)0,/(x + £d) = : (ax¢R(x) - 8x¢L(x))(6x¢R(x + 2d) — Ocp (x + fd)): .
nn

(B11)

We can now Taylor expand the bosonic fields ¢, (x + ¢d) = ¢, (x) + £d0;¢,(x) + ...and, provided that the
interactions decay fast enough, namely

lim V, - |i — j| — C = constant, (B12)

li=jl—o00

the corresponding fermionic quartic term can be expressed as a quadratic bosonic one in the d — 0 limit

Z vl OB (x + £ T (x + £d) = (ax¢R (x) — ey (x))z: . (B13)
1
This means that only interactions that decay faster than, or equal to, the Coulomb interaction (B12) can be
treated via the constructive bosonization. This is crucial to neglect higher-order derivatives, which scale with
C¢"~1d" — 0in the continuum limit provided that equation (B12) is fulfilled, even for # — oo in the
thermodynamic limit. It is also clear that the bosonization predictions will be more accurate the faster the decay
is, since the contributions of the higher-order derivatives will be less and less important.
We can proceed similarly with the second term VkaF. Using the Baker—Campbell-Hausdorff formula with

[<pj] (), @, ] = — b (‘Sn,R log (2% (a +i(x — x/))) + 0y, log (2% (a —i(x — x/)))),which canbe
checked from equation (B6), we can write the second interaction term inthe a — 0,and d — 0, limit as follows

1 9. (¢
Z o (x)\If,,/(x)\If‘,(x + £d)0,(x + £d) = Zar s e 1D (P 0 — ] (@)) e I(er )~ @) .y | ..
n=n'
(B14)
After Taylor expansion, and making use of the constraint on the interaction decay (B12), we find
2
Z \I/n(x)\I/,/(x)\Il Gt A (x + £d) = — (ax¢R (x) — 8xq§L(x)) . (B15)

n=n'

Thelast term Vf“k*’, which corresponds to the so-called Umklapp scattering, is also bosonized by using the Baker—
Campbell-Hausdorff formula and a Taylor expansion, such that we find in the limit d — 0, we obtain

Z U000 (x + )0,/ (x + £d) = (FTFL) ei20r W e—126, (). | h ¢,
n=n'
2
= ;' 05(2¢R(x) — 2¢L(x)): , (B16)

where the definition of the cosine operator in the last term must incorporate the combination of Klein factors.
Using all these expressions, it is possible to rewrite the fermionic Hamiltonian as a sine-Gordon quantum field
theory composed of the Hamiltonian of a LL Hy;, and a nonlinearity due to the Umklapp scattering Hy,

Hf = Hy1 + Hy, Hy

- fo; ;1:_ Z( 8 <I>(x)) K: ((9x@(x))2;), Hy = fj:o %gU: cos(2\/§<1>(x)): , (B17)

where u is a renormalized Fermi velocity, Kis the so-called Luttinger parameter, and g, the Umklapp interacting
strength. For the small interactions V; < v considered here, these parameters are obtained through the above
expressions

10
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. P Ya ~ VY —
u_VF1+ZM K= 1+ZM ’gU:z

=1 TVE £>1 TV ¢>1 Ta

Vo (—1)"
f(—z) , (B18)
which coincide with a phenomenological bosonization [33] up to a different choice of fermionic algebra and
dual fields. Using the exact expression of the mediated interactions in equation (7), we can find the analytical
expressions for the Luttinger parameters by using the geometric Taylor series and some trigonometric identities,
such that

o 7 7 - _ e/t
>0 = 0 5 (elinma)a) 4 Wy (e )i) = B cos(ggd) —e
£=1 25 25 2 cosh(d/fo) - cos(qdd)

- Vo - (7 — — /%
V2 () _oligz—&")a ‘£ Vo (g€ 4 % COS(‘Jdd) e .
fzzl( DV D) ;21( el ) + 2 ;:1( e\ ) 2 cosh(d/ﬁo) + cos(qdd)
(B19)

These expressions yield the Luttinger parameters in equations (9) and (10) of the main text.

For small-enough interactions, the sine-Gordon nonlinearity is irrelevant [7], and the bosonized
groundstate is solely determined by the LL Hamiltonian Hy & Hyy in equation (B17). To obtain the
corresponding groundstate, let us express the dual fields in terms of new bosonic fields

O(x) = (,(x) + ¢_(x))y/1/2K,and @ (x) = (¢, (x) — ¢.(x))K/2, where
o) = > ie_iqx_zldq+ + he, g.(x) = > 7—16“‘1"_%%, + hec, (B20)

ng>0~/" >0~/
are defined in terms of two species of bosonic creation-annihilation operators d;i, dg+. By direct substitution,
one finds that in analogy to the free theory, the spectrum of the full interacting theory can again be described by
two linear bosonic branches

Hy =Y uq(d),dgs + d]_dy ), (B21)
q

with a renormalized Fermi velocity v — u (B18), which proves equation (8) in the main text. Therefore, the
fermionic part of the variational groundstate is the vacuum of the new bosonic modes |1r) = |04), and directly
leads to the complete variational bosonization ansatz of equation (11),
namely [Us({ay, ¢r})) = U§UJ [0,) ® [0g).

Once the variational bosonization ansatz is known, we can embark upon the calculation of the two-point
correlators. We start from the simplest one, the diagonal spin—spin correlators
Coio:(€) = ) _({074;07) — (07.;) (0F))/N. Making use of the Jordan-Wigner mapping, one finds

Cogt (€) = 4( 04y 04| Up Uy (ne1 — 1) (m — %) U UJ |04, 0a ), (B22)

and since both unitaries commute with the fermion operators, it follows that
Coipz(x) = & <0d| U)W (x) = UT(0)¥ (0): |04), where we have already taken the continuum limit in

equation (B2) Thls expectation value coincides exactly with that of the bosonized XXZ model [28], which has
become a textbook example [7]. Using the above bosonization relations, and the Klein-factor algebra, one finds
2

Cepe(x) = 27T—d22(0d|6x<1>(x)8x<1>(0)|0d> + dz—az(e*iZkF’%Odl eV22@e-iV220)|0,) 4 c.c.). The first term can be

evaluated easily after expressing the dual field in terms of the new bosonic creation-annihilation operators (B20),
while the second term requires the additional identity for Gaussian states
(04] €V22W V2200, = ¢2(0al P 20)104) (04| 22(x) 10) e~ {0a| 22(D)100), Altogether, one obtains in the thermo-

dynamiclimit L — oo
2 2K
o () = 2: (xz - eiz"”(f) ] (B23)

which corresponds to equation (12) after setting x = £d, and 2kpd = .
For the off-diagonal spin correlators Cyy(£) = Zl( (6f.07) — (0p.) (07))/N, we proceed analogously

to find
Coro (€)= Hq,q’< a “q(f1+fq) ( ~hy )

The bosonic contribution is due to the polaron cloud dressing the spins, and can be calculated in analogy to the
renormalization of the tunnelling in equation (A10) by using the coherent-state algebra. The spin contribution
reduces once more to that of the bare XXZ model, which requires additional care due to the Jordan—Wigner

o) (0| oot [0a) (B24)

11
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string when expressed in terms of fermions [7]. Anyhow, it can be expressed again as a collection of expectation
values of exponentials of the dual fields in the continuum limit, which can be calculated exactly using the same
procedure as above. Altogether, this leads to

1/2K 2K
Coto(x) = e—w)L(i) [1 + 2e—i2kv<(£) ) (B25)

2w\ x X

where Y(x) = Zq
together with combinatorial relations, and after setting x = #d, and 2kgd = 7, we find precisely the expression
in equation (13) of the main text.

Moving onto the bosons, let us address the off-diagonal correlators
Cia(©) = Zi(<a; L:a;) — {a}_)(a;))/N.Using the variational bosonization ansatz, we find that such
correlators depend on the spin structure factors S,-,-(q) as follows

2 .
% (1 — el@=92%), This function can be evaluated by using once more the binomial series
“q

2
1 . o
Cata(€) = ~2 38020 (q — )%, Sprge(q) = 3 e Cee(£'). (B26)
4N 7 Wy 7

To evaluate this expression, we define the inverse Fourier series 1 / Q? = Zq elddi / wfj N, which canbe
evaluated again making use of the binomial series and binomial theorem

1 141 —=X %
— = —————¢ %.
3

(B27)
2 3
Ty
Using this expression and the identity Zq el#® = NG, o, one can express the bosonic correlators as
Cata(?) = ”_32 L ¢, (2)en” (B28)
aa 4 f/ Q% f/ [oen >

which leads directly to equation (14) upon substitution of the diagonal spin—spin correlators in equation (12)
already derived in this appendix.
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