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Abstract
We introduce a latticemodel of interacting spins and bosons that leads to Luttinger-liquid physics,
and allows for quantitative tests of the theory of bosonization bymeans of trapped-ion or
superconducting-circuit experiments. By using a variational bosonization ansatz, we calculate the
power-law decay of spin and boson correlation functions, and study their dependence on a single
tunable parameter, namely a bosonic driving. For small drivings,matrix-product-states (MPSs)
numericalmethods are shown to be efficient and validate our ansatz. Conversely, even staticMPS
become inefficient for large-driving regimes, such that the experiment can potentially outperform
classical numerics, achieving one of the goals of quantum simulations.

1. Introduction

Our understanding ofmatter relies on simplifiedmodels that try to capture the essence of experiments with
limitedmicroscopic control (e.g. transport in solids). A radically different approach is being pursuedwith
ultracold atoms [1], trapped ions [2], and superconducting circuits [3], where current technology allows to
design and test suchmodelsmicroscopically. This constitutes a newway of exploring paradigmatic, yet not fully
understood, quantummany-body problems [4, 5]. Besides, this synthetic quantummattermay also realize exotic
models without condensed-matter counterparts that bring the possibility of testing phenomena beyond
Landauʼs Fermi-liquid or symmetry-breaking theories [6].

The physics of one-dimensional (1D) strongly correlatedmodels is a fertile ground for such fascinating
phenomena [7]. Here, the interplay of dimensionality and interactions renders the Fermi-liquid concept of
quasiparticles futile. As predicted by the theory of Luttinger liquids (LLs), collective bosons become the relevant
excitations in various fermionic, bosonic or spinmodels [8]. Despite being 1D, LLs are notmere theoretical
artefacts, butmanifest themselves inmagnets [9], organic salts [10], carbon nanotubes [11], semiconducting
wires [12], and spin ladders [13]. However, with the exception of the latter, the limited control over the
microscopic parameters hampers amore quantitative test of LL-theory, where ab initio predictionswithout
adjustable parameters are confronted to experiments [14]. It is thus desirable tofind newplatformswhere to
assess the universality of LLs quantitatively.

Ultracold bosonic [15] and fermionic [16] atoms are clear candidates for this quest, as they realizeHubbard-
type interactions amenable of LL-theory [17].Much less is known about trapped-ion (TI) and superconducting-
circuit setups, which lead to variousmodels with spin-boson interactions [2, 3]. From a fundamental
perspective, it would be interesting to study if such spin-boson syntheticmatter hosts a LL.Moreover, these
devices would have the advantage that the scaling of any two-point correlator with distance, which lies at the
heart of LL-theory, can bemeasured directly. In this work, we address this question, and show that certain driven
spin-bosonmodels yield a rich playground to test LL-theory quantitatively.

This article is organized as follows. In section 2, we start by introducing the driven spin-boson latticemodel
that will be the subject of our study. Bymeans of variational techniques and bosonization, we show that the spin-
bosonmodel can be described as a LL, and test this result numerically usingmatrix-product state (MPS)
algorithms. Some technical details about these derivations are relegated to theAppendices. In section 3, we
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discuss the realization of the aforementioned spin-boson LL in systems of trapped ions, or superconducting
circuits. Finally, we present our conclusions in section 4.

2. Spin-boson synthetic quantummatter

Weconsider a chain of lattice spacing d, hosting i N1 ...{ }Î spins and bosons described by the 2su( ) , ,i
z

i{ }s s

and bosonic a a,i i{ }† algebras. This systemnot only leads to various equilibriumphases, such as spin-boson
Mott [18] andAnderson [19] insulators, or spin-boson Isingmagnets [20], but also to non-equilibrium
phenomena, such as emerging causality [21]. So far, LLs have not been explored in this context.

Tofill in this gap, we study a driven spin-bosonHamiltonian H H V ,0= + withH0 describing the
uncoupled dynamics

H J J a a a a a
2

e h.c., 1
i

i i i i i i
q di

i0 s 1 b 1
b

d
i d ( )† †å s s

w
= - - + - W ++

+ -
+

-

where J Js b( ) represents the spin (bosonic) tunnelling strengths, bw is the bosonic on-site energy ( 1 = ), and
q,d dW are the driving amplitude andmomentum, respectively.We also introduce a spin-boson interaction of

strengthU, namely

V U a a . 2
i

i
z

i i ( )†å s=

Instances of this spin-bosonmodel can be implementedwith trapped ions or superconducting circuits, but we
shall postpone the experimental details, focusingfirst on its physical content. In equation (1), the spin part
describes thewell-known isotropic XYmodel, whose groundstate corresponds to a half-filled Fermi sea of
spinless fermions [22]. Since the bosons shall correspond to either phononic or photonic excitations, the
number of which is not conserved, the regime J2b bw < must be excluded as it allows for negative-energy levels,
and the energy of the systemwould getminimized by populating themwith an ever-increasing number of
bosons (i.e. instability). In the absence of the driving, and setting J2 ,b bw > the bosonsminimize their energy in
the global vacuum, such that the spin-boson interaction(2) does not induce any spin-boson LL behaviour. As
shownbelow, as the driving is switched on, the bosonicmode ofmomentum qd getsmacroscopically populated.
As a consequence, the spin-boson interaction induces non-trivial correlations, whichwill be shown to
correspond to a new phase: a spin-boson LL.

2.1. Spin-boson variational ansatz
According to the above discussion, we introduce spinless fermions through a Jordan–Wignermapping

c c2 1,i
z

i i
†s = - c c cexp ii i j i j j i( ) ( )† † †ås p s= =+

<
- [23], and build our ansatz gradually. First, we note that the

macroscopic population of the drivenmode resembles the Bogoliubov theory of superfluids, where
a a N N ae ,q i

qdi
i q q q

i
d , d

/å d d=  +- such that aqd are theGaussianfluctuations for quasi-momentum

q d d, ,[ )p pÎ - and q q, d
d is the Kronecker deltafixing themodewithmacroscopic occupation Nd [24]. This

can be accounted variationally by the ansatz

U U, , e , 3q

a

G f B G f B

h.c.
q

q q( ) ( ) ( )
{ } ˜ { } ( )†

†

a y yY = Y =
å a- -

where ,q f{ }a y are the variational parameters, and G∣Ỹ ñ is afiducial state. Second, in order to account for the
boson-fermion correlations caused by the interaction(2), we use a polaron transformation [25] for thefiducial
state

U U0 , e , 4a

f a c c

G f P f P

h.c.
q i

iq q i i
,( ) ( )˜ { } ( )†

† †

y yY = Ä =
å -

where fiq{ }are such that the boson-fermion correlations areminimized in the unitarily transformed picture,

0a∣ ñ is the boson vacuum, and f∣y ñ is a general fermionic variational state.
The variationalminimization yields Nq q q qd , d

( )a w d= W to lowest order in the interaction strength (see
appendix A), wherewe have introduced the bosonic dispersion U J qd2 cos .q b b( )w w= - + This is the
analogue of themacroscopic population in the Bogoliubov theory [24], whichmotivates neglecting
contributions of quartic terms.Within this approximation, one can see that the interaction(2) tries to create/
annihilateGaussian excitations conditioned on the fermion number n c ci i i

†= through aHolstein-type
coupling [26], which is awell-known interaction in the theory of electron–phonon interactions. For
dispersionless bosons in theHolsteinmodel, a strong-coupling expansion that treats the electron hopping as a
perturbation J U, ,s bw leads to fermion–fermion interactions of strength J Us

2
bw by a sort of super-

exchangemechanism [27]. This limit is however not consistent with our treatment of the spin-bosonmodel,
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which requires a regimeU J J, .s b Yet, the dispersive nature of our bosonswill allow for long-range
interactionsmediated by virtual boson exchange rather than by super-exchange. This will lead to second-order
processes where distant fermions exchange bosons virtually, resulting in a fermion–fermion long-range
interaction. Additionally, as expected from the polaron transformation, a bosonic cloudwill dress the fermions
modifying their tunnelling (i.e. band narrowing).

Tomake this descriptionmore quantitative, we specify the polaron parameters f u Neiq
q q di

q0
i d( ) w= - -

with u U2 .q0 d d
w= W Then, the variationalminimization sets f∣y ñas the groundstate of the fermionic

Hamiltonian

H J c c n V n nh.c. . 5
i

i i i
i j i

i j i jf s 1 s( )˜ ( )†å ååw= - + + ++
>

-

As announced above, we obtain boson-mediated interactionsV ,i j- and renormalized tunnellings J ,s̃

V f f J J D f D fc.c. , 0 0 , 6i j
q

q iq jq s a q q a iq a i q as , 1q q( ) ( ) ( )˜ ( )*åw= - + = P -- ¢ + ¢¢

wherewe have introduced the generic displacement operator D a aexp .a ( ) ( )† *a a a= -
To guarantee the absence of negative frequencies and thus the stability of bosons, we focus on

J U2 1.b b( )l w= - < By using the displacement-operator algebra, the binomial theorem, and someTaylor
series (see appendix A), wefind

J J V V q d
u V

e , cos e ,
2

, 7
d

q
s s 0 d s

d 0 0
1 0

d

( )ℓ˜ ( )ℓ
ℓ

w
w

= = =
W

+h x- -

where the explicit dependences of ,1h and V ,0 0x on the experimentally tunable parameters are listed2,3 in
footnotes. As announced, the dressed tunnelling gets exponentially suppressed as the bosonic driving
increases, and the interactions are long-ranged. For instance, letting J2 ,b bw » the length scale 0x diverges,
such that the interaction does not decaywith distance. Conversely, for J2 ,b bw  interactions decay very
rapidly. In contrast to the dressed tunnelling, the interaction strength increases with the driving. Additionally,
its attractive/repulsive character oscillates along the chain, which corresponds to frustration effects in the
original spinmodel.

To test the correctness of equation (7), we compare it to the corresponding expressions obtained by
evaluating numerically the parameters in equation (6). Infigures 1(a), (b), we see that (i) the renormalization of
the tunnelling and the exponential decay of the interactions(7) are very accurate. Therefore, the interaction
range can be tuned over 0,0 ( )x Î ¥ by controlling 0, 1 .( )l Î (ii)The dependence of the degree of frustration
on the drivingmomentum(7) is also very accurate: whilefigure 1(a) corresponds to unfrustrated attractive
interactions, figure 1(d) shows that alternating attractive/repulsive interactions occur for q d.d p= Finally, (iii)
the ratio of the interactions to the dressed tunnelling can be tuned across V J 10 s∣ ∣ ˜ = by controlling a single
parameter, the driving strength dW (figure 1(c)). This is quite remarkable as we started from the constraint
U J J,s b imposed by the Bogoliubov theory of the bosons. Nonetheless, the role of fermion interactions is
enhanced by increasing the driving strength.

2.2. Bosonization andMPS
The nearest-neighbour limit of themodel(5) is a paradigmof LLs [28]. Thermodynamic quantities given by the
Bethe ansatz can be combinedwith LL-theory to obtain various correlation functions [29]. Additionally, the
numerical density-matrix-renormalization-group (DMRG) gives accurate predictions in this limit [30, 31] used
to benchmark the LL [32]. The situation getsmore involved for the fullmodel(5), since Bethe-ansatz
integrability is lost, andDMRGwith long-range interactions ismore intricate (i.e. typically,models with only a
fewneighbours are studied [32]).

An analytical LL-theory of the long-rangemodel(5) can be obtained by phenomenological bosonization
[33].We use instead the constructive approach [34], which allows us tofind a constraint on the interaction range
(see appendix B). Provided that (i)V i jconsti j ∣ ∣ -- at large distances, which is fulfilled by(7) except for

1,l  and (ii)V J ,0 s̃ the low-energy excitations are described by two bosonic branches

H uq d d d d , 8
q

q q q qf
0

( ) ( )† †å= +
>

+ + - -
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1
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characterized by the sound velocity

u J d
V

J

d q d

d q d
2 1

2
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. 9s
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x
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The newoperators dq± are related to particle–hole excitations of the original fermionic systemby a squeezing
transformation (see appendix) that depends on the Luttinger parameter

K
V

J

d q d

d q d
1

2
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. 100
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1 2
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x

x
= +

-

-

-

-

In the absence of driving, we getV 00 = and recover the non-interacting valueK= 1.Whenwe switch it on, it
is possible to tune K 1 over a wide range of values as displayed in figure 2.

Following this discussion, the fermionic part of our variational groundstate f∣y ñ is the vacuumof the new
bosonizedmodes 0 ,d∣ ñ andwe thus obtain a spin-boson LL groundstate

U U, 0 0 . 11q aG f B P d( ){ } ( )† †a yY = Ä

Wecannow calculate any connected two-point correlator C A B A B NAB i i i i iℓ( ) ( )ℓ ℓå= á ñ - á ñá ñ+ + in the
variational groundstate, provided that the operators A B, are expressed in the bosonized picture. In this way, we
can test one of the distinctive features of LLs: the power-law decay of correlations.

For instance, the diagonal spin correlators are

C
K2

1
1

, 12
K2 2 2

z z ℓ
ℓ ℓ

( ) ( ) ( )ℓ⎜ ⎟⎛
⎝

⎞
⎠p

= - - -s s

which coincide exactly with those of theHeisenberg-Ising orXXZmodel [28], albeit with a different Luttinger
parameter(10)due to the long range and possible frustration in(5). The off-diagonal spin correlators are

Figure 1.Parameters of the spinless fermionmodel: (a) attractive interactions in the case q 0,d = setting d= 1,
J J 1 3,s b bw= = = andU 0.1.= The bars (circles) represent the numerical (analytic) evaluation of equation (6) (equation (7)).
(b)Renormalized tunnellings, and (c) ratio of the interaction and tunnelling strengths, as a function of the driving. The solid lines
(symbols) correspond to the numerical (analytic) evaluation of equation (6) (equation (7)). (d) Same as (a) but for q dd p= leading to
alternating interactions.
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C
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2
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ℓ
ℓ ℓ

( ) ( ) ( )ℓℓ
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⎞
⎠p

= - -s s

h-
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which display the power law of the bare XXZmodel [28]with an additional distance-dependent renormalization
e ℓh- due to the bosonic cloud dressing the spins (see footnote 1). At long-distances, this polaron effect is constant
C e ,K2 1 20ℓ ℓ( ) ~s s

h- -+ - and does notmodify the power-law exponent.
The off-diagonal bosonic correlators can also be understood from a polaron perspective

C
K

C
2

1
1

e , 14a a K

d

2 2 2 , 0ℓ
ℓ ℓ

( )
˜

( )
˜

( )
ℓ

ℓ
ℓ ℓ

ℓ ℓ

˜

˜
˜

˜

†
⎛
⎝⎜

⎞
⎠⎟åp

= - - - x
-

-

which is a sumof diagonal spin correlations(12)with a polaronweight C dexp, 0ℓ ℓ( ∣ ˜∣ )ℓ ℓ̃ x- - exponentially
suppressed at large distances, where C ,ℓ ℓ̃ is listed

4 in footnote. For d,0x  all terms except ℓ ℓ˜ = are negligible,
andwe thusfind a power-law decay only determined by the Luttinger parameter.

Finally, we have concrete power-law predictions(12)–(14) that can be numerically benchmarked.We use
DMRG-typemethods based onMPS for the thermodynamic limit [35]. By implementing the original short-
range spin-bosonmodel(1), (2), we avoid the intricacies associated to the long-rangemodel(5)mentioned
above. The results displayed infigure 3 agree with the aforementioned power-law decay at intermediate
distances, and depart at longer distances due to technical limitations in theMPS dimension. These results
confirm the validity of our ansatz.

3. Spin-boson LLs on ion traps and superconducting circuits

Experiments on this versatile LL can access different regimes by controlling a single parameter, the driving
(figure 2). As a bonus, regimes that differmarkedly fromK= 1 require very large drivings, which increases
both the bosonic population q

2
d
2

d
∣ ∣a µ W and the dimension of theMPS. Therefore,MPS simulations, limited

by available computing resources, will eventually cease to be trustworthy. Instead, the experiment would act as a
reliable quantum simulator [5] capable of beating its classicalMPS counterpart. TI and superconducting-circuit
(SC) architecturesmeet the requirements for this LL quantum simulator.

Wefirst focus on the bosonic degrees of freedom. For laser-cooled linear chains of TIs [36], the bosons are
the transverse vibrational excitations of each ion, and displayCoulomb-induced dipolar tunnellings
J a a i j ,i jb

3∣ ∣† - where J 2b p ~ 1–10 kHz. The driving is due to an oscillating potential at one of the electrodes,
which has a frequency d tw w= + Dwith detuningΔ from the transverse trap frequency 2tw p ~ 1MHz.
This leads to 2d pW ~ 1–100 kHz, and q 0.d = To obtain q 0,d ¹ one should use instead the ac-Stark shift of a
pair of lasers with beatnote ,1 2 tw w w- = + D such that q k k ed 1 2 z( ) ·= - depends on the laserwavevectors
projected along the chain, and 2d pW ~ 1–10 kHz.Note that the crossed-beam ac-Stark shiftsmust coincide
for each atomic level forming the spin. For cryogenically cooled SCs [3], the bosons are the photonic excitations
of superconducting resonators of frequency 2rw p ~ 1–10 GHz,which are capacitively coupled yielding
nearest-neighbour tunnellings J a a ,i ib 1

†
+ where J 2b p ~ 1–100MHz. Amicrowave drive, detuned from the

resonator frequency ,d rw w= + D is injected in each resonator, and its amplitude/phase is individually
controlled by quadraturemixers providing 2d pW ~ 1–100 GHz and a site-dependent phase q di.i dj =

Figure 2. Luttinger parameter: (a) for the unmodulated case q 0,d = and (b) for q .d p= Bothfigures are calculated for
J J 1 3,s b bw= = = and different driving and interaction strengths.

4
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u
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4
e 1 1 .q d

,
0
2 2 3

2

b
2
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w
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-
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Wenow introduce the spin-1/2 degrees of freedom. For TIs, two levels are selected from either the hyperfine
groundstate or a dipole-forbidden optical transition [2]. Using lasers, a Jaynes–Cummings coupling g a ei i

tis d+ -

can be introduced, where g 2p ~ 1–50 kHz, and 2d p ~ 0–0.1 MHz is the red-sideband detuning. For SCs,
two states with different values of charge/flux variables are separated from the rest by exploiting the Josephson
effect [37]. These spins can be coupled to the resonator photons via the same Jaynes–Cummings terms, albeit
reaching g 2p ~ 1–100MHz and 2d p ~ 0.1–1 GHz. In the dispersive regime g ,d and setting
J , ,b t rw w these Jaynes–Cummings couplings are highly off-resonant, and lead to spin–spin J g Js

2
b

2d= and
spin-bosonU g 2 d= - interactions to second order, with the peculiarity that TIs yield a dipolar decay
J i js

3∣ ∣- [19], while nearest-neighbour couplings are the leading contribution in SCs.
Let us note that the equivalence of the TI or SCHamiltonian to(1), (2) occurs in a rotating frame, where

bw = D is the detuning of the driving, and not the trap or resonator frequencies , .t rw w In order to avoid
spurious cross terms of the drivingwith the Jaynes–Cummings terms, we should also impose g .∣ ∣d - D We
remark that these realistic experimental parameters allow for awide tunability of the LL parameters.

Once the driven spin-bosonHamiltonian is implemented, and the groundstate adiabatically prepared for a
certainK offigure 2, onemust probe the two-point correlators infigure 3. TIs excel atmeasuring any spin
correlator through site-resolved spin-dependent fluorescence [2], whereas SCs are better suited tomeasure the
photonic correlations by collecting the output from the cables used to drive the resonators. It is important to
point out that, although the effective spin-bosonmodel occurs in a rotating frame for both the bosons and spins,
the particular correlation functions studied in this work are notmodified, and coincide with those of the original
lab frame.We thus conclude that either TIs or SCs are promising candidates to realize this spin-boson LL-liquid.

4. Conclusions and outlook

Wehave presented a theoretical study for a new class of spin-boson LLs based on a variational bosonization
approach benchmarked byMPSnumerics, and proposed its implementationwith TI and SC technologies. This

Figure 3.Two-point correlators: diagonal (a), (c) and off-diagonal (b), (d) spin and boson correlators for
J J 1 3,s b bw= = = U 0.15,= and 1.5dW = with q 0.d = (c), (d). The symbols are numerical data, and the red solid lines represent
the power-law decay obtained fromfitting the LL-predictions(12)–(14) at distances up to i j 100.∣ ∣- = ForCNN, where N a a,†=
the analytical expression is only valid for d,0x  where C u U C .NN 0 b

4 z zℓ ℓ( ) ( ( )) ( )w» - s s
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model offers aflexible platform to test qualitatively LL-theory, and displays certain regimeswhere the LL
quantum simulator can beatMPS numerics on any classical computer.
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AppendixA. Variationalminimization and effective long-rangeXXZmodel

In this part of the appendix, we describe the variationalminimization leading to equations (5) and(7) of the
main text.We first express the original spin-bosonHamiltonian(1), (2) in terms of the Jordan–Wigner
fermions, and themomentum-space bosons, as defined in themain text. This leads to

H N J c c a a N a a
U

N
c c a a

2
h.c.

2
e .

A1
i

i i
q

q q q q q
i q q

q q di
i i q q

s
s 1 d

,

i
d d( )( ) ( )

( )

† † † † †å å ååw
w= - - + + - W + ++

¢

- - ¢
¢

In order tominimize over the variational family of groundstates introduced in themain text, and given by
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( )† †
† † †

y y= = =
å å

a y

a- - -

wefirst apply the displacement operatorU a U a ,q q qB B
† a= + and proceed in the spirit of the Bogoliubov theory

of superfluids [24]. Accordingly, we linearize the bosonic density in the Fermi–Bose interaction assuming
sufficiently weak interactions, and obtain directly the variational parameter N .q q q qd , d

( )a w d= W For this
particular choice, the linear terms in the Fermi–BoseHamiltonian vanish, andwe obtain the following
variational problem E U HUmin 0 0 ,a aG f P P ff

{ ∣ ∣ ˜ ∣ ∣ }{ }
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As noted in themain text, the spin-boson interaction reduces to aHolstein-type coupling [26]within this
variational formalism, which corresponds to the last term in the above equation.Wenote that, contrary to the
Holsteinmodel, the Fermi–Bose coupling strength here depends onmomentum and the bosons are dispersive.
We can now identify the parameters of the polaron unitary by following the premise that the Fermi–Bose
couplingmust vanish in the transformed picture. This leads to the polaron parameters
f u Neiq

q q di
q0

i d( ) w= - - with u U2 .q0 d d
w= W Using the polaron transformation rules

U a U a f c c U c U c D f, , A4q q
i

iq i i i i q a iqP P P P q ( ) ( )† † † † †å= - = P

where D a aexpa ( ) ( )† *a a a= - is the bosonic displacement operator, and taking the expectation value over
the bosonic vacuum, one reduces the variational problem to a purely fermionic one
E Hmin .G f f ff

{ ∣ ∣ }{ } y y= á ñy Here, Hf is an effective long-range XXZHamiltonian described in equation (5) of
themain text, rewritten here for convenience

H J c c n V n nh.c. , A5
i

i i i
i j i

i j i jf s 1 s( )˜ ( )†å ååw= - + + ++
>

-

where n c ci i i
†= is the fermion number operator, andwe have introduced the followingmicroscopic

parameters

V f f U
V

J J D f D fc.c. , 2
2

, 0 0 . A6i j
q

q iq jq
q

s a q q a iq a i q as
d

2
0

s , 1q q

d

( ) ( ) ( )˜ ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟*åw w

w
= - + =

W
+ = P -- ¢ + ¢¢

In order to obtain closed expressions for the parameters of thismodel, let us introduce J U2 b b( )l w= -
and assume that 1l < to guarantee the absence of negative boson frequencies.We can then use the geometric
Taylor series, such that

V
u

U N
qde cos , A7i j

q n

n q q d i j n0
2

b 0

i d

( )
( ) ( ) ( )( )åå

w
l= -

-
-

=

¥
- - -
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togetherwith the binomial theorem after introducing the binomial coefficients

qd
n
k

cos
1

2
e e , A8n

n
k

n
nqd kqd

0

i i2( )( ) ( )å=
=

-

and apply the identity Ne .
q

qx
x

i
,0å d= This allows us to express the interaction strengths as a single series,

which can be exactly summed by considering a number of combinatorial identities. In this way, wefind

V
u

U
q d i j

2

1
cos e , A9i j

i j0
2

b
2 d

log 1 1 2

( ) ( ) ( )( )∣ ∣ ( )∣ ∣

w l
= -

- -
- l l

-
- - -

which yields the expression in equation (7) of themain text with the parameters listed in (see footnote 2). The
validity of this expression is confirmed by the numerical results displayed infigures 1(a), (c), and (d).

We nowuse the identity for the overlap of coherent states D 0 ,a a∣ ( )∣a añ = ñ namely

e e .½ ½ 2∣ ( )* *a bá ñ = a b b a a b- - - - This allows us to express the dressed tunnelling as an exponential
renormalization of the bare tunnelling J J ess̃ = c- with

u

N
1 e . A10

q q

q q d0
2

2
i d( )( ) ( )åc

w
= - -

This sum can be evaluated following a similar procedure as above.Wefirst use the binomial Taylor series, such
that

u

U N
n qd1 1 e cos . A11

q n

n q q d n0
2

b
2

0

i d( )( )
( )( ) ( ) ( )ååc

w
l=

-
+ -

=

¥
-

This expression can be analytically summed by using again equation (A8) , together with some combinatorial
identities, such that

J J e , A12

u

U
s s

1 e

1

q d
0
2

b
2

i d

2 3 2( )
( )
( )˜ ( )= w

l

l
-

-

-

-

-

which coincideswith equation (7) of themain text with the parameters listed in (see footnote 1). The validity of
this expression is confirmed by the numerical results displayed infigure 1(b).

Appendix B. Constructive bosonization of the spin-boson latticemodel

In this part of the appendix, we present the details for the derivation of variational bosonization ansatz of
equations (8)–(11) in themain text, and the corresponding two-point correlators in equations (12)–(14).

We start by setting 0sw = in equation (5), which is reasonable for sufficiently weak interactions such that
J .s s˜ w Assuming periodic boundary conditions, the kinetic part of the fermionicHamiltonian H K Vf f f= +
can bewritten as

K J c c c , B1
i

i i if s 1 1( )˜ ( )†å= - ++ -

where the phase of the dressed tunnelling e Jiarg s(˜ ) has been absorbed in the fermionic operators via aU(1) gauge
transformation. This yields a band structure q J qd2 cos ,s s( ) ∣ ˜ ∣ ( ) = where groundstate is obtained by filling all
negative-energy levels k q k ,F F - with k d2 ,F p= and the low-energy excitations correspond to right- and
left-moving fermions R, L{ }h Î withmomentum close to k ,F respectively. In the continuum limit, we let
d 0 and N  ¥ such that the length L Nd= remains constant. The low-energy properties are described by
a continuumfield theory of slowly varyingfields for the left/right-moving fermions

c
d

x c
d

x d x x x
2

,
2

, e e . B2i i
k x k x

1
i

R
i

L
F F( ) ( ) ( ) ˜ ( ) ˜ ( ) ( )

p p
= Y = Y  Y = Y + Y

-

After Taylor expanding the slowly varying fields x d x d x d x½ ...,x x
2 2˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )Y  » Y  ¶ Y + ¶ Y h h h h the

kinetic energy corresponds to a 1+1Dirac quantum field theory formassless fermions

K
v

x x x x x
2

d i i , B3
L

L

x xf
F

2

2
L L R R( )˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ( )† †

òp
= Y ¶ Y - Y ¶ Y

-

where rapidly oscillating terms e 1k x x di2 F ( )= - average out under the integral, higher-order derivatives can be
neglected for d 0, andwe have introduced the Fermi velocity that plays the role of the speed of light in the
continuum limit J d v2 .s F∣ ˜ ∣ 

Thefirst step of the constructive bosonization [34] is to extend this description, which is expected to be valid
around the Fermi points, to all possiblemomenta k n

L k
2= p where nk Î (i.e. the fermionic spectrum is
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linearized for allmomenta), such that

x
L

c x
L

c K v k c c
2

e ,
2

e , : : B4
k

kx
k

k

kx
k

k
k kR

i
,R L

i
,L f

,
F , ,

˜ ( ) ˜ ( ) ( )†å å åp p
Y = Y = =

h
h h

=-¥

¥

=-¥

¥
-

wherewe have introduced the normal ordering: :() with respect to the groundstate of the free theory. In this way,
we can focus on certain low-energy excitations above theDirac sea offilled negative-energy states by defining
operators associated to the particle–hole excitations ofmomentum q n 0

L q
2= >p for the left/right fermionic

branches, namely

b
n

c c b
i

, B5q
q k

k q k q, , ( ) ( )† † †
å=

-
=h h h h

=-¥

¥

-

which turn out to be bosonic. From the commutation rules of these operators with theDiracHamiltonian(B3),
it follows that K v q b b b b

q q q q qf F R R L L( )† †å= + in the thermodynamic limit L . ¥ Therefore, the low-energy

excitations of the free fermionicmodel are described by two bosonic branches for the particle–hole excitations
around each Fermi point (i.e. bosonization).

It is customary to express theHamiltonian in terms of bosonicfields

x x x

n
b x x x

n
b

h.c.,

1
e , h.c.,

1
e , B6

n q

qx
aq

q
n q

qx
aq

q

R R R

0

i
2 R L L L

0

i
2 L

q q

( ) ( ) ( )

( ) ( ) ( ) ( )å å

f j j

f j j

= +

=
-

= + =
-

>

-

>

- -

where a 0> is a regularization constant that cuts off largemomenta to ensure convergence. Sincewe are
interested in low-energy properties, this cutoff does not change the physics, andwe can set it to zero at the end of
the calculations. The kinetic energy, and thus the 1+1DiracHamiltonian, can then be expressed as a free
bosonicfield theory

K
x v

x x
x v

x x
d

2 2
: : : :

d

2 2
: : : : ,

B7

x x x xf
F

R
2

L
2 F 2 2( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )
ò òp

f f
p

= ¶ + ¶ = ¶ F + ¶ Q
-¥

¥

-¥

¥

wherewe have also introduced the so-called dualfields x x x 2 ,R L( ) ( ( ) ( ))f fQ = +
and x x x 2 .R L( ) ( ( ) ( ))f fF = -

The equivalence of the fermionic(B3) and bosonic(B7)Hamiltonians suggests the existence of a direct
mapping between fermionic and bosonicfields. To obtain the correct fermionic anticommutation relations, one
has to introduce the so-calledKlein factors Fh fulfilling F , 0,[ ]f =h h¢ F F, 2 ,,{ }† d=h h h h¢ ¢ and F F, 0{ } =h h¢ if

.h h¹ ¢ The bosonization identity [34] then relates the fermionic and bosonic fields in the thermodynamic limit
as follows

x
F

a L
F x

F

a L
Fe

2
e e , e

2
e e . B8x x x x x x

R
R i

R
i i

L
L i

L
i iR R R L L L˜ ( ) ˜ ( ) ( )( ) ( ) ( ) ( ) ( ) ( )† †p p

Y = = Y = =f j j f j j- - - - - -

Equippedwith this operator identity, we can bosonize the interaction(5)which, in terms of the fermion
fields(B2), reads

V
V x

x x x d x d
2

d

2
, B9

L

L

f
1 2

2 ℓ ℓ
˜

( ) ( ) ( ) ( ) ( )
ℓ

ℓ † †


òå p p

= Y Y Y + Y +
-

wherewemust defineV d Ṽℓ ℓ in the continuum limit in analogy to the Fermi velocity below equation (B3).
The bosonization of these interactions ismore intricate, as onemust avoid possible divergences by normal
ordering. Besides, the long-range tail of the interaction allows for ℓ  ¥ in the continuum limit, such that
special caremust be taken in the truncation of the Taylor series of the fermionic fields for d 0. Thiswill
impose restrictions on the interaction range tractable by bosonization.

Assuming that the interactions are small enoughV v ,Fℓ̃  such that the slowly varyingfields(B2) are only
slightly perturbed, we identify the interaction termsV V V V ,k k

f f
0

f
2

f
4F F= + + wherewe have again neglected

rapidly oscillating contributions
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V x

x x x d x d
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V x

x x x d x d
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V x

x x x d x d

2
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2
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d

2
: : ,

1
2

d

2
: : . B10

L

L

k
L

L

k
L

L

f
0

1 2

2

,

f
2

1 2

2

f
4

1 2

2

F

F

ℓ ℓ

ℓ ℓ

ℓ ℓ

˜ ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )

( )
˜ ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )

( )
˜ ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ( )

ℓ

ℓ

ℓ

ℓ ℓ

ℓ

ℓ ℓ

† †

† †

† †







ò

ò

ò

å å

å å

å å

p p

p p

p p

= Y Y Y + Y +

= - Y Y Y + Y +

= - Y Y Y + Y +

h h
h h h h

h h
h h h h

h h
h h h h

- ¢
¢ ¢

- ¹ ¢
¢ ¢

- ¹ ¢
¢ ¢

These terms are expressed in terms of the bosonic fields bymeans of the identity(B8). To eliminate possible
divergences in the first term, we use the so-called point-splitting regularization

x x x x x x: 0 0 ,˜ ( ) ˜ ( ) ≔ ˜ ( ) ˜ ( ) ∣ ˜ ( ) ˜ ( )∣† † †
 Y Y Y + Y - á Y + Y ñh h h h h h where 0∣ ñ is a reference state without particle–hole

excitations, and 0  such that we canTaylor expand the field operators. Accordingly, wefind

x x: ,x,R ,L
˜ ( ) ˜ ( ) ≔ ( )† d d fY Y - + ¶h h h h h which allows us to bosonize thefirstVf

0 interaction term

x x x d x d x x x d x d: : : .

B11

x x x x
,

R L R L( )( )ℓ ℓ ℓ ℓ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ≔ ( ) ( ) ( ) ( )

( )

† †å f f f fY Y Y + Y + ¶ - ¶ ¶ + - ¶ +
h h

h h h h
¢

¢ ¢

WecannowTaylor expand the bosonic fields x d x d x ...xℓ ℓ( ) ( ) ( )f f f+ » + ¶ +h h h and, provided that the
interactions decay fast enough, namely

V i j Clim constant, B12
i j

i j˜ · ∣ ∣ ( )
∣ ∣

-  º
- ¥

-

the corresponding fermionic quartic term can be expressed as a quadratic bosonic one in the d 0 limit

x x x d x d x x: : : . B13x x
,

R L
2( )ℓ ℓ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ≔ ( ) ( ) ( )† †å f fY Y Y + Y + ¶ - ¶

h h
h h h h

¢
¢ ¢

Thismeans that only interactions that decay faster than, or equal to, the Coulomb interaction(B12) can be
treated via the constructive bosonization. This is crucial to neglect higher-order derivatives, which scale with
C d 0n n1ℓ - in the continuum limit provided that equation (B12) is fulfilled, even for ℓ  ¥ in the
thermodynamic limit. It is also clear that the bosonization predictionswill bemore accurate the faster the decay
is, since the contributions of the higher-order derivatives will be less and less important.

We can proceed similarly with the second termV .k
f
2 F Using the Baker–Campbell–Hausdorff formulawith

x x a x x a x x, log i log i ,
L L, ,R

2
,L

2( )( ) ( )[ ( ) ( )] ( ( )) ( ( ))†j j d d d¢ = - + - ¢ + - - ¢
h h h h h

p
h

p
¢ ¢ which can be

checked from equation (B6), we canwrite the second interaction term in the a 0, and d 0, limit as follows

x x x d x d
d

:
1

: e e : h.c..

B14

d x x d x x
2

i ix xR L R L( ) ( )ℓ ℓ
ℓ

˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ≔
( )

( )

ℓ ℓ† † ( ) ( ) ( ) ( ) ( ) ( )† †
å Y Y Y + Y + +
h h

h h h h
j j j j

¹ ¢
¢ ¢

- ¶ - - ¶ -

After Taylor expansion, andmaking use of the constraint on the interaction decay(B12), wefind

x x x d x d x x: : : . B15x xR L
2( )ℓ ℓ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ≔ ( ) ( ) ( )† †å f fY Y Y + Y + - ¶ - ¶

h h
h h h h

¹ ¢
¢ ¢

The last termV ,k
f
4 F which corresponds to the so-calledUmklapp scattering, is also bosonized by using the Baker–

Campbell–Hausdorff formula and aTaylor expansion, such that wefind in the limit d 0, we obtain

x x x d x d
a

F F

a
x x

:
1

: e e : h.c.

2
: cos 2 2 : , B16

x x
2 R L

2 i2 i2

2 R L

R L( )
( )

ℓ ℓ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) ≔

( ) ( ) ( )

† † † ( ) ( )å

f f

Y Y Y + Y + +

º -

h h
h h h h

f f

¹ ¢
¢ ¢ -

where the definition of the cosine operator in the last termmust incorporate the combination of Klein factors.
Using all these expressions, it is possible to rewrite the fermionicHamiltonian as a sine-Gordon quantum field

theory composed of theHamiltonian of a LL H ,LL and a nonlinearity due to theUmklapp scattering H ,U

H H H H

x u

K
x K x H

x
g x

,

d

2 2

1
: : : : ,

d

2
: cos 2 2 : , B17x x

f LL U LL

2 2
U U( ) ( ) ( )( ) ( ) ( ) ( )⎜ ⎟⎛

⎝
⎞
⎠ò òp p

= +

= ¶ F + ¶ Q = F
-¥

¥

-¥

¥

where u is a renormalized Fermi velocity,K is the so-called Luttinger parameter, and gU theUmklapp interacting
strength. For the small interactionsV vFℓ̃  considered here, these parameters are obtained through the above
expressions
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which coincidewith a phenomenological bosonization [33]up to a different choice of fermionic algebra and
dualfields. Using the exact expression of themediated interactions in equation (7), we can find the analytical
expressions for the Luttinger parameters by using the geometric Taylor series and some trigonometric identities,
such that
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These expressions yield the Luttinger parameters in equations (9) and(10) of themain text.
For small-enough interactions, the sine-Gordon nonlinearity is irrelevant [7], and the bosonized

groundstate is solely determined by the LLHamiltonian H Hf LL» in equation (B17). To obtain the
corresponding groundstate, let us express the dualfields in terms of newbosonic fields

x x x K1 2 ,( ) ( ( ) ( ))f fQ = ++ - and x x x K 2 ,( ) ( ( ) ( ))f fF = -+ - where

x
n

d x
n

d
1

e h.c.,
1

e h.c., B20
n q

qx
aq

q
n q

qx
aq

q
0

i
2

0

i
2

q q

( ) ( ) ( )å åf f=
-

+ =
-

++
>

- -
+ -

>

+ -
-

are defined in terms of two species of bosonic creation-annihilation operators d d, .q q
†
  By direct substitution,

onefinds that in analogy to the free theory, the spectrumof the full interacting theory can again be described by
two linear bosonic branches

H uq d d d d , B21
q

q q q qf ( ) ( )† †å= ++ + - -

with a renormalized Fermi velocity v uF  (B18), which proves equation (8) in themain text. Therefore, the
fermionic part of the variational groundstate is the vacuumof the new bosonicmodes 0 ,f d∣ ∣y ñ = ñ and directly
leads to the complete variational bosonization ansatz of equation (11),
namely U U, 0 0 .q aG f B P d∣ ({ }) ∣ ∣† †a yY ñ = ñ Ä ñ

Once the variational bosonization ansatz is known,we can embark upon the calculation of the two-point
correlators.We start from the simplest one, the diagonal spin–spin correlators
C N .

i i
z

i
z

i
z

i
z

z z ℓ( ) ( )ℓ ℓå s s s s= á ñ - á ñá ñs s + + Making use of the Jordan–Wignermapping, onefinds

C U U n n U U4 0 , 0 ½ ½ 0 , 0 , B22a ad P B 1 1 B P dz z ( )( )ℓ( ) ( )ℓ
† †= - -s s +

and since both unitaries commutewith the fermion operators, it follows that

C x
d

x x0 : :: 0 0 : 0 ,
2

2 d dz z ( ) ∣ ( ) ( ) ( ) ( ) ∣† †
p

= á Y Y Y Y ñs s wherewe have already taken the continuum limit in

equation (B2). This expectation value coincides exactly with that of the bosonizedXXZmodel [28], which has
become a textbook example [7]. Using the above bosonization relations, and theKlein-factor algebra, onefinds

C x x
d

a
0 0 0 e 0 e e 0 c.c. .d

x x
k x x2

d d

2

2 2
i2

d
i 2 i 2 0

dz z

2

2
F( ) ∣ ( ) ( )∣ ( ∣ ∣ )( ) ( )

p
= á ¶ F ¶ F ñ + á ñ +s s p

- F - F Thefirst term can be

evaluated easily after expressing the dualfield in terms of the newbosonic creation-annihilation operators(B20),
while the second term requires the additional identity forGaussian states
0 e e 0 e e e .x x x

d
i 2 i 2 0

d
2 0 0 0 0 0 0 0 0d d d

2
d d

2
d∣ ∣( ) ( ) ( ) ( ) ( ) ( )á ñ =F - F F F - F - F Altogether, one obtains in the thermo-

dynamic limit L  ¥

C x
d K

x

d

x

2
e , B23k x

K2

2 2
i2

2

z z F( ) ( )⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟p

= - -s s
-

which corresponds to equation (12) after setting x d,ℓ= and k d2 .F p=
For the off-diagonal spin correlators C N ,

i i i i i( )ℓ( ) ℓ ℓå s s s s= á ñ - á ñá ñs s +
+ -

+
+ -

+ - weproceed analogously
tofind

C D f D f0 0 0 0 . B24q q a a q a q a, 1 , 1, d 1 1 dq q( ) ( )ℓ( ) ( )ℓ ℓs s= P -s s ¢ + ¢ +
+ -

+ - ¢

The bosonic contribution is due to the polaron cloud dressing the spins, and can be calculated in analogy to the
renormalization of the tunnelling in equation (A10) by using the coherent-state algebra. The spin contribution
reduces oncemore to that of the bare XXZmodel, which requires additional care due to the Jordan–Wigner
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stringwhen expressed in terms of fermions [7]. Anyhow, it can be expressed again as a collection of expectation
values of exponentials of the dualfields in the continuum limit, which can be calculated exactly using the same
procedure as above. Altogether, this leads to

C x
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k x
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⎝⎜

⎛
⎝

⎞
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⎞
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= +s s
c- -+ -

where x 1 e .
q

u

N
q q xi

q

0
2

2
d˜ ( ) ( )( )åc = -

w
- This function can be evaluated by using oncemore the binomial series

togetherwith combinatorial relations, and after setting x d,ℓ= and k d2 ,F p= we find precisely the expression
in equation (13) of themain text.

Moving onto the bosons, let us address the off-diagonal correlators
C a a a a N .a a i i i i i( )ℓ( ) ℓ ℓ

† †† å= á ñ - á ñá ñ+ + Using the variational bosonization ansatz, wefind that such
correlators depend on the spin structure factors qS z z ( )s s as follows
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q q q C
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q q
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i i
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† å å

w
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To evaluate this expression, we define the inverse Fourier series N1 e ,j q
qdj

q
2 i 2å wW = which can be

evaluated againmaking use of the binomial series and binomial theorem

j1 1 1
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e . B27
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x
-

Using this expression and the identity Ne ,
q

qx
x

i
,0å d= one can express the bosonic correlators as
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1
e , B28a a

q0
2

2

i
z z d( )ℓ ℓ( ) ( )
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ℓ
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W
¢s s
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¢

which leads directly to equation (14) upon substitution of the diagonal spin–spin correlators in equation (12)
already derived in this appendix.
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