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Abstract

Objective—To test whether absence of complete spermatogenesis in mature testicular tissue
before grafting will increase graft survival.

Design—~Prospective experimental study.
Setting—Laboratory.

Animal(s)—Donor testes were obtained from adult untreated mice, adult mice rendered
cryptorchid, and adult mice treated with a GnRH antagonist (acyline).

Intervention(s)—Donor testes were ectopically grafted to nude mice and recovered at three time
points.

Main Outcome Measure(s)—Most advanced germ cell type and presence of spermatogonia
were assessed. Donor testes and grafts were analyzed by histology and by immunocytochemistry
for ubiquitin C-terminal hydrolase-L1 to mark germ cells.

Result(s)—Suppression of spermatogenesis by inducing cryptorchidism or acyline treatment
resulted in improved survival of grafted tissue compared with controls and recovery of complete
spermatogenesis, whereas control testis grafts mostly degenerated and did not restore complete
spermatogenesis.

Conclusion(s)—These results indicate that complete spermatogenesis at the time of grafting has
a negative effect on graft survival. Grafting of adult testis tissue from donors with suppressed
spermatogenesis leads to spermatogenic recovery and may provide a tool to study and preserve
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fertility and for conservation of genetic resources in individuals that lack complete germ cell
differentiation.
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Reproductive biotechnology plays an important role in the study and preservation of
fertility. In adult males, the most common technology to preserve fertility is
cryopreservation of spermatozoa. However, in cases in which collection of spermatozoa is
not possible, such as in men rendered azoospermic by disease or cancer treatment (1) or in
species with seasonal reproductive patterns outside the mating season (2), xenografting
could be a method to obtain sperm. Transplantation of adult testis tissue could also be useful
to study mechanisms that cause disturbance of spermatogenesis (3).

Xenografting of immature testis tissue results in complete spermatogenesis in donor tissue
from different mammalian species (4-11). In contrast, in most studies with adult testis
tissue, xenografting led to the degeneration of the transplanted tissue or the survival of
tubules with Sertoli cells only (12-15). In human adult testis grafts, spermatogonia were
observed in some cases (12, 13), and in mature horse and some mouse testis grafts
spermatogenesis proceeded but was arrested at the spermatocyte stage (5, 6).

The differential potential of immature and adult testis tissue to survive after grafting is not
completely understood, but some hypotheses have been proposed (5, 15). Adult tissue may
be more sensitive than young tissue to transient ischemia associated with the grafting
procedure, or mature tissue may be less effective in inducing angiogenesis than immature
testis tissue. Graft development could also be impaired because mature Sertoli cells have
lost the ability to divide. Our previous work suggested that degeneration of adult testis tissue
grafts is related to the degree of sperm production and structural organization of the
seminiferous tubules (15). Higher metabolic demands to support the high rate of cell
division and differentiation during active spermatogenesis could render mature tissue more
sensitive to hypoxia than testis tissue with no or low levels of spermatogenesis (15).
Therefore, suppression of spermatogenesis in adult testis tissue before grafting would
improve survival of the tissue as a graft.

There are different hormonal or physical methods to suppress spermatogenesis in testis
tissue. Many hormonal treatments have been tested to develop an effective male
contraceptive. Acyline is a GnRH antagonist that competitively inhibits the action of GnRH
at pituitary receptor sites. Treatment with acyline caused suppression of T and
gonadotropins and decreased sperm count and motility in different species (16-19).

Spermatogenesis is also suppressed in cryptorchid testes. When testes are retained in the
abdominal cavity, exposure to core body temperature results in degeneration of
differentiating germ cells and infertility in various species (20). Experimentally induced
cryptorchidism in mice has been used to deplete the germinal epithelium of differentiating
cells (21). Treatment with a GnRH antagonist and cryptorchidism suppress spermatogenesis,
but once permissive conditions are restored, spermatogenesis will be reinitiated from
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spermatogonia retained in the suppressed testis, and differentiation of germ cells can take
place (17, 22).

Here we test the hypothesis that suppression of spermatogenesis by treatment with acyline or
by induced cryptorchidism increases survival and germ cell differentiation in allografts from
adult mouse testis.

MATERIALS AND METHODS

All animal procedures were approved by and performed under the guidance of the
Institutional Animal Care and Use Committee at the University of Pennsylvania.

Donor Tissue

Testes from 15-week-old B6C3F1 mice (n = 3 mice) served as untreated control tissue.

Male B6C3F1 mice at 6 weeks of age (n = 9) were anesthetized, and cryptorchidism was
induced (23). Testes were recovered 2 months later.

Male B6C3F1 mice at 6 weeks of age were treated SC with 5 mg acyline/kg (n = 9) or 10
mg acyline/kg (n = 5) once every 2 weeks for 3 months (19) (Dr. Marvin L. Meistrich,
personal communication, September 2007). Testes were recovered 1 week after the last
injection.

Grafting of Donor Tissue

Donor mice were sacrificed by CO, inhalation, testis weight was recorded, and testes were
decapsulated, cut into small fragments (approximately 1 mm3), and maintained in
Dulbecco’s modified Eagle medium on ice until grafting. Male immunodeficient NCR-nude
mice (n = 9 per treatment group) at 6—-8 weeks of age were anesthetized, castrated, and
during the same surgery six fragments of donor testis tissue were implanted under their back
skin.

Donor and Graft Tissue Recovery

Three recipient mice from each group were killed at 1, 2, and 3 months after grafting by
CO», inhalation. Mice were weighed, the back skin was removed, and grafts were recovered.
Seminal vesicles were weighed as an indicator of T secretion by grafts (24). Pieces of
testicular tissue from donors and the recovered grafts were fixed in Bouin’s solution after
dissection and processed for histology as described previously (25).

Analysis of Testicular Tissue

A hematoxylin and eosin—stained section from each donor and graft testicular tissue was
examined. All seminiferous tubules present were counted and classified according to the
most advanced germ cell stage present or as degenerated tubule when they showed
hyalinization (Fig. 1A). When no tubular structure was found in the graft, it was considered
as completely degenerated. In tubules with differentiated germ cells, pachytene
spermatocytes were identified according to cell size and distinctive chromatin structure, and
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round spermatids according to their adluminal position, smaller cell size, clear cytoplasm,
and the presence of a condensed nucleus.

To distinguish between tubules containing spermatogonia as most advanced germ cell type
and those containing Sertoli cells only in tubules where no meiotic or postmeiotic germ cells
were detected by examination of histologic sections, immunostaining for ubiquitin C-
terminal hydrolase-L1 (UCH-L1) was performed to label spermatogonia (Fig. 1B). Slides
were deparaffinized, rehydrated, and rinsed in distilled water. Then, samples were
permeabilized in 0.5% Triton X-100 (EMD) in phosphate-buffered saline (PBS) for 10
minutes at room temperature. Endogenous peroxidase activity was blocked by treating the
samples with 3% H,0, in distilled water for 10 minutes. After washing in PBS, sections
were incubated with 3% bovine serum albumin in PBS for 1.5 hours at room temperature to
block unspecific antibody binding. Subsequently, samples were incubated overnight at 4°C
in a humidified chamber with the first antibody: polyclonal anti-UCH-L1 antibody (AbD
Serotec) diluted 1:500 in 3% bovine serum albumin. The next day, the slides were washed
with PBS and treated for 1 hour with the secondary antibody (peroxidase-conjugated
affinipure donkey anti-rabbit 1gC; Jackson ImmunoResearch) diluted 1:1,000 in PBS.
Finally, samples were washed, treated with Novared (Vector Laboratories) for 1 minute to
detect peroxidase activity, counterstained with hematoxylin, and mounted.

Statistical Analysis

RESULTS

Statistical analysis was performed with SPSS 14.0 for Windows. Data from all grafts
recovered from the back of each individual mouse were pooled, so each mouse was
considered as the experimental unit. Kruskal-Wallis and Mann-Whitney tests were used to
analyze the results. Data are expressed as means + SEM, and P<.05 was considered
significant.

Donor Tissue

The testis weight in B6C3F1 control animals (untreated 15-week-old mice) was 145.5 + 3.3
mg, and the testes contained full spermatogenesis (89.0% of tubules had elongated
spermatids; Fig. 2, Table 1).

The total percentage of recovered grafts for all three time points was 48.2%, and 30.8% of
them presented no seminiferous tubules and consequently were classified as completely
degenerated grafts (Table 1). In grafts from control tissue, the percentage of degenerated
tubules was always higher than 64%, but tubules with germ cells were observed at every
time point. At 3 months after grafting fewer than 3% of seminiferous tubules had germ cells
(Figs. 2 and 3A, Table 1).

B6C3F1 mice cryptorchid testes after 2 months inside the abdominal cavity weighed 35.5 £
1.0 mg, significantly less than the control testis (145.5 mg + 3.3, P<.001), and had 1.5% of
tubules presenting round spermatids as the most advanced germ cell (Fig. 2, Table 1).
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The overall percentage of grafts recovered after transplantation of cryptorchid testes was
77.8%, and 11.9% of them contained no tubules (Fig. 2, Table 1). The histologic appearance
of the grafts at 1, 2, and 3 months after grafting was similar, with nearly 50% degenerated
tubules, 30% Sertoli cells only tubules, and 15% tubules showing germ cells. At 3 months
after grafting, spermatogenesis had progressed through meiosis, and round and elongated
spermatids were present (Figs. 2 and 3B, Table 1).

In mice injected with 5 mg acyline/kg, spermatogenesis was not completely suppressed, and
elongated spermatids were found in 76.9% of tubules (Fig. 2, Table 1). However, testis
weight was significantly lower than in controls (mean 74.8 mg + 0.9 vs. 145.5mg £ 3.3 in
controls, P<.001). Testes from mice treated with 10 mg acyline/kg were the smallest of all
treatments groups (mean 7.9 mg + 0.5, P<.001), they contained no elongated spermatids,
and 13.6% of tubules contained round spermatids as the most advanced germ cell (Fig. 2,
Table 1). The percentage of recovered grafts in mice carrying low-dose acyline-treated
tissue (72.2%) was not statistically different from the control, but graft recovery was higher
in mice with grafts from donors treated with high-dose acyline (88.9%; P<.05). Although
12.5% of recovered grafts from donor mice injected with 5 mg acyline/kg were degenerated,
for donor mice treated with 10 mg acyline/kg only 5.4% of all recovered grafts were
degenerated (Fig. 2, Table 1).

Grafts from donor mice treated with low-dose acyline contained more than 60% degenerated
tubules at all time points (Fig. 2, Table 1). At 1 and 2 months after grafting, some survival
and differentiation of germ cells had occurred, and elongated spermatids were present.
However, at 3 months after grafting more than 85% of tubules were degenerated, although
some round spermatids were still observed (Figs. 2 and 3C, Table 1).

Grafts from donor mice injected with high-dose acyline contained fewer than 40%
degenerated tubules (Fig. 2, Table 1). Round spermatids were present at 1 month after
grafting, and spermatogenesis progressed over time with an increased percentage of tubules
with postmeiotic germ cells (Figs. 2 and 3D, Table 1). Dilated tubules, defined as tubules in
which the lumen occupies the majority of the cross-sectional area and the germinal
epithelium is reduced, were observed at 3 months after grafting, as was previously found in
grafts from immature mouse testis (24) (Fig. 2, Table 1).

Analysis of Seminal Vesicle Weight

Testosterone secretion was estimated according to the weight of the seminal vesicles. There
were no statistical differences in seminal vesicle weight between time points for any
treatment, or between treatments at any time point, except in mice with grafts treated with
high doses of acyline, in which seminal vesicle weight was higher at 3 months than at 1
month after grafting (195.4 + 35.0 mg at 3 months vs. 50.6 + 22.8 mg at 1 month,
respectively; P<.05).

DISCUSSION

The present study demonstrates that adult testis tissue is able to survive and germ cells can
proliferate and differentiate in tissue grafted ectopically to castrated host mice. Suppressed
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spermatogenesis, by inducing cryptorchidism or treatment with high doses of acyline,
resulted in improved survival of the grafted tissue and recovery of spermatogenesis
compared with control tissue. Similarly, grafts of human testis tissue with spermatogenic
dysfunction and of cryptorchid horse testis tissue survived better than those of normal adult
human or equine testes (3, 13). Hence, the reason adult testis grafts degenerate when
transplanted seems to depend on the presence of spermatogenesis, and consequently
degeneration of grafted tissue is not inherent to the adult testis tissue. Therefore, the
population of spematogonia in an adult testis tissue retains the potential to proliferate and
differentiate when grafted, similar to spermatogonia present in immature testis. To our
knowledge this is the first report of complete spematogenesis occurring in fresh adult testis
tissue graft.

It was proposed that the progression of degeneration of mature testicular tissue grafts is
related to the degree of spermatogenesis in donor tissue at the time of grafting (12, 15). The
results of the present study support the hypothesis of a correlation between the presence of
spermatogenesis and degeneration of grafted adult testis. The testis is an organ with a high
sensitivity to ischemia (26). The high cell proliferation rate makes the adult testis dependent
on high blood supply and, consequently, very susceptible to the period of ischemia during
the grafting procedure.

Interestingly, different treatments to suppress spermatogenesis resulted in different levels of
graft survival and germ cell differentiation. Cryptorchid tissue revealed a more complete
suppression of spermatogenesis, on the basis of the lowest percentage of seminiferous
tubules with the most advanced germ cell stages, compared with testis tissue from mice
injected with 10 mg acyline/kg. However, grafts from testis tissue treated with high doses of
acyline had a higher percentage of recovered grafts, nondegenerated tubules, and
progression of spermatogenesis. Suppression of T production can promote recovery of
spermatogenesis when used before or after irradiation (27, 28), chemical damage with
busulfan (29), procarbazine (30), or CDB-4022 (31) in mice mutant for the juvenile
spermatogonial depletion (jsd) gene (32) and in induced cryptorchids (33). This indicates
that suppression of T production has a beneficial effect on the restoration of spermatogenic
activity regardless of the mechanism of impairment (33). On the basis of this assumption,
acyline-treated tissue that was exposed to a lower level of T than cryptorchid testis tissue
may contain a more conducive microenvironment for spermatogonial differentiation.
Moreover, cryptorchidism may have an adverse effect on Sertoli cells as well as on
differentiated germ cells, with formation of vacuoles between Sertoli cells, increased volume
of lipid droplets, and wider Sertoli cell junctions (34) that could be negatively affecting the
development of the graft and contribute to degeneration.

The weight of the donor testis was different among treatments. Testis weight in mice
injected with low doses of acyline was half that of the control testes. However, both control
and low-dose acyline-treated testes maintained active spermatogenesis, and more than 75%
of the tubules showed elongated spermatids as the most advanced germ cell. The difference
in testis weight could be due to the differences in interstitial tissue volume. Mice injected
with 5 mg acyline/kg likely experienced a reduction in the secretion of FSH and LH and a
decrease of T production (19). Yet, under physiologic conditions, the concentration of T

Fertil Steril. Author manuscript; available in PMC 2014 August 12.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Avrregui et al.

Page 7

inside the seminiferous tubules is higher than the concentration needed for spermatogenesis
to occur (35). Therefore, decreased production of T may reflect a reduction in the volume of
Leydig cells but did not adversely affect spermatogenesis. Suppression of T could also have
affected secretory activity of Sertoli and germ cells (36), decreasing production of
seminiferous tubule fluid and testicular weight (18). Cryptorchid testicular tissue weight was
half that of testes from mice treated with low-dose acyline. Luteinizing hormone and T
serum levels and the interstitial tissue in cryptorchid mice are very similar to normal mice
testes (37). The reduction of cryptorchid testes weight is therefore mainly due to the loss of
advanced germ cells (38). Finally, mice treated with high-dose acyline had the lightest testis
because both effects described above—reduction in synthesis of T and loss of advanced
germ cells—occurred in these testes.

Overall, our findings support the notion that grafting of adult tissue could be an alternative
method to recover sperm from adults with nonobstructive azoospermia. Patients with
extragonadal causes of maturation arrest, germ cell aplasia, or hypospermatogenesis such as
idiopathic hypogonadotropic hypogonadism, or after vasectomy or testicular artery torsion,
and some cases of Klinefelter syndrome could be candidates for this technique, whereas
tissue grafts from fertile adults or men with obstructive azoospermia will likely degenerate.
Transplantation of human testis from patients who underwent gender-transforming surgery
resulted in partial degeneration of the tissue, and differentiated germ cells were not found
(13). However, the exposure of the donor tissue to estrogens and suppression of the pituitary
function for a long time could have damaged the seminiferous tubules. Testis tissue
xenografting could also be used as an accessible model to understand the basis of testicular
dysfunction and design treatments. Grafting of immature rhesus monkey testis tissue has
been used as a model to evaluate the cytotoxic effect of busulfan on testicular function (39)
and to analyze the effect of supplementation with gonadotropins to accelerate maturation of
Sertoli cells and onset of spermatogenesis (40). Xenografting of testicular tissue can provide
a framework to study extragonadal causes for disruption of spermatogenesis and an
accessible system to devise strategies to manipulate the extragonadal environment.

Finally, in many mammalian species, testis function varies with season, ranging from
complete suppression of spematogenesis outside of the mating season in some species to
normal sperm production during the entire year in others (2). Possibly, testis tissue grafting
could be a tool to obtain sperm for genetic conservation in species with a prominent seasonal
reproductive pattern and lack of elongated spermatids during some of the year.

Sperm obtained by testis tissue xenografting should be used by intracytoplasmic sperm
injection for fertilization because lack of maturation in the epididymis precludes motility.
Intracytoplasmic sperm injection is currently a routine technique for assisted reproduction in
humans and has been applied successfully in domestic mammals (41-43). Viable piglets
have been born after intracytoplasmic sperm injection with sperm produced by testis tissue
xenografting and embryo transfer (44). Although in the current experiments the number of
elongated spermatids present in grafts was low at 3 month after grafting, the possibility of
using round spermatids for fertilization by round spermatid injection opens new possibilities
for the application of this technique. Round spermatid nucleus injection is still considered an
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experimental technique in humans (45), but birth of a healthy human infant and other
species has been reported (46-48).

In conclusion, complete spermatogenesis can be supported from adult spermatogonia when
mature testicular tissue is grafted to host mice. Spermatogenic activity at the time of grafting
has a negative effect on the survival of the grafts, whereas suppressed spermatogenesis
before grafting leads to the resurgence and completion of spermatogenesis in adult mouse
testis allografts. Therefore, xenografting of adult testicular tissue from donors with impaired
spermatogenesis may provide a tool for fertility preservation, study of infertility, and genetic
conservation.
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FIGURE 1.
Histologic analysis of testicular tissue grafts. (A) Graft stained with hematoxylin and eosin

showing [1] degenerated tubule, [2] tubule with differentiated germ cells, and [3] tubule
without differentiated germ cells. (B) Graft after immunohistochemistry for UCH-L1
presenting [2] tubule with differentiated germ cells, [3a] Sertoli cell only tubule, and [3b]
tubule with spermatogonia. Spermatogonia are indicated with arrows and spermatocytes
with arrowheads. Bar = 50 pm.
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grafts. (A) Control tissue, (B) cryptorchid mice, (C) mice treated with 5 mg acyline/kg, and
(D) treated with 10 mg acyline/kg. Results are means + SEM. 1 MO = 1 month after
grafting; 2 MO = 2 months after grafting; 3 MO = 3 months after grafting; Dil = dilated; Elo
Spd = elongated spermatids; Rd Spd = round spermatids; Spcyt = pachytene spermatocytes;

Spg = spermatogonia; SCO = Sertoli cells only; Dege = degenerated tubules.
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FIGURE 3.
Histologic appearance of adult mouse grafts 3 months after grafting. (A) Grafts from control

tissue, (B) from cryptorchid mice, (C) from mice treated with 5 mg acyline/kg, and (D) from
mice treated with 10 mg acyline/kg. Elongated spermatids are indicated with arrows, round
spermatids with arrowheads, and spermatocytes with asterisks. Bars = 50 um.
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